Paper
23 October 2007 A 2μm-pump laser-based DIRCM system and aero-optics in the mid-IR
Author Affiliations +
Proceedings Volume 6738, Technologies for Optical Countermeasures IV; 67380B (2007) https://doi.org/10.1117/12.746588
Event: Optics/Photonics in Security and Defence, 2007, Florence, Italy
Abstract
The improvement of the security of platforms (aircrafts) with countermeasure techniques in the mid-IR especially in the take-off or landing phase is nowadays more stringent due to upcoming threats. We report on the development of a Tm:YLF-fiber laser (1.908 μm) pumped Ho:YAG (2.09 µm) high energy laser system with pulse energies up to 100 mJ at pulse lengths close to 20 ns and repetition rates of 100 Hz. A high quality laser beam leaving a platform through a variable-index-of-refraction airflow will experience wave-front aberrations and consequently lose its ability to be perfectly focused in the far field. Two main causes of laser beam degradations are issued in this investigation. First, there is the degradation immediately around the fuselage, referred to aero-optic problems and second the atmospheric propagation influence via air turbulence. The aero-optic influence on the laser beam degradation will be investigated in a laboratory experimental approach with a mid-IR laser beam traversing a transonic free air stream relevant to a real air flow around a fuselage. The propagation characteristics of a laser beam passing turbulent air will be numerically simulated with a multiple phase-screen method and a Fourier propagation technique. Different turbulence degrees relevant to propagation directions especially behind aircrafts will be considered.
© (2007) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Günther Renz and Willy Bohn "A 2μm-pump laser-based DIRCM system and aero-optics in the mid-IR", Proc. SPIE 6738, Technologies for Optical Countermeasures IV, 67380B (23 October 2007); https://doi.org/10.1117/12.746588
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Atmospheric propagation

Missiles

Laser systems engineering

Pulsed laser operation

Directed infrared countermeasures

Turbulence

Fiber lasers

Back to Top