Field Guide to

Optical Lithography

Chris A. Mack

SPIE Field Guides Volume FG06

John E. Greivenkamp, Series Editor

Bellingham, Washington USA

Library of Congress Cataloging-in-Publication Data

Mack, Chris A.
Field guide to optical lithography / Chris A. Mack.
p. cm. -- (SPIE field guides ; FG06)
Includes bibliographical references and index.
1. Integrated circuits--Design and construction. 2. Microlithography.
I. Title. II. Series.

TK7874.M195 2006 621.3815'31--dc22

2005034584

Published by

SPIE—The International Society for Optical Engineering P.O. Box 10 Bellingham, Washington 98227-0010 USA Phone: +1 360 676 3290 Fax: +1 360 647 1445 Email: spie@spie.org Web: http://spie.org

Copyright @ 2006 The Society of Photo-Optical Instrumentation Engineers

All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means without written permission of the publisher.

The content of this book reflects the work and thought of the author. Every effort has been made to publish reliable and accurate information herein, but the publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Printed in the United States of America.

The International Society for Optical Engineering

Welcome to the SPIE Field Guides-a series of publications written directly for the practicing engineer or scientist. Many textbooks and professional reference books cover optical principles and techniques in depth. The aim of the SPIE Field *Guides* is to distill this information, providing readers with a handy desk or briefcase reference that provides basic, essential about optical principles, techniques, information or phenomena, including definitions and descriptions. kev illustrations, application examples, equations. design considerations, and additional resources. A significant effort will be made to provide a consistent notation and style between volumes in the series.

Each SPIE Field Guide addresses a major field of optical science and technology. The concept of these Field Guides is a format-intensive presentation based on figures and equations supplemented by concise explanations. In most cases, this modular approach places a single topic on a page, and provides full coverage of that topic on that page. Highlights, insights and rules of thumb are displayed in sidebars to the main text. The appendices at the end of each Field Guide provide additional information such as related material outside the main scope of the volume, key mathematical relationships and alternative methods. While complete in their coverage, the concise presentation may not be appropriate for those new to the field.

The SPIE Field Guides are intended to be living documents. The modular page-based presentation format allows them to be easily updated and expanded. We are interested in your suggestions for new *Field Guide* topics as well as what material should be added to an individual volume to make these Field Guides more useful to you. Please contact us at **fieldguides@SPIE.org.**

> John E. Greivenkamp, *Series Editor* Optical Sciences Center The University of Arizona

Keep information at your fingertips with all of the titles in the Field Guide Series:

Field Guide to Geometrical Optics, John E. Greivenkamp (FG01)

Field Guide to Atmospheric Optics, Larry C. Andrews (FG02)

Field Guide to Adaptive Optics, Robert K. Tyson & Benjamin W. Frazier (FG03)

Field Guide to Visual and Ophthalmic Optics, Jim Schwiegerling (FG04)

Field Guide to Polarization, Edward Collett (FG05)

Field Guide to Optical Lithography, Chris A. Mack (FG06)

Field Guide to Optical Thin Films, Ronald R. Willey (FG07)

Field Guide to Optical Lithography

The material in this *Field Guide to Optical Lithography* is a distillation of material I have been putting together for the last 20 years or so. I have been subjecting students in my graduate-level lithography course at the University of Texas at Austin to my disorganized notes for 14 years, and have published some similar material in my first book Inside PROLITH and my column in Microlithography World called "The Lithography Expert." However, the challenge here was not in creating the material for the book but rather deciding what material to leave out and how to make what remained as condensed as possible. As people who know me can attest. I am rarely lacking for words and brevity is not my strong suit (I am a lousy poet). I hope, however, that the kind reader will forgive me when one page on a topic of interest does not satisfy—it is an unavoidable consequence of the Field Guide format, and my own limitations as an overly verbose writer.

I thank Jeff Byers, William Howard, and Rob Jones for their help in reviewing the draft manuscript of this Field Guide. My many mistakes kept them quite busy.

This Field Guide is dedicated to my wife Susan and our daughter Sarah, who have taught me that there is indeed something more fun in this world than lithography.

Chris Mack chris@lithoguru.com

Table of Contents

Symbol Glossary	x
The Lithography Process	
Definition: Semiconductor Lithography	1
Overview of the Lithography Process	2
Processing: Substrate Preparation	3
Processing: Photoresist Spin Coating	4
Processing: Post-Apply Bake	5
Processing: Alignment and Exposure	6
Processing: Post-Exposure Bake	7
Processing: Development	8
Processing: Pattern Transfer	9
Image Formation	11
Maxwell's Equations: The Mathematics of Light	11
The Plane Wave and the Phasor	12
Basic Imaging Theory	13
Diffraction	14
Fraunhofer Diffraction: Examples	15
The Numerical Aperture	16
Fourier Optics	17
Spatial Coherence and Oblique Illumination	18
Partial Coherence	19
Aberrations	20
Aberrations: The Zernike Polynomial	21
Aberrations: Zernike Examples	22
Chromatic Aberration	23
Horizontal-Vertical (H-V) Bias	24
Defocus	25
Flare	26
Vector Nature of Light	27
Polarization	29
The Optical Invariant	30
Immersion Lithography: Resolution	31
Immersion Lithography: Depth of Focus	32
Imaging into a Photoresist	33
Standing Waves: Definition	33
Standing Waves: Mathematics	34
Fresnel Reflectivity	35
Swing Curves	36

