Field Guide to

Fiber Optic Sensors

William B. Spillman, Jr. Eric Udd

> SPIE Field Guides Volume FG34

John E. Greivenkamp, Series Editor

SPIE PRESS Bellingham, Washington USA Library of Congress Preassigned Control Number Data

Spillman, William B., author.
Field Guide to Fiber Optic Sensors / William B. Spillman, Jr. and Eric Udd pages cm. – (The field guide series; FG34)
Includes bibliographical references and index.
ISBN 978-1-62841-334-2
1. Fiber optics–Design and application. 2. Sensor design. I. Title.
TA1800 2014
681.2–dc23

Published by

SPIE P.O. Box 10 Bellingham, Washington 98227-0010 USA Phone: 360.676.3290 Fax: 360.647.1445 Email: Books@spie.org www.spie.org

Copyright $\ensuremath{\mathbb{C}}$ 2014 Society of Photo-Optical Instrumentation Engineers (SPIE)

All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means without written permission of the publisher.

The content of this book reflects the thought of the author(s). Every effort has been made to publish reliable and accurate information herein, but the publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Printed in the United States of America. First printing.

Introduction to the Series

Welcome to the SPIE Field Guides—a series of publications written directly for the practicing engineer or scientist. Many textbooks and professional reference books cover optical principles and techniques in depth. The aim of the SPIE Field Guides is to distill this information, providing readers with a handy desk or briefcase reference that provides basic, essential information about optical principles, techniques, or phenomena, including definitions and descriptions, key equations, illustrations, application examples, design considerations, and additional resources. A significant effort will be made to provide a consistent notation and style between volumes in the series.

Each SPIE Field Guide addresses a major field of optical science and technology. The concept of these Field Guides is a format-intensive presentation based on figures and equations supplemented by concise explanations. In most cases, this modular approach places a single topic on a page, and provides full coverage of that topic on that page. Highlights, insights, and rules of thumb are displayed in sidebars to the main text. The appendices at the end of each Field Guide provide additional information such as related material outside the main scope of the volume, key mathematical relationships, and alternative methods. While complete in their coverage, the concise presentation may not be appropriate for those new to the field.

The SPIE Field Guides are intended to be living documents. The modular page-based presentation format allows them to be updated and expanded. We are interested in your suggestions for new Field Guide topics as well as what material should be added to an individual volume to make these Field Guides more useful to you. Please contact us at fieldguides@SPIE.org.

> John E. Greivenkamp, *Series Editor* College of Optical Sciences The University of Arizona

Keep information at your fingertips with the SPIE Field Guides: Adaptive Optics, Second Edition, Robert Tyson & Benjamin Frazier Atmospheric Optics, Larry Andrews Binoculars and Scopes, Paul Yoder, Jr. & Daniel Vukobratovich Diffractive Optics, Yakov Soskind Digital Micro Optics, Bernard Kress Displacement Measuring Interferometry, Jonathan Ellis Fiber Optic Sensors, William Spillman, Jr. & Eric Udd Geometrical Optics, John Greivenkamp *Holography*, Pierre Alexandre Blanche Illumination, Angelo Arecchi, Tahar Messadi, & John Koshel Image Processing, Khan M. Iftekharuddin & Abdul Awwal Infrared Systems, Detectors, and FPAs, Second Edition, Arnold Daniels Interferometric Optical Testing, Eric Goodwin & Jim Wyant Laser Pulse Generation, Rüdiger Paschotta Lasers, Rüdiger Paschotta Lens Design, Julie Bentley & Craig Olson *Microscopy*, Tomasz Tkaczyk Nonlinear Optics, Peter Powers **Optical Fabrication**, Ray Williamson Optical Fiber Technology, Rüdiger Paschotta *Optical Lithography*, Chris Mack Optical Thin Films, Ronald Willey Optomechanical Design and Analysis, Katie Schwertz & James Burge Physical Optics. Daniel Smith Polarization, Edward Collett Probability, Random Processes, and Random Data Analysis, Larry Andrews Radiometry, Barbara Grant Special Functions for Engineers, Larry Andrews Spectroscopy, David Ball Terahertz Sources, Detectors, and Optics, Créidhe O'Sullivan & J. Anthony Murphy Visual and Ophthalmic Optics, Jim Schwiegerling

Field Guide to Fiber Optic Sensors

Fiber optic sensor work began in the mid-1970s with a variety of multimode fiber optic sensors and early iterations of Sagnac and Mach–Zehnder interferometers. Concerted efforts developed fiber optic gyros and acoustics sensors in the form of hydrophones; fiber gyros are currently used for aircraft and spacecraft navigation, including the Spirit and Opportunity rovers on Mars. They are used for naval and land navigation, in robots that mow soccer fields and clean floors, and in remote-controlled helicopters that spray crops. Acoustic technology originally developed for undersea surveillance is now used to support oil and gas exploration and extraction operations.

