PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
This PDF file contains the front matter associated with SPIE Proceedings Volume 10390, including the Title Page, Copyright information, Table of Contents, and Conference Committee listing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
A joint team comprised of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratory (SNL) personnel is designing a line-VISAR (Velocity Interferometer System for Any Reflector) for the Sandia Z Machine, Z Line-VISAR. The diagnostic utilizes interferometry to assess current delivery as a function of radius during a magnetically-driven implosion. The Z Line-VISAR system is comprised of the following: a two-leg line-VISAR interferometer, an eight-channel Gated Optical Imager (GOI), and a fifty-meter transport beampath to/from the target of interest.
The Z Machine presents unique optomechanical design challenges. The machine utilizes magnetically driven pulsed power to drive a target to elevated temperatures and pressures useful for high energy density science. Shock accelerations exceeding 30g and a strong electromagnetic pulse (EMP) are generated during the shot event as the machine discharges currents of over 25 million amps. Sensitive optical components must be protected from shock loading, and electrical equipment must be adequately shielded from the EMP. The optical design must accommodate temperature and humidity fluctuations in the facility as well as airborne hydrocarbons from the pulsed power components.
We will describe the engineering design and concept of operations of the Z Line-VISAR system. Focus will be on optomechanical design.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Solid-state optical comb-pulse generators provide a convenient and accurate method to include timing fiducials in a streak camera image for time base correction. Commercially available vertical-cavity surface-emitting lasers (VCSEL’s) emitting in the visible currently in use can be modulated up to 2 GHz. An optically passive method is presented to interleave a time-delayed path of the 2-GHz comb with itself, producing a 4-GHz comb. This technique can be applied to VCSEL’s with higher modulation rates. A fiber-delivered, randomly polarized 2-GHz VCSEL comb is polarization split into s-polarization and p-polarization paths. One path is time delayed relative to the other by twice the 2-GHz rate with ±1-ps accuracy; the two paths then recombine at the fiber-coupled output. High throughput (≥90%) is achieved by carefully using polarization beam-splitting cubes, a total internal reflection beam-path–steering prism, and antireflection coatings. The glass path-length delay block and turning prism are optically contacted together. The beam polarizer cubes that split and recombine the paths are precision aligned and permanently cemented into place. We expect the palm-sized, inline fiber-coupled, comb-rate–doubling device to maintain its internal alignment indefinitely.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The goal of this paper is to outline the process for characterizing the S-parameters of passive two-port electrical
devices to calculate the input signal from a measured output signal when standard two-port VNA measurements are
not possible. For long cables such as those used at NIF to transmit analog electrical signals long distances from target
diagnostics to their respective data digitizer, standard two-port VNA measurements cannot be used to determine the
cables’ transfer functions due to the large physical separations between the ports of the cables. Traditionally, this
problem was addressed by recording input and output waveforms with two oscilloscopes and then comparing their
spectral composition. A new method is to take reflection measurements at one port and substitute three known loads
at the other port to generate a system of simultaneous equations that will allow for S21 to be quantified.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Measuring the X-ray environment generated at the center of the NIF target chamber is a core capability
required for understanding target implosions and other physics experiments. Recently an upgrade was
performed to the recording systems employing modern digital technology and additional remote-control
capabilities. Together, significantly decreasing manual setup burdens, increasing accuracy, stability and
availability while contributing to shot rate improvement, overall efficiency and cost of operations reduction on
NIF. We present the systems chosen, improved calibration techniques employed and some of the key features
including the addition of self-test capabilities.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The National Ignition Facility’s (NIF) harsh radiation environment can cause electronics to malfunction during high-yield DT shots. Until now there has been little experience fielding electronic-based cameras in the target chamber under these conditions; hence, the performance of electronic components in NIF’s radiation environment was unknown. It is possible to purchase radiation tolerant devices, however, they are usually qualified for radiation environments different to NIF, such as space flight or nuclear reactors. This paper presents the results from a series of online experiments that used two different prototype camera systems built from non-radiation hardened components and one commercially available camera that permanently failed at relatively low total integrated dose. The custom design built in Livermore endured a 5 × 1015 neutron shot without upset, while the other custom design upset at 2 × 1014 neutrons. These results agreed with offline testing done with a flash x-ray source and a 14 MeV neutron source, which suggested a methodology for developing and qualifying electronic systems for NIF. Further work will likely lead to the use of embedded electronic systems in the target chamber during high-yield shots.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We are developing a novel diagnostic for measurement of bulk fluid motion in materials, that is particularly applicable to
very hot, x-ray emitting plasmas in the High Energy Density Physics (HEDP) regime. The X-ray Doppler Velocimetry
(XDV) technique relies on monochromatic imaging in multiple x-ray energy bands near the center of an x-ray emission
line in a plasma, and utilizes bent imaging crystals. Higher energy bands are preferentially sensitive to plasma moving
towards the viewer, while lower energy bands are preferentially sensitive to plasma moving away from the viewer.
