Porous SnO2 nanoribbons, with their width and thickness of around 20&mgr;m and 20nm, respectively, have been fabricated
from the metallo-organic dimethyldineodecanoate tin using electrospinning and thermal decomposition techniques. The
electrical conductance of one synthesized single ribbon has been measured using the two-probe method in atmosphere
following a cycle of heating from 300 to 660K and subsequent cooling from 660K to 300K. During the heating, the
conductance, G is not so sensitive to the temperature below 380K and, above that, follows an Arrhenius relation with a
thermal activation energy of 0.918±0.004 eV until 660K; upon cooling, G follows the same Arrhenius relation until
570K and, below that, observes another Arrhenius relation with its activation energy decreasing to 0.259±0.006eV down
to 300K. After a cycle of heating and cooling, G returns to a value higher than its initial one. The Arrhenius relations are
attributed to the surface adsorption and desorption of moisture and oxygen, and the G hysteresis between 300 and 380K
is attributed to the partial replacement of adsorbed oxygen by moisture because of the porous nature of the surface.
|