
Chapter 4

Diffraction

Diffraction, like interference, is a wave phenomenon. From a mathematical
point of view, the difference between interference and diffraction lies in the
number of sources that generate the interference waves. In interference there is
a discrete number of sources, whereas in diffraction there is a continuous
number of sources. In terms of the behavior of the optical field, diffraction is
considered the deviation of the rectilinear path (of light) that is not due to
reflection or refraction.

In this chapter, diffraction is limited to the paraxial range, i.e., Fresnel
diffraction and Fraunhofer diffraction. Detailed examples of diffraction by a
circular aperture and by a rectangular aperture are given. With diffraction
through a circular aperture, the formation of the image is analyzed taking into
account the wave nature of light; with diffraction through a rectangular
aperture, the basic mathematics for one-dimensional diffraction gratings are
developed.

The image of a point object (monochromatic) generated by an optical
system that models a human eye with myopia, astigmatism, and spherical
aberration is shown in Fig. 4.1. The effect of diffraction and aberrations
reduces visual acuity in the human eye and generally reduces resolution in
imaging systems.

Note on calculated diffraction patterns
Except for Section 4.5.2, which deals with image resolution, calculated
diffraction patterns are shown in this chapter as grayscale images that represent
the square root of the irradiance distribution. This allows regions of lower
intensity to be highlighted. Plots of the irradiance profiles are shown at scale.

4.1 Huygens–Fresnel Principle

Huygens’ principle, discussed in Section 1.1.3, states that every point on a
wavefront can be considered as a source of secondary spherical waves that
propagate with the same speed as the wavefront. After a while, the propagated
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wavefront will be the envelope of the secondary spherical waves [1]. With this
principle, the (unobstructed) propagation of a wavefront can be derived,
where S0 is obtained from S, as shown in Fig. 4.2, and the laws of reflection
and refraction can be derived (Fig. 1.8). On the other hand, Fresnel establishes
that the optical field at a point P is obtained from the interference of
secondary waves [2]. In this way, Fresnel gives a satisfactory explanation of
the phenomenon of diffraction. The combination of the Huygens principle
and the interference of secondary Fresnel waves is called the Huygens–Fresnel
principle.

Figure 4.1 Experimental image of a monochromatic point source generated by an optical
system with astigmatism, spherical aberration, and defocus.

Figure 4.2 The Huygens–Fresnel principle states that the field at P is the superposition
(interference) of the secondary spherical waves emitted by the virtual sources located in the
wavefront S.
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The mathematical formalization of the Huygens–Fresnel principle would
be carried out a century later by Kirchhoff and later refined by Rayleigh and
Sommerfeld [3]. Although the study of diffraction can be started from
Kirchhoff’s mathematical formalism, it is worth following Fresnel’s ideas to
gain a further conceptual understanding of diffraction. The treatment in this
book follows that described by Born and Wolf [4].

Let us start with the simplest situation: the propagation in vacuum of a
spherical wavefront emitted by a point source. There is a point source S
depicted in Fig. 4.3. According to the optical field expression for a spherical
wave, omitting the time phase term e–ivt, the electrical field at point P would be

EðPÞ ¼ E†

0
eikd

d
, (4.1)

where d ¼ SP and E†

0 is the amplitude of the field multiplied by the unit of
length.

Using the Huygens–Fresnel principle to calculate the electric field at P, the
result should be the same as in Eq. (4.1). Let S be the spherical wavefront of
radius r0 emitted by the point source S in a given time. From this wavefront,
the sources that emit the secondary Fresnel waves will be located at the points
that form S. In particular, at point Q of the wavefront S there will be
a secondary emitter whose contribution to the field at P will be of the form
E(Q)eiks/s, where EðQÞ ¼ E†

0e
ikr0∕r0. To obtain E(P) from the sum of all

the (infinite) secondary waves, another Fresnel hypothesis is included: the
amplitude of the secondary waves varies with the direction defined by the
angle x, which is the angle between the normal of the wavefront S in Q and
the line joining Q and P (Fig. 4.3). Therefore, the amplitude of the secondary
waves will be of the form E(Q)K(x), where K(x) is the function that determines
how the amplitude variation occurs. The angle x is called the inclination angle,

P

Q

s0r

S V

Figure 4.3 Propagation of a spherical wave. The contribution of the secondary source Q to
the field at P depends on the angle x.
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and the function K is called the inclination factor. With the function K, the
Fresnel hypothesis is described as follows: given that the impulse communi-
cated in any part of the primary wavefront S follows the normal of the
wavefront, the effect on the medium� must be more intense in the direction of
the normal, so the rays from Q to P will be less intense as they deviate from the
normal [2]. Fresnel mentions that determining the explicit form of the function
K is a “very difficult matter”; it should not be an issue in many practical
situations given that the rays from Q to P deviate little from the normal, so a
constant value can remain for the function K. Following Fresnel, K is
maximum when x ¼ 0 and disappears when the line from Q to P is tangent to
the wavefront S, i.e., x ¼ p/2. This implies that not all of the spherical
wavefront S contributes to the sum at P. The validity of these conditions is
considered later with the analytical treatment developed by Kirchhoff.
According to this, the field at P would be given by

EðPÞ ¼ E†

0e
ikr0

r0

ZZ
S

eiks

s
KðxÞds, (4.2)

where ds describes the differential element of area in Q. This integral is the
mathematical version of the Huygens–Fresnel principle.

4.1.1 Fresnel zones

The Huygens–Fresnel integral can be solved by dividing the domain into
regions where the inclination factor approaches a constant value. This
procedure proposed by Fresnel gives surprising results, which occur in
practice, as shown in some later sections in this chapter. The regions into
which the domain is divided are called Fresnel zones and for a spherical
wavefront they are constructed as shown in Fig. 4.4. The spheres of radius
bþ jl/2, with j ¼ 0,1, . . . , N, and b ¼ VP, are drawn from the point P (thus,
d ¼ r0þ b). The jth zone (Zj) is the annular region of S contained between the
spheres of radius bþ ( j� 1)l/2 and bþ jl/2.

If b≫ l and r0≫ l, then the following approximations are made in the
inclination factor:

• K(x)� constant, for a given Fresnel zone, and changes very little
between consecutive zones.

• KjðxÞ � [Kjþ1ðxÞ þ Kj�1ðxÞ]∕2.
Also,

• KN(x) ¼ 0, if x ¼ p/2.

�In Fresnel’s time, a hypothetical substance called Ether, or luminiferous Ether, was believed
to occupy all of space and was supposed to act as a medium for the propagation of
electromagnetic waves.
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From the geometry of Fig. 4.3,

s2 ¼ r20 þ ðr0 þ bÞ2 � 2r0ðr0 þ bÞ cos u,

where u is the polar angle. By partial differentiation, then

2sds ¼ 2r0ðr0 þ bÞ sin udu:

Because the differential element ds ¼ r20 sin ududf, where f is the azimuth
angle, substituting sin udu leads to

ds ¼ r0
ðr0 þ bÞ sdsdf: (4.3)

Taking into account the previous results, the diffraction integral [Eq. (4.2)]
can be approximated as

EðPÞ ¼
XN
j¼1

EjðPÞ, (4.4)

where

EjðPÞ ¼
E†

0e
ikr0

r0
2pKj

Zbþjl∕2

bþðj�1Þl∕2

eiks

s
r0

ðr0 þ bÞ sds, (4.5)

P

0r

S V b
b+ /2

b+
b+3 /2

b+2

b+5 /2

b+3

Z1

Z 2

Z 3

Z 4

Figure 4.4 Fresnel zones in a spherical wavefront.
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where the approximation Kj(x) ¼ Kj (constant for the jth zone) has been used.
Evaluating the integral of Eq. (4.5), the optical field at P will be

EðPÞ ¼
XN
j¼1

EjðPÞ ¼ i2l
E†

0e
ikd

d

XN
j¼1

ð�1Þjþ1Kj: (4.6)

Thus, the value of the integral depends on the sum of the inclination factors in
each Fresnel zone. Taking into account the second approximation on the
average value of the inclination factor of the adjacent zones for a given zone,
i.e., KjðxÞ ¼ [Kjþ1ðxÞ þ Kj�1ðxÞ]∕2, the sum

XN
j¼1

ð�1Þjþ1Kj ¼ K1 � K2 þ K3 � K4 þ : : : þ ð�1ÞNþ1KN (4.7)

can be written as

XN
j¼1

ð�1Þjþ1Kj ¼
K1

2
þ
�
K1

2
� K2 þ

K3

2

�
þ
�
K3

2
� K4 þ

K5

2

�
þ : : :

þ
�
KN∕2 ; N → odd
KN�1∕2� KN ; N → even:

(4.8)

Because the average of the zones adjacent to zone Zj is approximately
equal to the value of zone Zj, the sum reduces to

XN
j¼1

ð�1Þjþ1Kj ¼
K1

2
� KN

2
→

�þ; N → odd
�; N → even

: (4.9)

Therefore,

EðPÞ ¼ i2l
E†

0e
ikd

d

�
K1

2
� KN

2

�
(4.10)

or

EðPÞ ¼ 1
2

h
E1ðPÞ � ENðPÞ

i
: (4.11)

When the wavefront S propagates unobstructed, the total number of
zones N is obtained when x ¼ p/2 and EN(P) ¼ 0. The field at P will be

EðPÞ ¼ 1
2
E1ðPÞ: (4.12)
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Taking into account the result of Eq. (4.1) for E(P) and the field expression for
the first zone E1ðPÞ ¼ i2lK1E

†

0e
ikd∕d, Eq. (4.12) is satisfied if

K1 ¼ � i
l
¼ e�ip∕2

l
: (4.13)

In this way, it is possible to find the explicit value of the inclination factor for
the first zone.

