Paper
22 May 1995 Fly-by-Light Advanced Systems Hardware (FLASH) program
Carlos A. Bedoya
Author Affiliations +
Abstract
Fiber optics are immune to electromagnetic emissions and have the potential to eliminate this concern especially in flight critical applications if they can be developed to the same level of technology as current systems using wire to carry the signals. As aircraft become more and more dependent of digital signals to control all systems, the Electromagnetic Environment (EME) will become more and more a concern for the safe long term operation. The International Severe HIRF electromagnetic environment (EME) is less than 2000 Volts per meter below 400 MHz and reaches a maximum of 6,850 Volts per meter in the 4-6 GHz range. The normal assumption is that a metal or composite aircraft skin with appropriate seals provides 20 dB attenuation of the external environment. This reduces peak levels at the avionics boxes to less than 200 Volts per meter below 400 MHz and a maximum of 685 Volts per meter in the 406 GHz range. MIL-STD-461D imposed an additional box level requirement to 200 Volts per meter from 10 KHz to 40 GHz. This requirement equals or surpasses the attenuated HIRF environment over significant portions of the spectrum and implies that the aircraft must be designed to achieve and maintain this value throughout its service life. Although wires can be shielded and designed to achieve these requirements, it is a more expensive process, adds the weight of shielding and requires maintenance of the shielding integrity at all times. The very light weight and high bandwidth of fiber optics also offer the potential of eliminating the number of connections and weight savings in aircraft. For example on a one to one replacement of wire by fiber, it is estimated that fiber would weight about 1/20 the weight of wire. Current wire buses used for duplex communications in aircraft applications have a bandwidth of about 1 MHz while equivalent buses using fiber optics have a bandwidth of 20 MHz. For other applications such as video and avionics interfaces, fiber buses in the hundreds of MHz are available. Applications of fiber optic buses would then result in the reduction of wires and connections because of reduction in the number of buses needed for information transfer due to the fact that a large number of different signals can be sent across one fiber by multiplexing each signal. The Advanced Research Projects Agency (ARPA) Technology Reinvestment Project (TRP) Fly-by-Light Advanced Systems Hardware (FLASH) program addresses the development of Fly-by-Light Technology in order to apply the benefits of fiber optics to military and commercial aircraft.
© (1995) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Carlos A. Bedoya "Fly-by-Light Advanced Systems Hardware (FLASH) program", Proc. SPIE 2467, Fly-by-Light: Technology Transfer, (22 May 1995); https://doi.org/10.1117/12.210074
Lens.org Logo
CITATIONS
Cited by 6 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Fiber optics

Control systems

Actuators

Sensors

Fiber optics sensors

Human-machine interfaces

Interfaces

Back to Top