In the mid-1980s the field of fiber optic smart structures emerged as a way to monitor the health and integrity of structures through the manufacturing process, during installation, and throughout the lifetime of the structure. Distributed sensors based on Raman and Brillouin scattering have been used to support cure monitoring on large concrete structures such as dams and to monitor oil holes and pipelines.

The continued improvement and reduction in costs associated with fiber optic technology associated with fiber sensors permit application areas that were previously inaccessible. These trends are expected to continue as new techniques become available and older ones are successfully adapted to new applications.

This Field Guide provides a broad introduction to a variety of fiber optic sensors that have been successfully developed from the 1970s to the present. We hope that the included examples inspire readers with ideas for new sensors and applications.

William B. Spillman, Jr. Floyd, Virginia Eric Udd Fairview, Oregon

Glossary	xi
Introduction	1
What Is a Fiber Optic Sensor?	1
Why Use a Fiber Optic Sensor?	2
Light as an Electromagnetic Wave	3
Light Modulation	4
Optical Signal-to-Noise Ratio	5
Transduction	6
Some Optical Transducer Mechanisms	7
Components	8
Optical Fibers and Modes	8
Optical Fiber Types	9
Light-Emitting Diode	10
Semiconductor Laser Diode	11
Photodiode Detector	12
Avalanche Photodiode Detector	13
Color Sensors	14
Connectors and Splices	15
Lenses and GRIN Lenses	16
Waveplates	17
Polarizers	18
Diffraction Gratings	19
Fiber Bragg Gratings	20
Modulators	21
Sensor Design	22
Specification and Transducer Selection	22
Component Selection	23
Sensor Modeling	24
Intrinsic Multimode Sensors	25
FTIR Sensor Theory	25
FTIR Hydrophone	26
FTIR Fluid-Level Sensor	27
Microbend Sensor Theory	28
Microbend Pressure Sensor	29
Macrobend Sensor Theory	30

Macrobend Pressure Sensor	31
Modal Domain Sensor Theory	32
Modal Domain Vibration Sensor	33
Extrinsic Multimode Sensors	34
In-Line Fiber Coupling Theory	34
Fiber Coupling Pressure Sensor	35
Polarization Theory	36
Polarization Rotation Sensor	37
Photoelastic Sensor Theory	38
Photoelastic Pressure and Acoustic Sensing	39
Diffraction Grating Theory	40
Diffraction Grating Rotation Sensor	41
Schlieren Grating Theory	42
Schlieren Displacement and Acoustic Sensors	43
Chirped Grating Sensor Theory	44
Chirped Grating Displacement Sensor	45
Magneto-Optic Sensor Theory	46
Magneto-Optic Speed Sensor	47
Optrode Sensor Theory	48
Optrode pH Sensor	49
Fluorescence Theory	50
Fluorescence Temperature Sensor	51
Blackbody Theory	52
Blackbody Temperature Sensor	53
Optical Time Domain Reflectometry Theory	54
Optical Time Domain Wavefront Speed Detector	55
Evanescent-Wave Theory	56
Evanescent-Wave Chemical Sensor	57
Interferometers	58
Single-Mode Interferometers	58
Mach–Zehnder Interferometers	59
Mach–Zehnder Hydrophone	60
Mach–Zehnder Transducer Geometries	61
Michelson Interferometer	62
Sagnac Theory	63

Sagnac Rotation Sensor/Fiber Optic Gyro Sagnac Acoustic Sensor	$\begin{array}{c} 64 \\ 65 \end{array}$
Sagnac Interferometer Strain Sensor	66
Bragg Gratings	67
Bragg Grating Fabrication	67
Bragg Grating Theory Bragg Grating Simultaneous Strain and	68
Temperature	69
Bragg Grating Transverse Strain	70
Bragg Grating Pressure Sensor	71
Fiber Etalon	72
Fiber Etalon Theory	72
Fiber Etalon Sensors	73
Multiplexing	74
Time Division Multiplexing	74
Wavelength Division Multiplexing	75
Optical Frequency Domain Reflectometry	76
Frequency Division Multiplexing	77
Coherence Multiplexing	78
Spatial Multiplexing	79
Distributed Sensors	80
Distributed Raman Sensor	80
Distributed Brillouin Sensor	81
Brillouin Distributed Sensor Capabilities	82
Distributed Sagnac Sensor	83
Distributed Sagnac–Mach–Zehnder Sensor	84
Applications	85
Sagnac Secure-Communication System	85
Low-Coherence Strain-Sensor System	86
Civil Structure Applications	87
Damage-Assessment Microbend Sensor	88
Position Sensors	89