4.1.2 Fresnel treatment results

Equation (4.12) can be interpreted as shown in Fig. 4.5. Figure 4.5(a)
represents the free propagation of the wavefront S; in Fig. 4.5(b), the
wavefront is obstructed by a circular aperture that allows the passage of
the field delimited by the middle of the first Fresnel zone. In both cases, the
field at P will be given by E†

0e
ikd∕d and the irradiance will be given by

IðPÞ ¼ I0 ¼ ðϵ0c∕2ÞðE†

0∕dÞ2. From the point of view of geometrical optics, the
result does not depend on the radius of the aperture since the energy that
reaches P propagates along the ray that joins S with P. Therefore, the
irradiance at P corresponds to the expected result. So, what is the gain of the
Fresnel wave treatment?

In the Fresnel treatment, the field at P depends on the size of the aperture.
Let us consider the following cases:

• Aperture for N ¼ 1. If the radius of the aperture is such that it allows
the passage of the field delimited by the first Fresnel zone, from
Eq. (4.6),

EðPÞ ¼ i2l
E†

0e
ikd

d
K1:

Then the irradiance at P will be

PS PS

(b)(a)

Circular
aperture

Figure 4.5 The field at P (a) due to the free propagation of a spherical wavefront is equal to
(b) the field bounded by a circular aperture that allows only the field corresponding to half of
the first Fresnel zone to pass.
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IðPÞ ¼ 4I0:

This result is no longer predictable by geometrical optics. The increase
in irradiance with increasing aperture radius seems reasonable.
However, the Fresnel treatment also tells us that this is not always
the case, since a further increase in the radius of the aperture decreases
the irradiance, even to zero.

• Aperture for N ¼ 2. If the radius of the aperture is increased, such that
the aperture coincides with the outer edge of the second Fresnel zone,
from Eq. (4.6),

EðPÞ ¼ i2l
E†

0e
ikd

d
ðK1 � K2Þ:

Taking into account the Fresnel hypothesis, i.e., that the inclination
factor changes very little between consecutive zones, then K1�K2.
Thus, the irradiance at P will be

IðPÞ � 0.

This result is even more surprising, but it is explained by considering
the interference. Generally speaking, we can say that the field of the
second zone is out of phase by p with respect to the field of the first
zone. This is because of the way Fresnel zones have been constructed:
with spheres whose radii increase by l/2.

Based on the previous results, it can be anticipated that when the aperture
allows the passage of M Fresnel zones, where M is odd, the consecutive zones
grouped in pairs cancel each other and the irradiance at P will be given only
by the remaining zone (I� 4I0). When the aperture allows M Fresnel zones to
pass, where M is even, the consecutive zones grouped by pairs cancel each
other and the irradiance at P will be zero (I� 0).

• Opaque disk for N ¼ 1. Another interesting situation is if instead of an
aperture in an opaque screen, like the one shown in Fig. 4.5(b), an
opaque disk whose radius is equal to the edge of the first zone is placed,
as in Fig. 4.6. Then, the passage of the field limited by the first Fresnel
zone is blocked, and the passage of the field from the second Fresnel
zone (up to the last zone where x ¼ p/2) is allowed. The result for the
field at P is

EðPÞ ¼ 1
2
E1ðPÞ � E1ðPÞ ¼ � 1

2
E1ðPÞ:

Therefore, the irradiance at P would be given by
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IðPÞ ¼ I0:

In other words, at P there will be a bright spot even though the ray from S
to P is blocked. This point is called the Poisson spot.�

• Fresnel zone plate. Finally, let us consider the situation where only odd
or even zones are blocked. As two consecutive zones have a phase shift
of p and every two zones will be in phase (phase shift of 2p), an
obstacle with apertures equivalent to the even or odd annular zones
considerably increases the irradiance value at point P. This situation is
illustrated in Fig. 4.7(a), with a zonal plate blocking even zones, and
Fig. 4.7(b), with a zonal plate blocking odd zones. In both cases, if
M zones are allowed to pass, the field at P is approximated by
E(P)�ME1(P) and the irradiance would be

IðPÞ ¼ 4M2I0:

A further improvement to the zonal plate is achieved if instead of blocking
the odd or even zones, an offset of p is introduced in the odd or even zones.
This can be done by depositing on a glass substrate a thin film of transparent
material whose optical thickness is equal to l/2. The thin film is deposited
only in the annular regions that correspond to the odd or even Fresnel zones.
To do this, a mask is used that obstructs the deposit of the material (as in a
lithographic process).

A Fresnel phase zone plate for the even zones is shown in Fig. 4.8. In this
way, the irradiance at P increases even more. The increase in irradiance at P
occurs at the expense of the decrease in irradiance at points neighboring P,
which guarantees energy conservation.

PS

Circular

disk

Figure 4.6 Poisson spot. Despite the circular disk that hinders light propagation within the
first Fresnel zone, there is a bright spot at P behind the obstacle.

�The Fresnel treatment predicts that there may be light behind an obstacle. This fact, pointed
out by Poisson as erroneous, actually occurs.
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4.2 Diffraction Integral

Diffraction involves finding the optical field at any point in space generated
by a source with boundary conditions. The typical geometry in diffraction is
illustrated in Fig. 4.9. In region I, the source S (point-like or extended) is
located; in region II, the volume is limited by the closed surface S ¼ S1þS2,
in which the optical field is measured. Region II is called the diffraction region.

PS

(b)

PS

(a)

Figure 4.7 Fresnel zonal plates to block (a) even and (b) odd zones.

PS

Figure 4.8 The phase zone plate takes advantage of the entire optical field S and
constructively interferes with the fields contained in the odd and even Fresnel zones.
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The surface S1 that separates regions I and II is an opaque surface with
apertures that allow the passage of part of the optical field emitted by the
source S.

A first approach to the problem of finding the optical field in the
diffraction region is to solve the homogeneous wave equation for the scalar
optical field (ignoring polarization). Using a monochromatic wave,

E0ðx, y, z, tÞ ¼ Eðx, y, zÞe�ivt, (4.14)

from the wave equation in vacuum [Eq. (2.5)],

ð∇2 þ k2ÞE ¼ 0, (4.15)

with k ¼ v∕c ¼ 2p∕l. To determine E at any point in the diffraction region,
Green’s theorem can be used, which in turn follows from Gauss’ theorem.
Gauss’ theorem states that if F is a vector function of the position, then

ZZ
S

F · n̂ds ¼
ZZZ

V
∇ ·Fdv, (4.16)

where n̂ is the unit vector normal to the closed surface S (outwards), V is the
volume enclosed by the surface, and ds and dv denote the differential elements
of area and volume, respectively. If the function F can be obtained as

F ¼ E∇U , (4.17)

where E and U are scalar functions defined on S and V, then

ZZ
S

ðE∇U · n̂Þds ¼
ZZZ

V
ðE∇2U þ ∇E ·∇UÞdv: (4.18)

1

S

2

I II

Figure 4.9 General geometry in the diffraction problem.
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If E and U are exchanged, a similar relationship is obtained:
ZZ

S
ðU∇E · n̂Þds ¼

ZZZ
V
ðU∇2E þ ∇U ·∇EÞdv: (4.19)

Subtracting Eq. (4.19) from Eq. (4.18) leads to
ZZ

S

ðE∇U · n̂�U∇E · n̂Þds ¼
ZZZ

V
ðE∇2U �U∇2EÞdv; (4.20)

taking into account the directional derivatives ∂E∕∂n ¼ ∇E · n̂ and
∂U∕∂n ¼ ∇U · n̂, Green’s theorem is obtained:

ZZ
S

�
E
∂U
∂n

�U
∂E
∂n

�
ds ¼

ZZZ
V
ðE∇2U �U∇2EÞdv: (4.21)

If the function U satisfies the time-independent wave equation,
[Eq. (4.15)], (∇2þ k2)U ¼ 0, then the right-hand side of Eq. (4.21) vanishes;
therefore,

ZZ
S

�
E
∂U
∂n

�U
∂E
∂n

�
ds ¼ 0: (4.22)

With this integral, given the field E (and its derivative ∂E/∂n) on the
surface S, it is possible to calculate the field E at a point P(x0, y0, z0) inside the
surface S with the help of the function U (and its derivative ∂U/∂n).

4.2.1 Kirchhoff integral theorem

Kirchhoff uses Green’s theorem with the function

Uðx, y, zÞ ¼ eiks

s
, (4.23)

where s is the distance between the point P(x0, y0, z0) and the point (x, y, z) on
the surface. This function generates a singularity in the diffraction region that
must be removed (since U must be defined anywhere in V). The singularity
can be eliminated by constructing a sphere Sε of radius ε→ 0 centered at point
P, as illustrated in Fig. 4.10.

With ε→ 0, the volume V enclosing S is maintained, but now the
integration surface will be SþSε. Therefore, the diffraction integral over S
becomes

ZZ
S

�
E
∂U
∂n

�U
∂E
∂n

�
ds ¼ �

ZZ
Sε

�
E
∂U
∂n

�U
∂E
∂n

�
ds: (4.24)

The directional derivative ∂U/∂n is equal to
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∇U · n̂ ¼ ikeikss∇s� eiks∇s
s2

· n̂

¼ eiks

s

�
ik � 1

s

�
ðŝ · n̂Þ,

(4.25)

where ∇s ¼ ŝ is the unit vector in the direction radial from point P. For the
sphere Sε, the unit normal vector points toward point P, so ðŝ · n̂Þ ¼ �1.

