Nanoscale materials absorb, propagate, and dissipate energy very differently than their bulk
counterparts. Furthermore, hybrid nanostructures consisting of molecular and plasmonic materials with
strongly coupled electronic states can produce new optical states and decay pathways that provide additional
handles with which to externally control energy flow in complex nanostructured systems. In this talk, we
discuss our recent studies of electromagnetic coupling and associated temporal dynamics of molecular
excitations with plasmonic resonances supported by either localized or extended planar geometries. Recent
experimental results and theoretical analysis for observing and controlling coherences between molecular
excitations and plasmonic polarizations are shown. Advances will explore new directions in ultrafast
manipulation of energy dissipation processes in hybrid plasmonic structures, as well as ultrafast addressing
and switching in plasmonics-based circuit architectures. Also discussed are recent synthetic advances in the
creation of hybrid materials. Ultimately, these studies may impact a range of next-generation optical materials
and devices, of relevance to new energy conversion materials, nanoscale photocatalysis, or plasmon-enhanced
sensors.
|