Smart Bed	90
Catheter Shape Sensing	91
Radiation Dosage Sensing	92
Proximity Fiber Sensors	93
Oil and Gas Applications	94
Strain Imaging and Monitoring Composite	
Materials	95
Plastic Optical Fibers	96
Integrated Optics	97
Fiber Light Sources	98
Polarization-Preserving Optical Fibers	99
Fiber Depolarizer	100
Useful Techniques	101
Manually Scribing and Breaking a Fiber	101
Using UV Curing Epoxy	102
Experimental Use of a Lock-In Amplifier	103
Equation Summary	104
Bibliography	110
Index	114

a	Fiber core radius
Â	Amplitude or some constant value
APD	Avalanche photodiode
B	Bandwidth
В	Magnetic flux vector
с	Speed of propagation of an electromagnetic wave
C_{e}	Effective speed of light
d	Grating period, Bragg grating period, or lateral misalignment
d d	Chirped grating parameters
$d_0, d_1 \\ D_i$	Distance from a photodetector to the i^{th} element
$egin{array}{c} D_i \ d_{ii} \end{array}$	Distance from a photodetector to the i element Distance between optical elements i and j
$e^{u_{ij}}$	Electric charge or base of natural logarithms
E	Electric-field vector
EH	Hybrid mode with more electric field than
	magnetic field \perp to the direction of propagation
f	Frequency (in Hertz), or the lens focal length
F	Finesse
F	Power emitted by a blackbody
FBG	Fiber Bragg grating
f_D	Disk rotation frequency
FDM	Frequency division multiplexing
f_M	Modulation frequency
FTIR	Frustrated total internal reflection
fσ	Material stress-optic coefficient
Ge	Germanium
GRIN	Graded index
h	Height
h	Planck's constant
HE	Hybrid mode with more magnetic field than
	electric field \perp to the direction of propagation
He-Ne	Helium-neon
Ι	Optical power
i_0	Reverse "dark current"
I_B	Background optical power
I_d	Dark current
i_s	Photocurrent
k	Wave vector

k_B	Boltzman's constant
L	Length of a GRIN lens
LED	Light-emitting diode
m	Diffraction order
n	Index of refraction
N	Number of slots around a disk edge, or number of
	excited electrons
NA	Optical-fiber numerical aperture
$n_{\rm eff}$	Effective index of refraction
OD	Optical density
OFDR	Optical frequency domain reflectometry
OTDR	Optical time domain reflectometry
p	Pitch of a GRIN lens
$\stackrel{P}{P}$	Pressure or detected optical power
PD	Photodiode
P_e	Photoelastic constant
P_{\min}	Minimum detectable acoustic pressure
PVF	Polyvinyl fluoride
r	\perp distance from optical axis
r	Position vector
R	Electrical resistance or responsivity
R	Reflectivity
R_{E}, R_{T}	Fluorescent decay constants
R_E, R_T RGB	Red–green–blue
R_p	<i>p</i> -polarized intensity reflectivity
$R_s^{n_p}$	<i>s</i> -polarized intensity reflectivity
n _s S	Optical fiber longitudinal misalignment
	Distance of an object from the center of a lens
s_1	Distance of an image from the center of a lens
$s_2 \ S_n$	Fluorescent signal level
S_n SNR	Signal-to-noise ratio
t	Time
T	
T_A	Absolute temperature Fiber axial displacement fractional transmission
T_A TDM	Time division multiplexing
TE	Mode with an electric field \perp to the direction of
117	
TEM	propagation Mode with both megnetic and electric fields 1 to
T TATAT	Mode with both magnetic and electric fields \perp to the direction of propagation
	the direction of propagation

Glossary

T_i	Transducer function
TIR	Total internal reflection
T_L	Fiber longitudinal fractional transmission
TM	Mode with magnetic field \perp to the direction of
1.01	propagation
UV	Ultraviolet
\overline{V}	V-number, or voltage
V_B	Reverse bias voltage
VOD	Velocity of detonation
V_R	Voltage from a reference photodetector
W	Watts
WDM	Wavelength division multiplexing
z	FTIR variable
α	Fractional transmission factor, fluorescent decay
	probability, or thermal expansion coefficient
α_m	Angle of the m^{th} diffraction order
β	Mode-propagation constant, or FTIR variable
ΔE	Energy-level difference in fluorescent decay
8	Dielectric permittivity, or mechanical strain
ζ	Thermo-optic coefficient
η	Quantum efficiency
θ	Angle
θ_D	Angle of diffraction
λ	Wavelength
λ_B	Wavelength Bragg grating maximum reflection
Λ	Microbend optimum deformer spacing
μ	Magnetic susceptibility
μW	Microwatts
σ	Linear stress
τ	e^{-1} fluorescent decay time
φ	Phase
ω	Angular frequency in radians/sec