In the integral to the right of Eq. (4.24),

∂U
∂n

����
s¼ε

¼
�
1
ε
� ik

�
eikε

ε
; (4.26)

thus, the integral remains

ZZ
Sε

 
E
�
1
ε
� ik

�
eikε

ε
� eikε

ε
∂E
∂n

!
ε2 sin ududf, (4.27)

where the differential area has been written in spherical coordinates (for the
sphere Sε), with u as the polar angle and f as the azimuthal angle. In the limit
ε→ 0, this last integral reduces to

ZZ
Sε

E sin ududf ¼ 4pEðx0, y0, z0Þ: (4.28)

Consequently, the field at point P can be calculated as

Eðx0, y0, z0Þ ¼ � 1
4p

ZZ
S

eiks

s

�
E
�
ik � 1

s

�
ðŝ · n̂Þ � ∂E

∂n

�
ds, (4.29)

where the unit vector n̂ now corresponds to surface S. This integral is called
the Kirchhoff integral theorem.

1

S

2P

Figure 4.10 Geometry to calculate the diffraction at point P with the Green’s function
U(x,y,z) ¼ e–iks/s.
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4.2.2 Fresnel–Kirchhoff diffraction

Suppose we have an opaque flat screen with an aperture and want to
determine the diffracted optical field when the light source S is point-like, as in
Fig. 4.11(a). To solve the integral equation [Eq. (4.29)] for point P, the first
thing to do is select the integration surface S. The surface that is usually
proposed in this problem is shown in Fig. 4.11(b). The closed surface consists
of three open surfaces: the flat surface A that fills the aperture, the flat surface
S1 behind the opaque screen, and the surface S2, which is a spherical cap of
radius R centered at point P.

Therefore, the Kirchhoff integral must be solved for the three surfaces,
which together complete the closed surface S ¼ AþS1þS2. Because the
surface is arbitrarily (but conveniently) chosen, if R→`, then the surface S1

will have infinite extent. In this case, the one-aperture diffraction problem
assumes that the opaque screen has infinite extent. Thus, the contribution of
the field emitted by the point source E ¼ E†

0e
ikr∕r, where r is the distance

between source S and a point (x, y, z), on each surface will be:

• in A, assuming that the field in the aperture is equal to the field in the
absence of the opaque screen with the aperture, then

EA ¼ E†

0e
ikr∕r, (4.30)

where r is the distance between S and a point in the aperture;
• in S1, assuming that the opaque screen does not transmit light, then

ES1
¼ 0; (4.31)

S

P

1

S

2

P

A R

1

Opaque screen

with aperture

(b)(a)

Figure 4.11 (a) Geometry of the diffraction of a spherical wave in an aperture. (b) Selection
of the integration surface to solve the Kirchhoff integral.
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• in S2, with R→`, ES2
(and also U) decreases as 1/R, so the field E

is practically null. However, the area of integration grows as R2

(in S2, ds ¼ R2 sin ududf), so it is not obvious that the diffraction
integral vanishes in S2.

The first two assumptions also have some drawbacks. In the first one, the
presence of the screen changes the field at the edge of the aperture; in the
second assumption, the field extends behind the opaque screen in the vicinity
of the aperture [5]. However, for practical problems where the size of the
aperture is much larger than the wavelength, these two assumptions work very
well. For the surface S2, if R≫ l, the integral of Eq. (4.29), with s ¼ R, is
approximated by

� 1
4p

ZZ
S2

UR
�
ikE � ∂E

∂n

�
R sin ududf, (4.32)

taking into account that now ðŝ · n̂Þ ¼ 1. Because UR is finite valued with
R→`, the integral in S2, Eq. (4.32), vanishes if

lim
R→`

R
�
ikE � ∂E

∂n

�
¼ 0: (4.33)

This is called the condition of radiation of Sommerfeld, and is satisfied if
E→ 0 as fast as 1/R. This occurs for a point source, and the contribution of
the integral on the surface S2, in effect, is null. Therefore, the diffraction
generated by an aperture when illuminated by a point source will be given by

Eðx0, y0, z0Þ ¼ � 1
4p

ZZ
A
E†

0
eikr

r
eiks

s

��
ik � 1

s

�
ðŝ · n̂Þ �

�
ik � 1

r

�
ðr̂ · n̂Þ

�
ds,

(4.34)

where r̂ is the unit vector from the source S to a point Q [of coordinates
(x, y, z)] in the aperture A, ŝ is the unit vector from the observation point P
[of coordinates (x0, y0, z0)] to point Q, and n̂ is the unit normal vector to surface
A at point Q, as illustrated in Fig. 4.12(a).

If the distances r ¼ SQ and s ¼ QP are much greater than the wavelength,
the approximations (ik� 1/s)� ik and (ik� 1/r) � ik can be used in Eq. (4.34);
therefore,

Eðx0, y0, z0Þ ¼ � i
l

ZZ
A
E†

0
eikr

r
eiks

s

�ðŝ · n̂Þ � ðr̂ · n̂Þ
2

�
ds: (4.35)
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This integral is called the diffraction integral of Fresnel–Kirchhoff. In fact,
the term �i[ðŝ · n̂Þ � ðr̂ · n̂Þ]∕2l formally defines the inclination factor K(x)
from Eq. (4.2) in the Fresnel treatment. By defining the angles between the
unit vectors as shown in Fig. 4.12(b), the inclination factor can be written as

KðxÞ ¼ � i
l

½cosa� cosb�
2

¼ i
l

½cosbþ cosðxþ bÞ�
2

:

(4.36)

This definition leads to an analogous equation to Eq. (4.2); thus,

EðPÞ ¼
ZZ

A
E†

0
eikr

r
eiks

s
KðxÞds: (4.37)

The inclination factor defined in Eq. (4.36) does not depend only on the angle x,
as the Fresnel formulation suggests. This is because the integration surface in
Eq. (4.37) is flat, whereas the integration surface in Eq. (4.2) is the spherical
wavefront of radius r0, in which the amplitude of the secondary sources is
constant and equal to E†

0e
ikr0∕r0. Instead, in Eq. (4.37), not only is the

amplitude of the secondary sources variable at the aperture A, but the
secondary sources EðQÞ ¼ E†

0e
ikr∕r are not always on the same wavefront. In

this sense, Eq. (4.37) is a generalized version of the Huygens–Fresnel principle.
When the source is at infinity, Eqs. (4.2) and (4.37) coincide, since the

angle b ¼ p (and a ¼ x). In this case, the inclination factor turns out to be

KðxÞ ¼ � i
l

�
1þ cos x

2

�
: (4.38)

This situation is illustrated in Fig. 4.13.
A further simplification occurs in the paraxial approximation where

x� 0. This last situation is very common in practice and is analyzed in the
next section.
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Figure 4.12 Unit vectors at the Q point of the diffraction aperture.
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4.2.3 Sommerfeld diffraction

To obtain the Fresnel–Kirchhoff integral, the spherical wave of unit
amplitude eiks/s was used as a Green’s function. The selection of the function
is arbitrary, but it should facilitate the calculation of the diffraction. This
function has some issues with the E field inside the aperture, at the edges of
the aperture, and just behind the aperture near the edges. Sommerfeld
proposes another Green’s function, such that the aperture boundary problems
are solved, while maintaining the assumption that the optical field within the
aperture is equal to the optical field in the same region when there is no
opaque screen defining the aperture.

The new function U is constructed with two unit spherical waves, one
originating from the observation point P [as in Eq. (4.23)] and the other
originating from the point P0, which is the mirror image of P with respect to
the plane of the aperture A, as illustrated in Fig. 4.14.

P

A

Q

s

n r

Figure 4.13 Unit vectors when the incident wavefront at the aperture is flat.
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Qn

P '

ss'

Figure 4.14 P and P0: origin of the two auxiliary unit spherical waves for the diffraction
calculation.
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With this configuration, the Green’s function becomes

U ¼ eiks

s
� eiks

0

s0
: (4.39)

Using this function in the diffraction problem described in Fig. 4.11(b) when
R→`, for any point in S1 and in A, s0 ¼ s and, therefore, U ¼ 0 and
∂U/∂n ¼ 0. Thus, it is not necessary to make any assumptions about the
boundary conditions of the field E at S1 and at the edge of the aperture,
eliminating the inconsistencies of the entire Green’s function chosen by
Kirchhoff. Using Eq. (4.39), leads to [6]

Eðx0, y0, z0Þ ¼ � i
l

ZZ
A
E†

0
eikr

r
eiks

s
ðŝ · n̂Þds: (4.40)

This integral is called the first Rayleigh–Sommerfeld solution.
The function U ¼ eiks∕sþ eiks

0∕s0 can also be chosen, which gives rise to
the second Rayleigh–Sommerfeld solution [6]:

Eðx0, y0, z0Þ ¼ i
l

ZZ
A
E†

0
eikr

r
eiks

s
ðŝ0 · n̂Þds: (4.41)

The inclination factor will be different in each case:

• KðxÞ ¼ �i[ðŝ · n̂Þ � ðr̂ · n̂Þ]∕2l in Fresnel–Kirchhoff;

• KðxÞ ¼ �iðŝ · n̂Þ∕l in the first Rayleigh–Sommerfeld solution; and

• KðxÞ ¼ iðŝ0 · n̂Þ∕l in the second Rayleigh–Sommerfeld solution.

When the aperture is illuminated by a plane wave (source S at infinity) and
in the paraxial approximation, the inclination factors coincide at K(x) ¼ �i/l.

