Presentation + Paper
16 August 2024 Commissioning the CMB polarization telescope GroundBIRD with the full set of detectors
Miku Tsujii, Jochem J. A. Baselmans, Jihoon Choi, Antonio H. M. Coppens, Alessandro Fasano, Ricardo Tanausú Génova-Santos, Makoto Hattori, Masashi Hazumi, Shunsuke Honda, Takuji Ikemitsu, Hidesato Ishida, Hikaru Ishitsuka, Hoyong Jeong, Yonggil Jo, Kenichi Karatsu, Keisuke Kataoka, Kenji Kiuchi, Junta Komine, Ryo Koyano, Hiroki Kutsuma, Kyungmin Lee, Satoru Mima, Makoto Nagai, Taketo Nagasaki, Masato Naruse, Shugo Oguri, Chiko Otani, Michael W. Peel, Rafael Rebolo, José Alberto Rubiño-Martín, Yutaro Sekimoto, Yoshinori Sueno, Junya Suzuki, Tohru Taino, Osamu Tajima, Tomonaga Tanaka, David J. Thoen, Nozomu Tomita, Yuta Tsuji, Tomohisa Uchida, Eunil Won, Mitsuhiro Yoshida
Author Affiliations +
Abstract
GroundBIRD is a ground-based cosmic microwave background (CMB) experiment for observing the polarization pattern imprinted on large angular scales (ℓ > 6 ) from the Teide Observatory in Tenerife, Spain. Our primary scientific objective is a precise measurement of the optical depth τ (σ(τ ) ∼ 0.01) to the reionization epoch of the Universe to cross-check systematic effects in the measurements made by previous experiments. GroundBIRD observes a wide sky area in the Northern Hemisphere (∼ 40% of the full sky) while continuously rotating the telescope at a high speed of up to 20 rotations per minute (rpm) to overcome the fluctuations of atmospheric radiation. We have adopted the NbTiN/Al hybrid microwave kinetic inductance detectors (MKIDs) as focal plane detectors. We observe two frequency bands centered at 145 GHz and 220 GHz. The 145 GHz band picks up the peak frequency of the CMB spectrum. The 220 GHz band helps accurate removal of the contamination of thermal emission from the Galactic interstellar dust. The MKID arrays (138 MKIDs for 145GHz and 23 MKIDs for 220GHz) were designed and optimized so as to minimize the contamination of the two-level-system noise and maximize the sensitivity. The MKID arrays were successfully installed in May 2023 after the performance verification tests were performed at a laboratory. GroundBIRD has been upgraded to use the full MKID arrays, and scientific observations are now underway. The telescope is automated, so that all observations are performed remotely. Initial validations, including polarization response tests and observations of Jupiter and the moon, have been completed successfully. We are now running scientific observations.
Conference Presentation
(2024) Published by SPIE. Downloading of the abstract is permitted for personal use only.
Miku Tsujii, Jochem J. A. Baselmans, Jihoon Choi, Antonio H. M. Coppens, Alessandro Fasano, Ricardo Tanausú Génova-Santos, Makoto Hattori, Masashi Hazumi, Shunsuke Honda, Takuji Ikemitsu, Hidesato Ishida, Hikaru Ishitsuka, Hoyong Jeong, Yonggil Jo, Kenichi Karatsu, Keisuke Kataoka, Kenji Kiuchi, Junta Komine, Ryo Koyano, Hiroki Kutsuma, Kyungmin Lee, Satoru Mima, Makoto Nagai, Taketo Nagasaki, Masato Naruse, Shugo Oguri, Chiko Otani, Michael W. Peel, Rafael Rebolo, José Alberto Rubiño-Martín, Yutaro Sekimoto, Yoshinori Sueno, Junya Suzuki, Tohru Taino, Osamu Tajima, Tomonaga Tanaka, David J. Thoen, Nozomu Tomita, Yuta Tsuji, Tomohisa Uchida, Eunil Won, and Mitsuhiro Yoshida "Commissioning the CMB polarization telescope GroundBIRD with the full set of detectors", Proc. SPIE 13102, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XII, 1310205 (16 August 2024); https://doi.org/10.1117/12.3019544
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Sensors

Telescopes

Polarization

Data acquisition

Observatories

Contamination

Environmental monitoring

RELATED CONTENT


Back to Top