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acoustic detection, 39
aircraft actuator position,

45
angular position, 37
anti-Stokes, 80
avalanche photodiode, 13
axial displacement, 34

backscatter signal, 54
bandgap, 10
beat signals, 91
birefringence, 17
bismuth-substituted iron

garnet, 46
blackbody, 52
blackbody cavity, 53
blackbody radiation, 7
blast wave, 55
Bragg condition, 20
Bragg grating, 67, 68
breaking, 101
breathing rate, 90

calibration curves, 6
chirped grating, 44, 45
chopper, 21
circular polarization, 18
civil structure

applications, 87
closed-loop approach, 63
closed-loop fiber optic gyro,

64
closure sensors, 93
coherence multiplexing, 78
component selection, 23
composite materials, 95
conduction band, 10
configuration trade-offs,

23

Congo Red pH indicator, 49
connectors, 15
cost, 23
coupling loss, 34
coupling modulation, 35

dark-current noise, 5
decay time, 51
deformer spacing, 28
depletion region, 11–12
design protocol, 24
difference/sum detection,

39
diffraction, 40
diffraction grating, 19, 41
diffraction order, 40
direct modulation, 21
distributed Brillouin

sensor, 81, 82
distributed feedback

lasers, 11
distributed Raman sensor,

80
distributed Sagnac sensor,

83
distributed Sagnac–Mach–

Zehnder sensor, 84
dither, 59
double heterostructure

laser, 11

electro-optic effect, 7
electromagnetic wave, 3
elliptical polarization, 18
endoscope, 2
evanescent field, 56
evanescent-wave chemical

sensor, 57
excited electrons, 50
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Fabry–Pérot etalon, 72
Faraday mirrors, 62
fast axis, 17
fiber Bragg grating (FBG),

19–20
fiber depolarizer, 100
fiber etalon sensors, 73
fiber light sources, 98
fiber optic sensor, 1
advantages, 2
intrinsic, 1
extrinsic, 1

figure-eight configuration,
31

final sensor development,
24

finesse, 72
fluid-level sensor, 27
fluorescence, 50–51
fluorescence decay, 7
Fourier transform, 91
free spectral range,

72
frequency division

multiplexing (FDM),
77

Fresnel equations, 30
frustrated total internal

reflection (FTIR), 25

gain, 13
gas-turbine engine speed,

47
genetic algorithm, 23
Georges Sagnac, 63
graded index, 9
grating equation,

40–41
GRIN lenses, 16

heart rate, 90
high-temperature optical

fiber, 53
hydrophone, 26

instantaneous
polarization, 18

integrated optics, 97
intensity modulation, 21
intracranial pressure

sensor, 35
intrinsic, 73
intrinsic region, 12

lenses, 16
lensmaker’s formula, 16
light modulation, 4
light-emitting diode

(LED), 10
linear polarization, 18
linear polarizers, 36
linear position sensors,

44
lithium niobate, 97
lock-in amplifier, 103
longitudinal displacement,

34

Mach–Zehnder
Hydrophone, 60
interferometer, 58–59,
61

macrobending, 30–31
magnetic moments, 46
magneto-optic effect, 7
magneto-optic material, 46
manual selection, 23
Maxwell’s equations, 3
methylene blue dye, 57
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Michelson interferometer,
62

microbending, 28–29
modal domain, 32–33
modes, 8
modulators, 21
monochromatic signal, 14
multimode optical fibers, 1

n-type semiconductor, 10
National Institutes of

Health (NIH), 48
neutron detection, 92
numerical aperture (NA),

34

oil and gas pipelines, 94
open-loop fiber optic gyro,

64
opposed-grating structure,

43
optical absorption, 7
optical fiber connectors, 15
optical fibers, 1, 8–9
optical frequency domain

reflectometry (OFDR),
76

optical retarder, 38
optical time domain

reflectometry (OTDR),
54–55

optical transducer, 22
optimization techniques,

23
optrode, 48

p-i-n junction, 12
p-n junction, 12
p-polarized, 30

p-type semiconductor, 10
performance, 23
periodic stress, 28
pH, 49
phase difference, 17
phase modulation, 21
phase noise, 77
phase-sensitive detection,

103
photochromic, 33
photoconductivemode, 5, 12
photodiode optical

detector, 12
photoelastic effect, 38
photomultiplier tube

(PMT), 13
photovoltaic mode, 12
plane of incidence, 30
plane wave, 3
Planck’s radiation law, 52
plastic optical fibers, 96
polarization, 17, 36
polarization-preserving

optical fibers, 99–100
polarizers, 18
position sensors, 89
possible polarizations, 36
pressure sensing, 39
pressure sensor, 29,

31, 71
properties of light, 4
proximity sensor, 2, 93

quadrature detection, 59
quantum well lasers, 11
quenched, 50

radiation dosage, 92
reflection coefficients, 30
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responsivity, 12
RGB sensors, 14
robotic surgery, 91

s-polarized, 30
Sagnac acoustic sensor, 65
Sagnac effect, 7
Sagnac interferometer, 58,

85
Sagnac rotation sensor/

fiber optic gyro, 64
Sagnac strain sensor, 66
Schlieren sensors, 42
scribing, 101
secure-communication

mode, 85
semiconductor laser diode,

11
semispherical lenses, 102
sensor specification, 22
shaft rotation, 41
shot noise, 5
signal-to-noise ratio

(SNR), 5
single-mode

interferometers, 58
single-mode optical

fibers, 1
slipknot configuration, 31
slow axis, 17
smart bed, 90
Snell’s law, 16, 25, 30
spatial multiplexing, 79
speckle, 32
splices, 15, 102
spreadsheet analysis, 23
step-index fiber, 8, 9
Stokes, 80

strain imaging, 95
strain sensors, 86
strain-optic effect, 7
swept frequency laser, 91

tapered fiber, 56
thermal (Johnson) noise,

5
through-transmission

optrode, 49
time division multiplexing

(TDM), 74–75
total internal reflection

(TIR), 8, 25
trade-off study, 22
transduction, 6
transverse strain, 70

ultraviolet (UV) epoxy,
102

v-groove, 15

V-number, 8
valence band, 10
velocity of detonation

(VOD), 55
vertical-cavity surface-

emitting lasers, 11
virtual apertures, 33

wavelength division
multiplexing (WDM),
75

wavelength modulation,
21

waveplate, 17
Wein’s law, 52
windowing, 91
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