4.3 Fresnel and Fraunhofer Diffraction

The problem of diffraction by an aperture in a flat opaque screen, as
illustrated in Fig. 4.15, is considered in this section.

Q
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Figure 4.15 Geometry for the calculation of diffraction by a plane aperture.
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According to Eq. (4.37), the Huygens–Fresnel diffraction integral can be
written in general as

EðPÞ ¼
ZZ

A
EðQÞKðxÞ e

iks

s
ds: (4.42)

E(Q) is the complex amplitude of the field at the aperture. The aperture is
in the xy plane, and the diffraction pattern observation screen (spatial
distribution of irradiance) is in the x0y0 plane. These planes are separated by
the distance d ¼ |d|. In particular, we will limit ourselves to the paraxial
approximation, which is defined under the following conditions:

1. The separation d between the plane of the aperture and the plane of the
diffraction pattern satisfies d≫ l.

2. The dimensions of the aperture are much smaller than the distance d.

3. The dimensions of the region of observation of the diffraction pattern
are much smaller than the distance d.

4. The inclination factor for any point in the aperture is approximated by
the inclination factor of the first Fresnel zone, i.e., K(x)��i/l.�

The vectors indicated in Fig. 4.15 are:

• d, separation vector between the planes of the aperture and the
observation screen;

• r ¼ {x,y}, position vector of the point Q in the aperture;

• r0 ¼ {x0,y0}, position vector of point P on the observation screen;

• R ¼ dþ r0, relative position vector of point P with respect to the origin
of coordinates of the aperture; and

• s, relative position vector of point P with respect to point Q.

Taking into account the paraxial condition, it is fulfilled that |r|≪ |R|,
|r0|≪ |R| and |R|� |d|.

From the law of cosines,

s2 ¼ R2 þ r2 � 2R · r (4.43)

or

s ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

	 r
R



2 � 2R · r

R2

r
: (4.44)

�This inclination factor value is obtained from K(x) ¼ �i(1þ cos x)/2l when in Eq. (4.36) the
angle b ¼ p, i.e., when illuminated by a plane wave. In practice, the wavefront at the
aperture may have small deviations, such that b � p. In this case, it could still be assumed
that K(x) ¼ �i/l.

249Diffraction



Because R · r ¼ (dþ r0) · r ¼ r0· r, then

s ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

	 r
R



2 � 2r0 · r

R2

r
: (4.45)

The paraxial approximation implies that the square root can be
approximated to second order; thus,

s ¼ R
�
1þ 1

2

�
r2 � 2r0 · r

R2

��
: (4.46)

Completing the square binomial for the term that is in parentheses in
Eq. (4.46),

s ¼ R
�
1� r02

2R2 þ
1
2

�
r02 � 2r0 · rþ r2

R2

��
: (4.47)

With r0 ≪R, we have 1� r02∕2R2 � 1, and replacing R with d, Eq. (4.47)
simplifies to

s ¼ d þ jr0 � rj2
2d

: (4.48)

Therefore, the paraxial form of Eq. (4.42) is obtained by replacing s with
the expression given by Eq. (4.48). The distance s is in the argument of
the exponential function and in the denominator of Eq. (4.42). The quantity
|r0 � r|2/2d describes small variations with respect to distance d. In the
exponential function, these small variations are comparable with the
wavelength; thus, the relationship between these two quantities gives
important phase changes in the interference process. On the other hand, in
the denominator, these small variations are only compared with the distance
d; therefore, there is no appreciable change in the denominator, and there s
can be exchanged for d. Finally, the paraxial version of Eq. (4.42) becomes

Eðr0Þ ¼ �i
eikd

ld

ZZ
A
EðrÞeikjr0�rj2∕2dd2r: (4.49)

From this integral, one can see what the secondary waves of the Huygens–
Fresnel principle look like in the paraxial approximation. Consider Fig. 4.16, in
which r ¼ yj and r0 ¼ y0j. At Q(y), there is a source of amplitude E(y)
that emits a parabolic wave. The field at P(y0), due to Q, is equal to the
attenuated field E(y)/d, and the phase shift of the wave at P is given by
ik[d þ ðy0 � yÞ2∕2d]. Note that the term (y0 � y)2/2d is the sag at distance y0 � y
from the vertex V of the front parabolic waveform centered on Q. Thus, in
the paraxial approximation, the secondary waves of the Huygens–Fresnel
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principle are paraboloids centered on the sources located in the primary
wavefront S.

Writing the vectors of Eq. (4.49) in Cartesian components,

Eðx0, y0Þ ¼ �i
eikdeikðx02þy02Þ∕2d

ld

ZZ
A
Eðx, yÞeikðx2þy2Þ∕2de�ikðx0xþy0yÞ∕ddxdy:

(4.50)

This version of the diffraction integral allows us to observe the influence
of the Fresnel zones in the field that fills the opening A. Focusing on the plane
of the aperture, the field E(x,y) is modulated by the term eikðx2þy2Þ∕2d . Now, the
term (x2þ y2)/2d will be the sag at the distance (x2þ y2)1/2 from the origin of
coordinates O of a paraboloid with center at O0 (Fig. 4.16). If the distance
(x2þ y2)/2d is divided by l/2, we will count the number of Fresnel zones
contained in a circular opening of radius (x2þ y2)1/2. Therefore,

eikðx2þy2Þ∕2d ¼ eipN , (4.51)

where N ¼ (x2þ y2)/ld is the number of Fresnel zones.

4.3.1 Fraunhofer diffraction

Let rmax be the radius of the circle circumscribing the diffraction aperture and
Nmax ¼ r2max∕ld be the number of Fresnel zones subtended by the circle with
respect to the diffraction pattern observation plane. If Nmax≪ 1 (Nmax� 0),
then the term eikðx2þy2Þ∕2d inside the integral can be neglected and the
diffraction pattern will be given by

Iðx0, y0Þ ¼ ðϵ0c∕2Þ
l2d2

����
ZZ

A
Eðx, yÞe�i2pðx0xþy0yÞ∕lddxdy

����
2
: (4.52)

This integral is called the Fraunhofer diffraction integral.
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d
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Figure 4.16 Approximation of the distance s as dþ (y0 � y)2/2d.
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4.3.2 Fresnel diffraction

Let rmax be the radius of the circle circumscribing the diffraction aperture and
Nmax ¼ r2max∕ld be the number of Fresnel zones subtended by the circle with
respect to the diffraction pattern observation plane. If Nmax is of the order of a
Fresnel zone, then the term eikðx2þy2Þ∕2d cannot be negligible within the integral
and, in this case, the diffraction pattern will be given by

Iðx0, y0Þ ¼ ðϵ0c∕2Þ
l2d2

����
ZZ

A
½Eðx, yÞeikðx2þy2Þ∕2d �e�i2pðx0xþy0yÞ∕lddxdy

����
2
: (4.53)

This integral is called the Fresnel diffraction integral.
The diffraction integrals given by Eqs. (4.52) and (4.53) have the form of a

two-dimensional Fourier transform whose spatial frequencies are x0/ld and
y0/ld. Therefore, it is easy to compute these integrals numerically.

4.3.3 Some examples

A circular aperture
A very common aperture in diffraction is the circular aperture. This has very
important practical applications because the aperture diaphragms or lens
edges of an optical system are usually circular.

Suppose we have a circular aperture of radius w illuminated by a flat
homogeneous wavefront (of amplitude E0 and wavelength l) orthogonal to
the plane of the aperture. The field at the aperture can be described as

Eðx, yÞ ¼ E0circ

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
w

!
, (4.54)

where circ( ) is called the circular function and is defined as 1 forffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
≤ w, and 0 for other values of (x,y)

In this case, the aperture coincides with the circle that circumscribes the
diffracting aperture. Then the number of Fresnel zones is given by N ¼ w2/ld.
The Fresnel diffraction patterns for a circular aperture of radius w ¼ 0.5 mm
are shown in Fig. 4.17,� obtained when the observation screen distance
corresponds to (a) the first Fresnel zone (d ¼ 395.1 mm), (b) the first
two Fresnel zones (d ¼ 197.5 mm), (c) the first three Fresnel zones
(d ¼ 131.7 mm), and (d) the first four Fresnel zones (d ¼ 98.7 mm), using

�To make the rings or regions of lower intensity visible, instead of plotting the irradiance, the
square root of the irradiance is drawn. This is done for the simulated patterns in this section,
as well as in Sections 4.4 and 4.5. But in Section 4.5.2, the irradiance is drawn because it
better illustrates resolution for a two-point image and corresponds to what is observed in
practice.
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l ¼ 632.8 nm. Of course, the distance that the observation screen must be in
each case is calculated from d ¼ w2/Nl.

In the case of the Fraunhofer diffraction, the calculation is even easier
because it does not include the term eikðx2þy2Þ∕2d within the integral.
This implies that d→`. In practice, the observation screen must be placed
at a finite distance such that d≫ w, e.g., the Fraunhofer pattern when
d ¼ 3951 mm is shown in Fig. 4.18(a). This particular value of the distance d
corresponds to the distance by which the circular aperture subtends 0.1
Fresnel zones. The profile of this pattern, Fig. 4.18(b), corresponds to the
square of a Bessel function divided by its argument, as shown below.