Combining multiple images in different energy bands allows for a reconstruction of the fluid velocity field integrated
along the line of sight. We review the technique, and we discuss progress towards benchmarking the technique with
proof-of-principle HEDP experiments.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
In inertial confinement fusion (ICF) experiments on the National Ignition Facility (NIF), measurements of average ion temperature using DT neutron time of flight broadening and of DD neutrons do not show the same apparent temperature. Some of this may be due to time and space dependent temperature profiles in the imploding capsule which are not taken into account in the analysis. As such, we are attempting to measure the electron temperature by recording the free-free electron-ion scattering-spectrum from the tail of the Maxwellian temperature distribution. This will be accomplished with the new NIF Continuum Spectrometer (ConSpec) which spans the x-ray range of 20 keV to 30
keV (where any opacity corrections from the remaining mass of the ablator shell are negligible) and will be sensitive to temperatures between ∼ 3 keV and 6 keV. The optical design of the ConSpec is designed to be adaptable to an x-ray streak camera to record time resolved free-free electron continuum spectra for direct measurement of the dT/dt evolution across the burn width of a DT plasma. The spectrometer is a conically bent Bragg crystal in a focusing geometry that allows for the dispersion plane to be perpendicular to the spectrometer axis. Additionally, to address the spatial temperature dependence, both time integrated and time resolved pinhole and penumbral imaging will be
provided along the same polar angle. The optical and mechanical design of the instrument is presented along with estimates for the dispersion, solid angle, photometric sensitivity, and performance.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Icarus camera is an improvement on past imagers (Furi and Hippogriff) designed for the Ultra-Fast X-ray Imager (UXI) program to deliver ultra-fast, time-gated, multi-frame image sets for High Energy Density Physics (HEDP) experiments. Icarus is a 1024 × 512 pixel array with 25 μm spatial resolution containing 4 frames of storage per pixel. It has improved timing generation and distribution components and has achieved 2 ns time gating. Design improvements and initial characterization and performance results will be discussed. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
X-ray penumbral imaging has been successfully fielded on a variety of inertial confinement fusion (ICF) capsule
implosion experiments on the National Ignition Facility (NIF). We have demonstrated sub-5 μm resolution imaging of
stagnated plasma cores (hot spots) at x-ray energies from 6 to 30 keV. These measurements are crucial for improving
our understanding of the hot deuterium-tritium fuel assembly, which can be affected by various mechanisms, including
complex 3-D perturbations caused by the support tent, fill tube or capsule surface roughness. Here we present the
progress on several approaches to improve x-ray penumbral imaging experiments on the NIF. We will discuss
experimental setups that include penumbral imaging from multiple lines-of-sight, target mounted penumbral apertures
and variably filtered penumbral images. Such setups will improve the signal-to-noise ratio and the spatial imaging
resolution, with the goal of enabling spatially resolved measurements of the hot spot electron temperature and material
mix in ICF implosions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
X-ray calibration is a primary component of the calibration services provided by National Security Technologies, LLC (NSTec) Livermore Operations (LO). The X-ray calibration labs at NSTec LO consist of four labs which provide characteristic and bremsstrahlung X-ray output beams ranging in energy from 300 eV to 110 keV. These labs can calibrate a variety of X-ray detectors and components including CCD’s, streak cameras, spectrometers, and filters. Many of the calibration measurements are NIST-traceable. Calibrations and characterizations provided include quantum efficiency, sensitivity, dynamic range, resolution, flat-field test, and transmission measurements. Historically, these labs have performed calibrations for various institutions and national laboratories such as LLNL, LANL, and Sandia. In addition, NSTec (LO) has diagnostic R&D capabilities such as extending curved crystal X-ray imaging to higher energies. This presentation will describe the services provided by these labs, the operation and in-house, NVLAP certified calibration of the various X-ray sources and diagnostics used, and the general layout of the NSTec (LO) X-ray labs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Gated X-ray framing cameras are used to measure important characteristics of inertial confinement fusion (ICF) implosions such as size and symmetry, with ~50 ps time resolution in two dimensions. A pulsed source of hard (>8 keV) X-rays, would be a valuable calibration device, for example for gain-droop measurements of the variation in sensitivity of the gated strips. We have explored the requirements for such a source and a variety of options that could meet these requirements. We find that a small-size dense plasma focus machine could be a practical single-shot X-ray source for this application if timing uncertainties can be overcome.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
A new neutron imager, known as Neutron Imaging System North Pole, has been fielded to image the neutrons produced in the burn region of imploding fusion capsules at the National Ignition Facility. The resolution and alignment requirements and parameters that drive the design of this system are similar to the pre-existing equatorial system, there are significant changes. This work describes the parameters and limitations driving the design of this system, discusses the metrology and alignment, and shows some data from the instrument.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Fielding the LANL third-generation Gas Cherenkov Detector (GCD-3) at the National Ignition Facility (NIF) revealed an
