Integrated photonic devices are at the basis of all-optical chips, essential ingredients for quantum information technology applications. In such devices, one of the key features relies on the control of the emission properties of integrated solid-state quantum emitters, most importantly, the spontaneous emission dynamics. In this way, one is able to control, for instance, the single-photon emission repetition rate and improve the coherence of the emitted quantum light, by reducing the spontaneous emission lifetime. We demonstrate the potential of nano-photonic devices characterized by a bio-inspired deterministic aperiodic structure, based on spiral geometries, as an on-chip platform for cavity quantum electrodynamics experiments. Aperiodic order, in particular, following spiral configurations, is present in natural systems where, for instance, the arrangements of leaves and seeds in plants follow Fibonacci series. The study of bio-inspired systems has attracted considerable interest in classical photonics, and we here implement such an approach to quantum photonics.
|