The Fraunhofer integral for a circular aperture has a well-known
analytical solution. Because the aperture is circular, it is convenient to solve
the integral in cylindrical coordinates. Let r ¼ ðx2 þ y2Þ1∕2, tanf ¼ y∕x;
r0 ¼ ðx02 þ y02Þ1∕2, and tanw ¼ y0∕x0. Hence, x ¼ r cosf, y ¼ r sinf,
x0 ¼ r0 cosw, and y0 ¼ r0 sinw. By changing the variables in the diffraction
integral,

(a) (b) (c) (d)

Figure 4.17 Fresnel diffraction patterns of a circular aperture of radius 0.5 mm, for a
wavelength of 632.8 nm. The size of the image box in all cases is 3 mm on each side.
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Figure 4.18 (a) Fraunhofer diffraction pattern on a screen observation at a distance of
3951 mm from a circular aperture of radius 0.5 mm. The size of the image box is 20 mm on a
side. (b) Profile of the diffraction pattern.
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Iðr0Þ ¼ E2
0ðϵ0c∕2Þ
l2d2

����
Zw

0

Z2p

0

e�i2pr0r½cosðf�wÞ�∕ldrdrdf
����
2

: (4.55)

Because the problem has symmetry for w, it can be solved for any w. In
particular, for w ¼ 0, the integral becomes

Zw

0

Z2p

0

e�i2pr0r cosf∕ldrdrdf, (4.56)

which is equal to

2p
Zw

0

J0ð2pr0r∕ldÞrdr: (4.57)

Using the recurrence relation
R
u
0 J0ðu0Þu0du0 ¼ uJ1ðuÞ, then

Iðr0Þ ¼ I0

���� 2J1ð2pwr0∕ldÞ
2pwr0∕ld

����
2
, (4.58)

with I0 ¼ ðϵ0c∕2Þðpw2E0∕ldÞ2.
The first dark ring of the pattern in Fig. 4.18 is obtained for the first zero

of the Bessel function, i.e., when 2pwr0∕ld ¼ 3.8317. Because the energy
contained in the region enclosed by the first dark ring is around 84%, the first
ring plays a very important role in the image of a point source. The
distribution of irradiance contained within the first ring is called the Airy disk.
The radius of the Airy disk is given by

r0A ¼ 1.22
ld
ð2wÞ : (4.59)

In the example of Fig. 4.18(b), the Airy radius is 3.0541 mm. The second
dark ring of the pattern is obtained for the second zero of the Bessel function,
i.e., 2pwr0∕ld ¼ 7.0156, which gives r0 ¼ 2.23ld∕ð2wÞ. In the example in
Fig. 4.18(b), this radius is 5.5825 mm. The energy in the region enclosed by
the second dark ring is 91%. The function 2J1(u)/u is called the Jinc(u)
function.

A rectangular aperture
Another aperture, also widely used in practical diffraction problems, is the
rectangular aperture. Suppose we have a rectangular aperture with sides 2wx

and 2wy illuminated by a homogeneous plane wavefront (of amplitude E0 and
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wavelength l) orthogonal to the plane of the aperture. The field at the
aperture can be described as

Eðx, yÞ ¼ E0rect
	 x
2wx



rect

	 y
2wy



, (4.60)

where rect(x/2wx) is called the rectangle function and is defined as 1 for |x|≤wx

and 0 for other values of x. Similarly, the function rect(y/2wy) is defined for
the coordinate y.

Fresnel diffraction patterns for a rectangular aperture with sides
2wx ¼ 1 mm and 2wy ¼ 4 mm are shown in Fig. 4.19, obtained when the
distance to the observation screen corresponds to (a) the first Fresnel zone
(d ¼ 6321 mm), (b) the first two Fresnel zones (d ¼ 3161 mm), (c) the first three
Fresnel zones (d ¼ 2107 mm), and (d) the first four Fresnel zones
(d ¼ 1580 mm), using l ¼ 632.8 nm. Because wy>wx, the circle that
circumscribes the rectangular aperture will have a radius close to wy. Therefore,
the number of Fresnel zones in this case is calculated as N ¼ w2

y∕ld and,
consequently, the distance at which the observation screen should be at is
d ¼ w2

y∕Nl.
The Fraunhofer diffraction when d ¼ 63211 mm is shown in Fig. 4.20(a).

In this example, this value of d also corresponds to the distance by which the
circle circumscribing the rectangular aperture subtends 0.1 Fresnel zones.

The Fraunhofer integral for the rectangular aperture also has a
well-known analytical solution. In this case,

Iðx0, y0Þ ¼ E2
0ðϵ0c∕2Þ
l2d2

������
Zwx

�wx

Zwy

�wyx

e�i2pðx0xþy0yÞ∕lddxdy

������
2

¼ E2
0ðϵ0c∕2Þ
l2d2

������
Zwx

�wx

e�i2pðx0xÞ∕lddx

������
2������
Zwy

�wy

e�i2pðy0yÞ∕lddy

������
2

,

(4.61)

(a) (b) (c) (d)

Figure 4.19 Fresnel diffraction patterns of a rectangular aperture with sides of 1 mm and
4 mm, for a wavelength of 632.8 nm. The size of the image in all cases is 24 mm on each side.
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i.e.,

Iðx0, y0Þ ¼ I0

�
sinð2pwxx0∕ldÞ
ð2pwxx0∕ldÞ

�
2
�
sinð2pwyy0∕ldÞ
ð2pwyy0∕ldÞ

�
2
, (4.62)

with I0 ¼ ðϵ0c∕2Þð4wxwyE0∕ldÞ2. The function sin(u)/u was introduced in
Section 3.1.3, i.e., the function sinc(u). The profile of this pattern in the
horizontal direction (x0) is shown in Fig. 4.20(b). The zeros of the function
sincð2pwxx0∕ldÞ are obtained at

x0m ¼ m
ld

ð2wxÞ
, (4.63)

with m ¼ ±1, ±2, ±3, . . . . In the vertical direction (y0), there is a similar
behavior, with the zeros at y0m ¼ �mld∕ð2wyÞ. Most of the energy is in the
region bounded by the leading zeros: x0�1 ¼ �ld∕ð2wxÞ and y0�1 ¼ �ld∕ð2wyÞ.
Therefore, it is convenient to define the width of the sinc( ) as Dx0 ¼ 2x01 in the
direction x0 and Dy0 ¼ 2y01 in the direction y0.

Note that the diffraction pattern has a greater dispersion in the direction
in which the rectangular aperture has a shorter length [Fig. 4.20(a)]. This
topic is treated in Section 4.6 on diffraction gratings. One-dimensional
gratings are such that each diffraction element satisfies wx≪ wy, which
makes the diffraction pattern look like a one-dimensional irradiance
distribution.

On the other hand, when wx ¼ wy ¼ w, the aperture geometry is a square
of side 2w. In such a case, the Fraunhofer diffraction pattern is symmetric, as
shown in Fig. 4.21.
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Figure 4.20 (a) Fraunhofer diffraction pattern on the observation screen at a distance of
63211 mm from the rectangular aperture with sides 1 mm and 4 mm. Image size is 250 mm
on each side. (b) Profile of the diffraction pattern.
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4.4 Young Interferometer II

In Section 3.8, the Young interferometer is analyzed as a system of two
mutually coherent point sources, S1 and S2. This section deals with two
practical aspects of the Young interferometer. The first has to do with the finite
size of the two sources (apertures) S1 and S2, while the second deals with the size
and coherence of the light source. With this, an enhanced description of
Young’s original experiment from the 19th century [7] is presented in this book.

A diagram of Young’s experiment that will be discussed in this section is
shown in Fig. 4.22. The primary source S with which the apertures S1 and S2
are illuminated is an incoherent, monochromatic extended source of
wavelength l and lateral size s. The two apertures are circles of radius w
and are separated from each other (from their centers) by a distance a along
the x direction. The distance between the source S and the apertures is zp, and
the distance between the apertures and the observation screen is d.

Figure 4.21 Fraunhofer diffraction pattern generated by a square aperture of side
2w ¼ 1 mm, at a distance d ¼ 3951 mm (N ¼ 0.1), for a wavelength of 632.8 nm.
The image size is 20 mm on each side.
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Figure 4.22 Young’s experiment, or diffraction through two apertures, in an opaque screen.
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Taking into account the conditions under which Young’s experiment is
performed, d≫ a≫ l, the diffraction on the screen corresponds to the
Fraunhofer diffraction.

4.4.1 Effect of the size of the diffraction aperture

First, let us assume that the primary source is a point source (on the optical
axis) and that the field amplitude at each aperture is uniform and of constant
phase. Therefore, the irradiance will be

Iðx0, y0Þ ¼ ϵ0c
2l2d2

������
Z̀
�`

Z̀
�`

E0

 
circ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

w

�
∗
h
dðx� a∕2Þ þ dðxþ a∕2Þ

i!

�e�i2pðx0xþy0xÞ∕lddxdy

������
2

: ð4:64Þ

The function circ( ) describes the geometry of each aperture of radius w,
and the Dirac delta functions locate the aperture at x ¼ �a/2 and x ¼ a/2.
The symbol � denotes the convolution operation. Taking into account that the
Fourier transform of the convolution of two functions is equal to the product
of the Fourier transforms of each function,

Iðx0, y0Þ ¼ 4I0

�
2J1ð2pwr0∕ldÞ

2pwr0∕ld

�
2
�
cos
	pa
ld

x0

�2

, (4.65)

with I0 ¼ ðϵ0c∕2Þðpw2E0∕ldÞ2 and r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02 þ y02

p
. Note that cos2ðpax0∕ldÞ

is the Fourier transform of [dðx� a∕2Þ þ dðxþ a∕2Þ]. In fact, the result given
in Eq. (4.65) is the modulated version of the result given in Eq. (3.117). Thus,
the modulation of the pattern is determined by the size of the aperture,
whereas the spacing between the fringes is determined by the spacing between
the apertures. The simulation of the diffraction pattern by two identical
circular apertures of radius w ¼ 0.5 mm separated by a ¼ 5 mm, with
l ¼ 632.8 nm, is shown in Fig. 4.23(a) when the observation screen is at a
distance d ¼ 3951 mm (as in Fig. 4.18). The horizontal profile of the pattern
is shown in Fig. 4.23(b); the gray segmented curve describes the modulation of
the interference pattern due to the diffraction pattern.

