Paper
1 October 1998 Improved method for reduction of truncation artifact in magnetic resonance imaging
Author Affiliations +
Abstract
In Fourier magnetic resonance imaging (MRI), signals from different positions in space are phase-encoded by the application of a gradient before the total signal from the imaged subject is acquired. In practice, a limited number of the phase-encoded signals are often acquired in order to minimize the duration of the studies and maintain adequate signal-to-noise ratio. However, this results in incomplete sampling in spatial frequency or truncation of the k-space data. The truncated data, when Fourier transformed to reconstruct, give rise to images degraded by limited resolution and ringing near sharp edges, which is known as the truncation artifact. A variety of methods have been proposed to reconstruct images with reduced truncation artifact. In this work, we use a regularization method in the context of a Bayesian framework. Unlike the approaches that operate on the raw data, the regularization approach is applied directly to the reconstructed image. In this framework, the 2D image is modeled as a random field whose posterior probability conditioned on the observed image is represented by the product of the likelihood of the observed data with the prior based on the local spatial structure of the underlying image. Since the truncation artifact appears in only one of the two spatial directions, the use of conventional piecewise-constant constraints may degrade soft edge regions in the other direction that are less affected by the truncation artifact. Here, we consider more elaborate forms of constraints than the conventional piecewise- smoothness constraints, which can capture actual spatial information about the MIR images. In order to reduce the computational cost for optimizing non-convex objective functions, we use a deterministic annealing method. Our experimental results indicate that the proposed method not only reduces the truncation artifact, but also improves tissue regularity and boundary definition without degrading soft edge regions.
© (1998) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Soo-Jin Lee "Improved method for reduction of truncation artifact in magnetic resonance imaging", Proc. SPIE 3460, Applications of Digital Image Processing XXI, (1 October 1998); https://doi.org/10.1117/12.323214
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Magnetic resonance imaging

Data modeling

Brain

Neuroimaging

Tissues

Annealing

Brain mapping

Back to Top