Paper
13 June 1989 Nine New Fluorescent Probes
T. I. Lin, M. V. Jovanovic, R. M. Dowben
Author Affiliations +
Proceedings Volume 1063, New Technologies in Cytometry; (1989) https://doi.org/10.1117/12.951899
Event: OE/LASE '89, 1989, Los Angeles, CA, United States
Abstract
Absorption and fluorescence spectroscopic studies are reported here for nine new fluorescent probes recently synthesized in our laboratories: four pyrene derivatives with substituents of (i) 1,3-diacetoxy-6,8-dichlorosulfonyl, (ii) 1,3-dihydroxy-6,8-disodiumsulfonate, (iii) 1,3-disodiumsulfonate, and (iv) l-ethoxy-3,6,8-trisodiumsulfonate groups, and five [7-julolidino] coumarin derivatives with substituents of (v) 3-carboxylate-4-methyl, (vi) 3- methylcarboxylate, (vii) 3-acetate-4-methyl, (viii) 3-propionate-4-methyl, and (ix) 3-sulfonate-4-methyl groups. Pyrene compounds i and ii and coumarin compounds v and vi exhibit interesting absorbance and fluorescence properties: their absorption maxima are red shifted compared to the parent compound to the blue-green region, and the band width broadens considerably. All four blue-absorbing dyes fluoresce intensely in the green region, and the two pyrene compounds emit at such long wavelengths without formation of excimers. The fluorescence properties of these compounds are quite environment-sensitive: considerable spectral shifts and fluorescence intensity changes have been observed in the pH range from 3 to 10 and in a wide variety of polar and hydrophobic solvents with vastly different dielectric constants. The high extinction and fluorescence quantum yield of these probes make them ideal fluorescent labeling reagents for proteins, antibodies, nucleic acids, and cellular organelles. The pH and hydrophobicity-dependent fluorescence changes can be utilized as optical pH and/or hydrophobicity indicators for mapping environmental difference in various cellular components in a single cell. Since all nine probes absorb in the UV, but emit at different wavelengths in the visible, these two groups of compounds offer an advantage of utilizing a single monochromatic light source (e.g., a nitrogen laser) to achieve multi-wavelength detection for flow cytometry application. As a first step to explore potential application in cancer cell diagnostics, we have found that at least two of these probes are preferentially taken up by cancerous lymphocytes as compared to normal peripheral blood lymphocytes. The feasiblity of using these probes in diagnosing malignant cells in the body fluid of cancer patients directly on a fluorocytometer is presently being investigated.
© (1989) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
T. I. Lin, M. V. Jovanovic, and R. M. Dowben "Nine New Fluorescent Probes", Proc. SPIE 1063, New Technologies in Cytometry, (13 June 1989); https://doi.org/10.1117/12.951899
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Luminescence

Absorption

Ultraviolet radiation

Quantum efficiency

Absorbance

Cancer

Mass attenuation coefficient

Back to Top