4.4.2 Effect of light source size

Now let us see how the extent s of the source S affects the diffraction pattern.
Let us assume that the source is monochromatic and spatially incoherent,
i.e., the oscillations of the fields emitted by two (independent) point sources of
S are uncorrelated and therefore these fields do not interfere with each other.
This implies that if we consider two point sources of S, each will generate its
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own Young interference pattern. The final result is the sum of the intensities
produced by each of the point sources.

To qualitatively see the effect of the source size, let us consider a light
source formed by two incoherent point sources separated from each other by
the distance s0, as shown in Fig. 4.24. The angular size of the source will be
a ¼ s0/zp. Each source generates its own interference pattern with an offset
for the maximum of ±da/2. The interference fringes in each pattern will be
separated from each other by the distance ld/a. Because the two patterns are
identical, when the offset between the patterns is equal to ld/2a, the minima of
one pattern coincide with the maxima of the other pattern; therefore, the sum
of the patterns eliminates the interference fringes. Let us denote by a0 ¼ l/2a
the angle that subtends the displacement ld/2a with respect to the midpoint
between the apertures.

The evolution of the interference pattern, as the angular size of the source
increases, is shown in Fig. 4.25. The parameters used are the same as those used
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Figure 4.23 (a) Interference pattern generated by two circular apertures of 0.5 mm radius
and 5 mm apart. The interference pattern is modulated by the diffraction pattern (in gray) of
one of the apertures. (b) Interference pattern profile.
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Figure 4.24 Sum of intensities of two incoherent sources.

259Diffraction



in Fig. 4.18. When a ¼ 0, the two point sources coincide on the optical axis,
and the intensity at each point is twice the intensity of the pattern generated by
a single source. The visibility of the interferogram [Eq. (3.32)] is the maximum
(C ¼ 1). When a ¼ a0/4, the point sources are separated by s0 ¼ lzp/8a. The
intensity change is small compared with the first case, and the interferogram
visibility is still high (C ¼ 0.93). With a ¼ a0/2, the point sources are separated
by s0 ¼ lzp/4a and now the intensity change is appreciable; the minima inside
the envelope move away from zero. The latter notably reduces the visibility of
the interferogram (C ¼ 0.71). For a ¼ 3a0/4, the point sources are separated
by s0 ¼ 3lzp/8a and the visibility decreases considerably (C ¼ 0.38). Finally,
when a ¼ a0, the point sources are separated by s0 ¼ lzp/2a and the visibility
of the interferogram becomes zero; i.e., there are no interference fringes.

This example qualitatively illustrates what happens to a Young
interference pattern when illuminated by an extended source (composed of
an infinite number of incoherent point sources). According to the visibility of
the interferogram generated by the optical fields emerging from the apertures
S1 and S2, the degree of spatial similarity of these fields can be established.
The visibility of the interferogram measures the degree of spatial coherence of
the fields in the apertures. If the fields in the apertures are identical, which
happens if the source is a point source, as in the case of a ¼ 0 in Fig. 4.25, the
visibility is maximum and the fields are mutually or fully coherent. As the size
of the extended source increases, the field oscillations at the apertures become
less correlated, thus decreasing the visibility of the interferogram and the
degree of spatial coherence.

Results similar to those shown in Fig. 4.25 can be obtained if instead of
changing the size of the light source, the separation of the two apertures is
changed. Suppose the size of the light source is s. Based on what was seen
above, the separation of the apertures has a limit value at which the visibility
of the interferogram becomes zero. For smaller separations, interference will
be observed. In the case of a source made up of two incoherent point sources,
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Figure 4.25 Decrease in the visibility of the Young-type interferogram generated by two
circular apertures of radius w ¼ 0.5 mm separated by a ¼ 5 mm, when illuminated with light
emitted by two point sources that are incoherent with each other depending on the angular
separation a of the sources. The wavelength of light is l ¼ 632.8 nm.

260 Chapter 4



the separation limit is a ¼ lzp/2s. However, for a continuous source, this
limit value is calculated from the van Cittert–Zernike theorem: the position of
the first zero of the Fourier transform of the irradiance distribution of the
incoherent source is taken as the maximum separation of the two apertures.�

If the amplitude of the optical fields at the apertures is approximately
equal, the result of the van Cittert–Zernike theorem measures the visibility of
the interferogram, which is equivalent to measuring the spatial coherence
of the fields in the aperture; e.g., if the light source is a square of side s,
with a constant irradiance distribution, the visibility will be given by
C � jsinðpsa∕lzpÞ∕ðpsa∕lzpÞj. If the light source is circular with a radius
of s/2, with a constant irradiance distribution, the visibility will be given by
C � jJ1ðpsa∕ldÞ∕ðpsa∕ldÞj. Then, the limiting values for the aperture
spacing will be: a ¼ lzp/s with the square light source, and a ¼ 1.22lzp/s
with the circular light source.

The experimental interference patterns generated by two circular openings
of radius w ¼ 0.5 mm, when the illumination source is incoherent with
an irradiance distribution that follows a Gaussian profile [8], are shown in
Fig. 4.26. In this experiment, C � e�ða∕5.95Þ2 , where 5.95 is the width of the

(a) (b) (c) (d)

(f)(e)

Figure 4.26 Interference patterns in Young’s experiment, with a partially coherent
monochromatic light of wavelength 632.8 nm, as a function of the separation of two circular
apertures of 0.5 mm radius each.

�The van Cittert–Zernike theorem states that the region in the plane of the diffraction apertures
within which the spatial coherence is not zero is determined by the Fourier transform of the
irradiance distribution of the incoherent light source. A good explanation of this theorem is
found in Born and Wolf [4].
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Gaussian profile in millimeters and is taken as the radius of the coherence
region. In the experiment, the opening gap varies from 2 to 12 mm in steps of
2 mm. By examining the profile of the interferograms in the horizontal
direction (x0), curves similar to those shown in Fig. 4.25 are obtained. When
a ¼ 12 mm, there is no more interference. Note that in these images no
interference rings are observed [as shown in the simulated pattern in Fig.
4.23(a)]. This occurs because in practice, the maximum irradiance of the first
ring is very small with respect to the maximum of the central region, as can be
seen in the profile of Fig. 4.23(b).

From the lessons learned in this section, one can imagine how careful
Thomas Young was to look at the interference fringes, which must be colored
if the primary source is the sun.

4.5 Image Formation with Diffraction

According to geometrical optics, the image of a point formed by an optical
system free of optical aberrations is also a point. Suppose the point object
is located on the optical axis. The spherical wavefront that diverges from
the object when passing through the optical system will be truncated by the
aperture diaphragm; i.e., the diaphragm plays the role of the aperture that
diffracts the light. This implies that the image cannot be a point. On the other
hand, the image of a large object will depend on the spatial coherence of
the optical field in the object. This section briefly deals with the topic of
imaging by taking diffraction into account in the paraxial approximation
(Fresnel/Fraunhofer diffraction).�

4.5.1 Image of a point (source) object

Let us consider the system shown in Fig. 4.27. The thin lens represents the
imaging optics, and the edge of the lens is the aperture diaphragm. The lens
introduces a phase delay in the wavefront as it passes through the diaphragm.
With this in mind, the lens can be modeled as a complex variable
transmittance that changes the phase of the incident wavefront at the
diaphragm. Thus, the process of image formation of a point object can be
described as follows: a spherical wavefront that diverges from the point object
is truncated by the aperture diaphragm and undergoes a phase shift due to the
transmittance of the lens, then converges as a diffraction pattern in the
Gaussian image plane.

In Fig. 4.27, �so and si are the object and image distances from the thin
lens in the plane of the aperture (diaphragm). The phase of the optical field
(diverging from the point object) just before the aperture would be

�For a detailed discussion of the problem of imaging, by taking diffraction into account, see
Goodman [6].
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e�iksoe�ikðx2þy2Þ∕2so . The transmittance of the lens at the aperture is given by
tðx, yÞ ¼ e�ikðx2þy2Þ∕2f . This result is easily deduced and can be found in
Introduction to Fourier Optics [6]. Therefore, if E0 is the amplitude of the field
at the aperture, the optical field just after the aperture will be

Eðx, yÞ ¼ E0e�iksocirc

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
w

!
e�ikðx2þy2Þ∕2soe�ikðx2þy2Þ∕2f ; (4.66)

this describes the edge of the lens, and w is the radius of the lens.
The diffraction between the diaphragm (lens) and the Gaussian image

plane is

Iðx0, y0Þ ¼ ðϵ0c∕2Þ
l2s2i

������
Z̀
�`

Z̀
�`

½Eðx,yÞeikðx2þy2Þ∕2si �e�i2pðx0xþy0yÞ∕lsidxdy

������
2

: (4.67)

Inside the integral are the following phase terms:

e�ikðx2þy2Þ∕2soeikðx2þy2Þ∕2si e�ikðx2þy2Þ∕2f ¼ eik½1∕si�1∕so�1∕f �ðx2þy2Þ∕2 ¼ 1: (4.68)

This follows from the thin lens equation 1/si� 1/so ¼ 1/f [Eq. (1.42)]. Thus,
the image of a point object would be given by