array of complex engineering challenges. Fielding the GCD-3 Detector in a 3.9 meter re-entrant Well on the NIF Target
Chamber required the development of a specialized detector deployment system named the WellDIM3.9m Diagnostic
Manipulator (WellDIM). The most stringent design requirement entailed a no-load/no-contact condition with the Well, which
dictated that all seismic loads be transferred to the Target Chamber port flange. The WellDIM transports the GCD-3 into the
Well at a distance of 3.9m from Target Chamber Center. The GCD-3 Detector, outfitted with additional shielding to mitigate
higher NIF backgrounds, will serve as a prototype for the future, heavily shielded “Super-GCD”.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The flux of neutrons and charged particles produced from inertial confinement fusion experiments at the National Ignition Facility (NIF) induces measurable concentrations of nuclear reaction products in various target materials. The collection and radiochemical analysis of the post-shot debris can be utilized as an implosion diagnostic to obtain information regarding fuel areal density and ablator-fuel mixing. Furthermore, assessment of the debris from specially designed targets, material doped in capsules or mounted on the external surface of the target assembly, can support experiments relevant to nuclear forensic research. To collect the shot debris, we have deployed the Large Area Solid Radiochemistry Collector (LASR) at NIF. LASR uses a main collector plate that contains a large collection foil with an exposed 20 cm diameter surface located ∼50 cm from the NIF target. This covers ∼0.12 steradians, or about 1% of the total solid angle. We will describe the design, analysis, and operation of this experimental platform as well as the initial results. To speed up the design process 3-dimensional printing was utilized. Design analysis includes the dynamic loading of the NIF target vaporized mass, which was modeled using LS-DYNA.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The National Ignition Facility (NIF) is one of the highest fluence neutron sources provided by the nuclear fusion of deuterium and tritium nuclei. One of the resultant products is 14.1 MeV neutrons which provide key information to the conditions in which they were formed. The degree of polar and azimuthal symmetry of the neutron flux is a key metric for the performance of the capsule, thus a spatially-resolved measurement of the neutron distribution is critical. Implementing a suite of 48 lanthanum bromide detectors with zirconium activation samples around the target chamber has been developed to measure the neutron distribution. The system provides near real-time time estimates of the neutron fluence distribution. It is designed to operate over six orders of magnitude of neutron yield, providing overall yield estimates precise to 2%. The system is designed to operate continuously through the NIF shot cycles, accommodating high data rates. We will describe the nuclear counting system, data acquisition and archiving, analysis, and yield distribution results for some NIF high yield shots. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-CONF-736439
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The newest Gas Cherenkov Detector (GCD-3) diagnostic has completed its Phase I commissioning/milestone at the
National Ignition Facility (NIF). GCD-3 was fielded for several years at the Omega Laser Facility in its initial
configuration, before being moved to the NIF. Installation at the NIF involved optimization of GCD-3 for the higher
background environment and designing a new insertion carrier assembly. GCD-3 serves as the initial phase towards the
implementation of the “Super GCD” (SGCD) at the NIF. During this phase of development GCD-3 took measurements
from a re-entrant well, 3.9 meters from target chamber center (TCC). Plans to insert GCD-3 within 20 cm of TCC with a
Target and Diagnostic Manipulator (TANDM) will be discussed. Data was collected using a Photomultiplier Tube
(PMT) in combination with a Mach-Zehnder based recording system. These measurements were used to aid in shielding
analysis, validate MCNP models, and fuel design efforts for the SGCD. Findings from the initial data will be covered
extensively, including an in-depth look into sources of background and possible mitigation strategies. Ongoing
development of phase two, the addition of an ultra-high bandwidth Pulse Dilatation Photomultiplier Tube (PD-PMT),
will also be presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Streak Cameras are an essential diagnostic tool used in shock physics and high energy density physics experiments. Such experiments require well calibrated temporally resolved diagnostics for studying events that occur in the nanosecond to microsecond time scales. Although streak cameras are among the most common detectors used within the high energy density physics community, they require frequent calibration and typically lack reproducibility in the fine detail. A solid state device with similar temporal performance characteristics could provide several advantages to current streak camera systems by utilizing discrete spatial resolution set by the sensor diodes. National Security Technologies (NSTec) has built a multi-channel solid state streak camera (SSSC) prototype, in collaboration with Sandia National Laboratories, as part of an ongoing project to develop the technology to a level competitive with analog streak cameras. The device concept and results from electronic testing of our first prototypes will be discussed in this manuscript. These measurements will be used as a base for future SSSC development projects.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.