Table of Contents

Top Antireflective Coatings (TARC)	37
Bottom Antireflective Coatings (BARC)	38
Photoresist Chemistry	39
Novolak/DNQ Resists	39
Chemically Amplified Resists	40
Absorption of Light	41
Photoresist Bleaching and the Dill Parameters	42
Exposure Kinetics	43
Measuring the Dill ABC Parameters	44
Chemically Amplified Resist Kinetics	45
Diffusion in Chemically Amplified Resists	46
Acid Loss Mechanisms	47
Post-Apply Bake Effects	48
Photoresist Development Kinetics	49
Surface Inhibition	50
Developer Temperature and Concentration	51
The Development Path	52
Lithography Control and Optimization	53
NILS: The Normalized Image Log-Slope	53
NILS: The Log-Slope Defocus Curve	54
NILS: Image Optimization	55
NILS: Exposure Optimization	56
NILS: PEB Optimization	57
NILS: Development Optimization	59
NILS: Total Process Optimization	60
Defining Photoresist Linewidth	61
Critical Dimension Control	62
Critical Dimension Control: Effect on Devices	64
Overlay Control	65
Line Edge Roughness	66
Metrology: Critical Dimension	67
Metrology: Overlay	68
The Process Window	69
Depth of Focus	71
Resolution	73
Rayleigh Criteria: Resolution	74
Rayleigh Criteria: Depth of Focus	75
Mask Error Enhancement Factor (MEEF)	76

Table of Contents

Resolution Enhancement Technologies	77
Dhogo Shift Mogleg	70
rnase-Sinit Masks	10
Phase-Shift Masks: Alternating	79
Phase-Shift Masks: Attenuated	80
Optical Proximity Effects	81
Optical Proximity Correction (OPC)	82
Off-Axis Illumination	83
Lithography Simulation	85
Moore's Law	86
Next-Generation Lithography (NGL)	87
Equation Summary	88
Glossary	92
Index	117

Symbol Glossary

a	Dose-dependent curvature of the CD-through-
	focus curve; molar absorption coefficient; constant
	in the Mack 4-parameter dissolution rate model
A	Electric field amplitude; bleachable absorption co-
	efficient
A_r	Arrhenius coefficient
В	Magnetic induction, non-bleachable absorption co-
	efficient
С	Speed of light; concentration
C	Photoresist exposure rate constant
CD	Critical dimension
d	Shifter thickness for a phase-shift mask
D	Electric displacement, photoresist thickness; ARC
	thickness
D_H	Diffusivity of acid in photoresist
DOF	Depth of focus
E	Electric field, incident exposure dose
E_a	Activation energy
E_0	Dose to clear
E_z	Exposure dose at depth z in the resist
f_x	Spatial frequency
G_0	Initial PAG concentration
h	Planck's constant; normalized acid concentration
	in a chemically amplified resist
H	Magnetic field; acid concentration in a chemically
	amplified resist
Ι	Intensity of light, aerial image
J	Electric current density
k	Propagation constant, wavenumber; chemical re-
	action rate constant
k_1	Normalized Rayleigh resolution
k_2	Normalized Rayleigh depth of focus
L_{eff}	Effective gate length
т	Magnification; normalized unreacted site concen-
	tration in conventional or chemically amplified re-
	sists
m_{TH}	Threshold inhibitor concentration
M	Photoactive compound concentration, unreacted
	site concentration

Symbol Glossary (cont'd)

11	Taitist DAC some some traction
M_0	Initial PAC concentration
n	Index of refraction; dissolution selectivity parame-
	ter; diffraction order number
n_j	Complex index of refraction of layer <i>j</i>
N_A	Avogadro's number
NA	Numerical aperture
NILS	Normalized image log-slope
OPD	Optical path difference
р	Pitch
Р	Pupil function; photoresist exposure products;
	a point in <i>x-y-z</i> space
r	Photoresist dissolution rate
$r_{\rm max}$	Dissolution rate of fully exposed positive resist
$r_{ m min}$	Dissolution rate of unexposed positive resist
R	Resin concentration; resolution; relative pupil ra-
	dius position; intensity reflectivity; universal gas
	constant; photoresist dissolution rate
S	Solvent concentration
t	Time, exposure time
t'	Bake time
t_m	Mask transmittance function
T	Transmittance: absolute temperature
T_m	Fourier transform of the mask transmittance
- 111	function (diffraction pattern amplitude)
U	Phasor representation of the sinusoidal e-field
v	Process variable
w	Slit width, mask feature width, nominal linewidth
x	Normalized concentration of reacted sites in a
	chemically amplified resist: horizontal position
X	Concentration of reacted sites in a chemically am-
	plified resist
Z	Zernike polynomial coefficient
-	
α	Maximum angle of diffraction captured by a lens;
	absorption coefficient
δ	Dirac delta function; defocus distance
ε	Dielectric constant
θ	Angle; polar angle of pupil position; photoresist
	sidewall angle

Symbol Glossary (cont'd)

γ	Photoresist constrast
κ _i	Imaginary portion of complex refractive index
λ	Wavelength (in vacuum)
μ	Magnetic permeability
ρ	Electric charge density
ρ_{ii}	Reflection coefficient between films i and j
σ	Conductivity; partial coherence factor; diffusion
	length
τ_{ii}	Transmission coefficient between films i and j
Φ	Phase of an electric field; fraction of absorbed pho-
	tons producing a chemical change (quantum yield)
ω	Frequency of monochromatic light; photoresist
	spin coat speed