Iðx0, y0Þ ¼ E2
0ðϵ0c∕2Þ
l2s2i

������
Z̀
�`

Z̀
�`

circ

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
w

!
e�i2pðx0xþy0yÞ∕lsidxdy

������
2

: (4.69)

This integral was solved in the circular aperture example (Section 4.3.3). Thus,
the image of a point object formed by a lens of diameter 2w depends on the
diameter of the lens and the distance of the Gaussian image si, and is of the
form

 s

O

Gaussian

image plane

o si

Point object

AS

Lens

(x',y')(x,y)

Figure 4.27 Schematic of an optical imaging system. The aperture diaphragm limits the
wavefront and generates diffraction in the image.
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Iðr0Þ ¼ I0

���� 2J1ð2pwr0∕lsiÞ
ð2pwr0∕lsiÞ

����
2
, (4.70)

where I0 ¼ ðϵ0c∕2Þðpw2E0∕lsiÞ2.
In geometrical optics, the geometrical PSF (Section 1.9) was defined to

describe the shape of the image of a point object. If the optical system is free of
aberrations, the geometrical PSF would be a point. Taking diffraction into
account, the image of a point object is no longer a point but a diffraction
pattern. Analogously, in physical optics (when the wave nature of light is
taken into account), the diffractive PSF is defined to describe the shape of the
image of a point object. If the optical system is free of aberrations, the
diffractive PSF will be given by Eq. (4.70). When an optical system is free of
optical aberrations, the system is said to be diffraction-limited.

Pupil function and optical aberrations
Equation (4.69) indicates that in the image formation process, which is in the
Fresnel diffraction domain, the lens compensates for the quadratic Fresnel
phase term, which results in a Fraunhofer diffraction integral. This equation
can be generalized to multiple lens optical systems with an aperture
diaphragm separated from the lenses. The diffraction aperture would be the
edge of the exit pupil, and the distance at which the Fresnel diffraction occurs
would be the distance between the exit pupil and the Gaussian image plane,
say sps. The pupil is described by a function P(x,y) that includes the geometry
of the pupil and a possible variation of the transmittance in the pupil. If, in
addition, the optical system presents optical aberrations, these affect the phase
of the wavefront in the pupil, which can be included by multiplying the
function P(x,y) by a term e–ikW(x,y), where W(x,y) is the variation of the real
wavefront with respect to the ideal spherical wavefront of radius sps. Thus, the
PSF of an optical system in general will be given by

Iðx0, y0Þ ¼ E2
0ðϵ0c∕2Þ
l2s2ps

������
Z̀
�`

Z̀
�`

Pðx,yÞe�ikWðx,yÞe�i2pðx0xþy0yÞ∕lspsdxdy

������
2

: (4.71)

The function W(x,y) is a polynomial whose terms describe the optical
aberrations present in the optical system [9]; e.g., primary aberrations such as
astigmatism, coma, and spherical aberrations in the wavefront are given by
aa(x

2� y2), acy(x
2þ y2), and as(x

2þ y2)2, respectively. Defocus can also be
included as an aberration, given by ad(x

2þ y2). The coefficients ad, aa, ac, and
as depend on the parameters of the optical system. The PSF of a diffraction-
limited optical system is shown Fig. 4.28, in which the distance between the
exit pupil and the Gaussian image plane is sps ¼ 100 mm and the exit pupil
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diameter is 2w ¼ 10 mm, with l ¼ 632.8 nm. The radius of the Airy disk is
rA ¼ 7.7 mm. The size of the box in the image is 316 mm on a side.

Figure 4.29 shows the diffraction patterns in the same optical system as
Fig. 4.28. The wavefront at the exit pupil is affected by aberrations such as:
defocus, with ad ¼ 5� 10–5 mm–1; astigmatism, with aa ¼ 3.5� 10–5 mm–1;
coma, with ac ¼ 1.25� 10–5 mm–2; and spherical aberration, with
as ¼ 2� 10–6 mm–3. The size of the image box in all cases is 316 mm on a side.

The first thing to note is that the presence of any of these aberrations
increases the size of the PSF compared with the PSF without aberrations
shown in Fig. 4.28. Note that the defocus aberration corresponds to a Fresnel
diffraction pattern because in this case, the term e�ikWðx,yÞ in the integral of
Eq. (4.71) is equal to e�ikadðx2þy2Þ, which has the form of the quadratic Fresnel
factor. The number of Fresnel zones introduced by the defocus in the pupil
will be N ¼ 2adw2∕l. In the example given here, this is N ¼ 3.95. The defocus
coefficient is given by ad ¼ �Ds∕ð2s2psÞ, where Ds is the defocus. In our
example, Ds ¼ �1 mm, and the negative sign means that defocus occurs when
the image plane moves 1 mm closer to the exit pupil.

Figure 4.28 Diffraction pattern [function Jinc( )] without aberrations. The radius of the Airy
disk is 7.7 mm.

(a) (b) (c) (d)

Figure 4.29 Diffraction patterns corresponding to the primary aberrations when the
diameter of the exit pupil is 10 mm and the distance between the exit pupil and the Gaussian
image plane is 100 mm, with l ¼ 632.8 nm. The size of the image box in all cases is
0.316 mm on a side.
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In practice, the PSF would be the result of a combination of different
aberrations; e.g., the experimental PSF in Fig. 4.1 corresponds to an optical
system (human eye model) affected by defocus (myopia), astigmatism, and
spherical aberration.

4.5.2 Resolution in the image (two points)

From the point of view of geometrical optics, if an object is formed by two
points separated by a certain distance, the image should have two points
separated by a distance that depends on the magnification of the system.
Regardless of the distance that separates the two points of the object, two
points should be observed in the image. But as mentioned before, the image of
a point object is an irradiance distribution called PSF. Therefore, the image of
two spatially incoherent points would be two diffraction patterns that can
overlap (in intensity) depending on the distance that separates them. This
means that there may be a situation where the two diffraction patterns
overlap, resulting in an irradiance distribution where the individual patterns
cannot be distinguished. What is the minimum distance between these two
diffraction patterns at which they can still be identified? This distance is called
the limit of spatial resolution, and it depends on the diameter of the exit pupil
of the optical system and the distance of the image.

If the imaging system is diffraction-limited, the size of the image of a point
object is taken to be equal to that of the Airy disk. The incoherent superposition
of the images of two identical point objects is shown in Fig. 4.30 when they are
separated by 2rA, 1.5rA, rA, and 0.5rA, where rA is the radius of the Airy disk. The
distance separating the images is measured from the center of each of the
diffraction patterns, which corresponds to the distance of the point images
according to geometrical optics. The calculations were made taking into
account the same parameters as those shown in Fig. 4.28; i.e., when the distance
between the exit pupil and the Gaussian image plane is sps ¼ 100 mm and the
exit pupil diameter is 2w ¼ 10 mm, with l ¼ 632.8 nm. The profiles of each of
the diffraction patterns are shown in Fig. 4.30(a), the result of the incoherent
superposition of the two diffraction patterns is shown in Fig. 4.30(b), and the
diffractive images of the superposition are shown in Fig. 4.30(c). When the
separation is 2rA or 1.5rA, the images of the two points can be clearly identified.
When the separation is rA, part of the patterns overlap and the two diffractive
images can still be resolved, but when they get closer, at the distance 0.5rA, it is
no longer possible to identify the two point objects. Although there may be
distances between rA and 0.5rA for which the images can still be resolved, the
separation rA is usually established as a resolution criterion. This is the Rayleigh
criterion [1]:

Images of two incoherent point sources are resolved when the center
of the Airy pattern of one of the images falls on the first minimum of
the Airy pattern of the other image.
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Given that rA ¼ 1.22ld/(2w), the size of the aperture diaphragm of the
optical system is of great relevance for a fixed distance; the larger the diameter,
the better the resolution. That is why it is desirable in astronomy to have large
primary mirrors in telescopes. On the other hand, in other cases, such as
lithography, it is possible to modify (decrease) the wavelength of the light
coming from the object to increase the resolution. The same thing happens in
electron microscopy, where the wavelength is of the order of 1 Å. Of course, the
quality of the diffraction pattern depends on the optical aberrations, which
increase with the diameter of the aperture stop. Therefore, increasing the
diameter of the diaphragm does not necessarily improve resolution.

If the two point sources are coherent with each other, the result of the
superposition of the images depends on the initial phase of the light in each of
the sources; e.g., if the phase difference between the two sources is p, then the
distance between the images can be reduced below rA. But if the phase
difference is 0, the separation of the images must be increased above rA in
order to resolve them [6].
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Figure 4.30 Incoherent superposition of the images of two point sources when the images
are separated by 2rA, 1.5rA, rA, and 0.5rA. (a) Profiles of the irradiance of each image,
(b) profiles of the image resulting from the superposition of the two images, and (c) diffraction
patterns of the image of two point sources.
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Visual acuity
In visual optics (optometry and ophthalmology), instead of using the concept of
resolution as explained above, the term visual acuity is used. Although in practice
these two concepts are equivalent, a standard for the human eye has been
established that determines the conditions in which a person is said to have good
visual acuity. If at a distance of 20 feet (�6 m) a person can resolve two separate
lines 10 of arc, that person is said to have 20/20 visual acuity (emmetropic eye).

Following the Rayleigh criterion, the angular resolution limit is given by

ðDuÞmin ¼
rA
sps

¼ 1.22
l

2w
: (4.72)

For the emmetropic eye, the resolution limit will be (Du)min_ojo ¼ 10.
Taking 540 nm as the value of the wavelength in the center of the visible
spectrum, the diameter of the pupil of the eye for which the value of
the resolution limit is obtained will be 2w ¼ 2.3 mm. If we consider the
Gullstrand–Emsley schematic eye (Fig. 1.68), where f 0 ¼ 22.05 (�sps), the size
of a point source in the retina would be a circular spot of 12.8 mm in diameter.

