Flat-field correction (FFC) is essential for addressing relative illuminance roll-off in optical imaging systems, a calibration process that requires capturing an image of a uniform light source. In imaging systems capable of mimicking or measuring SPH, CYL, AXIS, such as those used for eye prescriptions, the number of images required to collect for FFC increases with each lens adjustment. We propose a numerical method that uses a few core images to synthesize FFC images for various configurations, reducing data requirements substantially. This method was validated on two imaging systems with differing optical alignment quality, achieving relative illuminance falloff of less than 2% with only 5% the amount of the original data.
|