Silicon Pore Optics (SPO) is an enabling technology for future large-area space-based X-ray observatories, such as ESA's Athena mission and NASA's Arcus candidate mission. SPO consist of stacks of thin silicon mirrors, which together provide a large effective area with a relatively low mass. Stacks are produced by custom robots that bend the mirrors into the design shape and stack them. We discuss the latest developments in improving the stacking process. The main challenge is to minimize shape deviations in order to optimize the imaging resolution of the optic. During the stacking process, the shape of each plate is measured directly after it is added to a stack. This metrology allows us to quickly quantify the effect of different stacking recipes, which streamlines the development. We discuss recent improvements in reducing excess meridional curvature. Furthermore, we prepare for mass-production by optimizing the robotics for performance and reproducibility.
|