4.5.3 Image of an extended object

An object can be considered as an infinite set of points. From the discussion in
the previous section, we already know how the image of a point object is
formed; this is the PSF given by Eq. (4.71). The generalization to a set of
points is not immediate but rather depends on the degree of coherence of the
illumination of the object. For example, for the incoherent case, the image is
given by

I iðx0Þ ¼ Ioðx0Þ ∗ PSF , (4.73)

where Io(x0) represents the Gaussian image, PSF is the diffractive point spread
function [Eq. (4.71)], and the symbol � is the operation of convolution. This
means that every point in the Gaussian image is affected by the PSF of the
system in the same way.�

For coherent lighting, the situation is more complex because the
convolution of the Gaussian image must be performed with a function that
depends on the optical system (pupil geometry and optical aberrations) and
the characteristics of the object (spatial frequency content). In other words, if
the object is changed (keeping the same optical system), the function changes
[10,11]. A similar situation occurs with partially coherent light. A generaliza-
tion of the partially coherent light imaging process can be seen in Mejía and
Suárez [12].

�This is valid only in the paraxial region. It should be noted that for larger fields of view the PSF
varies with angle; e.g., the coma aberration increases as the chief ray increases its inclination.
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4.6 Diffraction Gratings

A diffraction grating consists of a large number of identical elements that
diffract light. These elements can be apertures in an opaque screen, steps or
grooves in a substrate, or even an interference pattern of straight parallel
fringes etched in amplitude or phase into a photosensitive material. The
position of the irradiance maxima produced by diffraction gratings is a
function of wavelength; thus, diffraction gratings find great application in the
spectral measurement of the wavelength of light.

In this section, a basic configuration of diffraction gratings is analyzed,
consisting of an array of N rectangular openings of width b and length c
separated from each other by a distance a (> b), as shown in Fig. 4.31.
Assuming that b≪ c, it is sufficient to analyze the diffraction pattern in one
dimension along the aperture distribution (axis x in Fig. 4.31). The distance at
which the diffraction pattern produced by diffraction gratings is usually
observed is such that d≫Na; thus, the observed diffraction pattern
corresponds to Fraunhofer diffraction.

In the one-dimensional case, the profile of each of the apertures can be
described by the function rect( ), which is introduced in Section 4.3.3. On the
other hand, the interference of N point sources [Fig. 3.47(b)] is described in
Section 3.6. The interference of N sources with rectangular geometry is
equivalent to the diffraction of the rectangular apertures array. By illuminating
the set of apertures with a (presumable) plane wave of amplitude E0 in the
orthogonal direction, the optical field at the set of apertures can be written
simply as

EðxÞ ¼ E0rect
	x
b



∗
XN
j¼1

dðx� jaÞ, (4.74)

where d(x� ja) determines the position of the jth aperture; with the
convolution operation, the rectangular shape of the aperture is copied at
each point located at x ¼ ja. The Fraunhofer diffraction would be

A

d

z

x'

y'

x

y

a

Figure 4.31 Array of N identical rectangular apertures.
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Iðx0Þ ¼ E2
0ðϵ0c∕2Þ
l2d2

������
Z̀
�`

�
rect

	x
b



∗
XN
j¼1

dðx� jaÞ
�
e�i2px0x∕lddx

������
2

, (4.75)

which turns out to be

Iðx0Þ ¼ I0

���� sinðpx
0b∕ldÞ

ðpx0b∕ldÞ
����
2
����
XN
j¼1

e�i2px0ðjaÞ∕ld
����
2

: (4.76)

I0 absorbes ðϵ0c∕2ÞðE0∕ldÞ2 and the other constants that come out of the
integral. The sum of the second factor from the right of the equality is solved
in the same way as in Eq. (3.101). The end result is

Iðx0Þ ¼ I0

���� sinðpx
0b∕ldÞ

ðpx0b∕ldÞ
����
2
���� sinðNpx0a∕ldÞ
sinðpx0a∕ldÞ

����
2
: (4.77)

This integral differs from the integral given in Eq. (3.104) in the term
corresponding to the diffraction of a single aperture. Therefore, the diffraction
pattern produced by an array of N identical apertures is equal to the
interference pattern of N point sources (located in the center of the apertures)
modulated by the diffraction pattern of one of the openings.

The diffraction pattern profile for an array of eight identical rectangular
apertures separated by a ¼ 4b is shown in Fig. 4.32. The array is located
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Figure 4.32 Diffraction pattern produced by an array of eight identical rectangular
apertures spaced a ¼ 4b, with b being the width of each aperture. The segmented curve
corresponds to the diffraction pattern of a single aperture.
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symmetrically with respect to the optical axis (axis z in Fig. 4.31). Figure 4.32
includes the diffraction profile (segmented curve) of an aperture as well as the
modulation this produces in the interference pattern generated by eight point
sources located in the center of the apertures. The unit of the horizontal scale is
given as ld/a, i.e., the separation between the principal maxima of the pattern
without interference. On the other hand, at distances ±m0ld/b (m0 ¼ 1,2,3, . . . )
from the center at 0 (optical axis) are the zeros of the diffraction pattern. Because
a ¼ 4b, the principal maximum of the interference pattern located at 4(ld/a)
falls right on the first zero of the diffraction pattern located at ld/b, and
therefore the maximum of the interference is not observed there. In the central
lobe there will be a total of 2(a/b)� 1 principal maxima, and in the side lobes
there will be a total of (a/b)� 1 principal maxima. Principal maxima are at
±mld/a (m ¼ 0,1,2,3, . . . ), with m used to label the maxima or the diffraction
order. Thus, the central maximum will be the zero order of diffraction, the two
maxima next to the central one will be diffraction orders þ1 and �1, and so on.

As N increases, the energy in the secondary maxima decreases
(approaching zero) and the principal maxima are in the form of very sharp
peaks. The peak of order m subtends the angle um with respect to the grating
center (on the optic axis) and is given by

tan um ¼ m
ðld∕aÞ

d
: (4.78)

In the Fraunhofer approximation, the function tan( ) can be changed to the
function sin(); thus, the equation of the diffraction grating that angularly
locates a diffraction order is

ml ¼ a sin um: (4.79)

When the lighting source is polychromatic, at zeroth order there will be a
maximum of the same color as the source, but for m≠ 0, there will be spatially
separated maxima of different colors, e.g., if the source is white light, a
continuous spectrum will be seen for a given m (≠ 0).

If the spectrum of the source consists of two wavelengths, what is the
smallest difference in wavelength that can be resolved in the diffraction
pattern? This problem can be treated similarly to the way spatial resolution of
two-point images is handled in the previous section. Equation (3.112) allows
the separation of the minima between the principal maxima of the interference
pattern of N sources to be determined. The separation between two
consecutive minima will be given by

Dx0 ¼ ld
Na

, (4.80)

which in turn is half the width of the principal maxima. By applying the
Rayleigh criterion, Dx0 would be the minimum separation in x0 between the
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diffraction maxima for two wavelengths l and lþDl for the diffraction order
m. On the other hand, the angular separation between the two maxima can be
calculated as follows: let x0 be the position of the mth order, and then
x0∕d ¼ tan um � sin um; thus,

Dx0

d
¼ Dum cos um: (4.81)

By inserting Eq. 4.80 in Eq. 4.81, the angular separation is equal to

Dum ¼ l

Na cos um
: (4.82)

On the other hand, the angular separation can also be evaluated from
Eq. (4.79). Differentiating,

mDl ¼ aDum cos um, (4.83)

i.e.,

Dum ¼ mDl

a cos um
: (4.84)

The resolving power of the diffraction grating� is defined as

R ¼ l

ðDlÞmin
, (4.85)

where (Dl)min is the difference in wavelength that can be resolved around the
wavelength l. By equating Eqs. (4.82) and (4.84), the resolving power of the
diffraction grating can also be written as

R ¼ Nm; (4.86)

i.e., the resolving power increases with N and the diffraction order m.
In a diffraction grating, the density of diffraction elements (apertures) is

usually in the hundreds or thousands per millimeter. This density is the
parameter that is usually used to characterize the grating, and its value is given
in lines per millimeter. A line is equivalent to a diffracting element. For
example, in an optical store catalog, a 12.5 mm wide diffraction grating has
500 lines/mm. From this information, it can be concluded that N ¼ 6250. If the
grating is completely illuminated with a plane wave, the resolving power of the
order m ¼ 1 would be R ¼ 6250. Thus, for a light signal around l ¼ 540 nm,
two wavelengths can be separated whose difference is (Dl)min ¼ 0.086 nm.

�The resolving power on a diffraction grating is a measure of the ability to spatially separate
two wavelengths.
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If the analysis is done for the second order of diffraction, the wavelength
difference would be (Dl)min ¼ 0.043 nm.

In practice, gratings are designed so that the amount of light in the
diffraction orders can be controlled. In the case of the orthogonally
illuminated planar grating, most of the light is in the zero order, where the
spectrum cannot be resolved. Thus, it would be convenient to have most of the
light in the first or second orders. This can be done, e.g., by etching steep steps
into the surface of a mirror. If the mirror is also concave, it is possible to focus
the different orders of diffraction, which is common in spectrometers. For
an extension to this topic, Diffraction Gratings and Application [13] and
Diffraction Grating Handbook [14] can be consulted.
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