Paper
16 May 2011 Characterizing the semantic information loss between geospatial sensors and geospatial information systems (GIS)
Author Affiliations +
Abstract
Geospatial Information Systems (GIS) collect, integrate, store, edit, analyze, share, and display geographic information. Naturally, GIS analysts rely on external data coming from disparate sensors to associate the sensor content (e.g. imagery) with relational databases. Inherently, these GIS sensors present differences in their data structures, labelling, ontologies, and resolution. Given different data structures, information may be lost in the transfer of information, alignment, and association of related context, which yields uncertainty in the meaning of the conveyed information. Ontology alignment typically consists of manual operations from users with different experiences and understandings and limited reporting is conducted in the quality of mappings. To assist the International Organization for Standards (ISO) in development of information quality assessment, we propose an approach using information theory for semantic uncertainty analysis. Information theory has widely been adopted in communications and provides uncertainty assessment for quality of service (QOS) analysis. Quality of information (QOI) or Information Quality (IQ) definitions for semantic assessment can be used to bridge the gap between ontology (semantic) uncertainty alignment and information theory (symbolic) analysis. Utilizing a measure of semantic information loss, analysts can improve the information fusion process, predict data needs, and appropriately understand the GIS product. This paper aims at developing a semantic information loss measure based on information theory relating GIS sensor processing uncertainties and GIS analyst syntactic associations. A maritime domain situational awareness example with waterway semantic labels is shown to demonstrate semantic information loss.
© (2011) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Erik P. Blasch "Characterizing the semantic information loss between geospatial sensors and geospatial information systems (GIS)", Proc. SPIE 8053, Geospatial InfoFusion Systems and Solutions for Defense and Security Applications, 80530H (16 May 2011); https://doi.org/10.1117/12.883733
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Geographic information systems

Information theory

Sensors

Information fusion

Analytical research

Associative arrays

Distance measurement

Back to Top