Paper
10 November 2003 Cellular analysis based on moving infrared optical gradient fields
Philippe J. Marchand, Mark Wang, Catherine Schnabel, Mirianas Chachisvillis, Haichuan Zhang, Rong Yang, Laura McMullin, Norbert Hagen, Osman Kibar, Sadik C. Esener, Gene Tu, Sudipto Sur, Luis Pestana, Kirk Haden, Khai Truong, Wilson Seto, Kris Lykstad, Laura Simons, Michael Paliotti, Ilona Kariv, Jeffrey Hall, William Butler
Author Affiliations +
Abstract
A novel, non-invasive measurement technique for quantitative cellular analysis is presented that utilizes the forces generated by an optical beam to evaluate the physical properties of live cells in suspension. Analysis is performed by rapidly scanning a focused, near-infrared laser line with a high cross-sectional intensity gradient across a field of cells and monitoring their interaction with the beam. The response of each cell to the laser depends on its size, structure, morphology, composition, and surface membrane properties; therefore, using this technique, cell populations of different type, treatment, or biological state can be compared. To demonstrate the utility of this cell analysis platform we have evaluated the early stages of apoptosis induced in the U937 cancer cell line by the drug camptothecin and compared the results to established references assays. Measurements on our platform show detection of cellular changes earlier than either of the fluorescence-based annexin V or caspase assays. Because no labeling or additional cell processing is required and because accurate assays can be performed with a small number of cells, this measurement technique may find suitable applications in cell research, medical diagnostics, and drug discovery.
© (2003) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Philippe J. Marchand, Mark Wang, Catherine Schnabel, Mirianas Chachisvillis, Haichuan Zhang, Rong Yang, Laura McMullin, Norbert Hagen, Osman Kibar, Sadik C. Esener, Gene Tu, Sudipto Sur, Luis Pestana, Kirk Haden, Khai Truong, Wilson Seto, Kris Lykstad, Laura Simons, Michael Paliotti, Ilona Kariv, Jeffrey Hall, and William Butler "Cellular analysis based on moving infrared optical gradient fields", Proc. SPIE 5181, Wave Optics and Photonic Devices for Optical Information Processing II, (10 November 2003); https://doi.org/10.1117/12.509376
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Cell death

Particles

Objectives

Microscopes

Optical tweezers

Cancer

Infrared radiation

Back to Top