Presentation + Paper
7 April 2023 Task-driven CT image quality optimization for low-contrast lesion detectability with tunable neural networks
Author Affiliations +
Abstract
Low-contrast lesions are difficult to detect in noisy low-dose CT images. Improving CT image quality for this detection task has the potential to improve diagnostic accuracy and patient outcomes. In this work, we use tunable neural networks for CT image restoration with a hyperparameter to control the variance/bias tradeoff. We use clinical images from a super-high-resolution normal-dose CT scan to synthesize low-contrast low-dose CT images for supervised training of deep learning CT reconstruction models. Those models are trained using with multiple noise realizations so that variance and bias can be penalized separately. We use a training loss function with one hyperparameter called the denoising level, which controls the variance/bias tradeoff. Finally, we evaluate the CT image quality to find the optimal denoising level for low-contrast lesion detectability. We evaluate performance using a shallow neural network model classification model to represent a suboptimal image observer. Our results indicate that the optimal networks for low-contrast lesion detectability are those that prioritize bias reduction rather than mean-squared error, which demonstrates the potential clinical benefit of our proposed tunable neural networks.
Conference Presentation
© (2023) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Matthew Tivnan, Tzu-Cheng Lee, Ruoqiao Zhang, Kirsten Boedeker, Liang Cai, Jeremias Sulam, and J. Webster Stayman "Task-driven CT image quality optimization for low-contrast lesion detectability with tunable neural networks", Proc. SPIE 12463, Medical Imaging 2023: Physics of Medical Imaging, 124631M (7 April 2023); https://doi.org/10.1117/12.2653936
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Computed tomography

Neural networks

Education and training

Image quality

Denoising

CT reconstruction

Deep learning

Back to Top