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Introduction 
 

Optomechanical engineering is the application of mechanical engineering 
principles to design, fabricate, assemble, test, and deploy an optical system that 
meets performance requirements in the service environment. The challenge of 
optomechanical engineering lies in preserving the position, shape, and optical 
properties of the optical elements with specified tolerances typically measured in 
microns, microradians, and fractions of a wavelength. 

Optomechanical analyses are an integral part of the optomechanical 
engineering discipline to simulate the mechanical behavior and performance of 
the optical system. These analyses include a broad range of thermal, structural, 
and mechanical analyses that support the design of optical mounts, metering 
structures, mechanisms, test fixtures, and more. This includes predicting the 
performance, dimensional stability, and structural integrity of optomechanical 
designs subject to internal mechanical loads and often harsh environmental 
disturbance, including inertial, pressure, thermal, and dynamic disturbance. 
Designs must provide for positive margin against failure modes that include 
yielding, buckling, ultimate failure, fatigue, and fracture.  

Analysis starts with first-order estimates using analytical solutions based on 
classic elasticity and heat transfer theory. These closed-form solutions provide 
rapid estimates of structural and thermal behavior and an understanding of the 
governing parameters controlling the response. Finite element analysis (FEA) 
methods are widely used to provide more-accurate and higher-fidelity 
mechanical response predictions. Models of varying complexity may be 
developed by discretizing the structure into one-, two-, or three-dimensional 
elements to meet both efficiency and accuracy requirements. Thermal analysis 
models use both finite element methods and finite difference techniques to 
predict the thermal behavior of optical systems. Models are developed to predict 
thermal response quantities such as temperature distributions and heat fluxes that 
account for conduction, convection, and radiation modes of heat transfer. 

Integrated optomechanical analysis involves the coupling of the structural, 
thermal, and optical simulation tools in a multi-disciplinary process commonly 
referred to as structural-thermal-optical performance or STOP analyses. The 
benefit of performing integrated analyses is the ability to provide insight into the 
interdisciplinary design relationships of thermal and structural designs and their 
impact through a deterministic assessment of optical performance. Engineering 
decisions during both the conceptual and execution stages of a program can then 
be based on high-fidelity performance simulations that are combined with 
program performance and reliability requirements, risk tolerance, schedule, and 
cost objectives to optimize the overall system design.  

Integrated optomechanical analyses benefit optical system concept 
development by providing a rigorous and quantitative evaluation to explore the 
mission and design-trade spaces. The benefits of a wide variety of optical design 
configurations can be evaluated to account for factors such as the mechanical 
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design, pointing control and stability, thermal management, and materials 
selection for architecture down select.  

During the execution stages of a program, integrated optomechanical 
analyses capture complex environmental conditions and concurrent disturbances. 
These analyses can be performed to compute performance as a function of time 
such as during operational scenarios that provide insights beyond which can be 
captured by a roll-up of static error-budget contributions. The simulations can be 
used in conjunction with numerical algorithms to optimize the design, serve as a 
predictive test bed for system-performance predictions, or provide for diagnostic 
evaluations of systems underperforming in the field.  

The development and use of integrated optomechanical analyses has 
significantly increased over the past decade to support the ever-increasing 
challenges in optical system design, leveraging advances in computational 
resources. Government organizations have employed integrated tools in support 
of large-scale programs and advanced technologies, including space- and ground-
based telescopes and high-powered beam systems. In addition, commercial 
organizations have sought to improve their effectiveness and efficiency in the 
design of optical systems through the application and development of custom-
integrated optomechanical software tools. A variety of commercial software has 
been developed to provide an integrated analysis capability to the broader 
community.   

Several approaches have been taken to integrate or couple the thermal, 
structural, and optical modeling tools. The “bucket brigade” approach relies on 
scripts to format and pass data between software tools. The “wrapper” approach 
uses custom-developed software to automate the data-sharing process. Fully 
integrated software tools offer the ability to model each discipline in a single, 
stand-alone modeling environment. Each of these approaches has its advantages 
and disadvantages, and one may be more appropriate over another for a given 
application or organization.  

An essential piece of successful optomechanical analyses is the verification 
and validation of the models. Verification may be considered as the assessment 
of the numerical correctness of the model, i.e., ensuring that the models and the 
software do not have errors. Analytical solutions, stick models, check-out runs, 
and crawl-walk-run strategies are all verification methods to help ensure that a 
model is sound.  

Validation may be considered as the assessment of how well the model 
represents the physical behavior of the hardware. Model validation via testing is 
performed at various stages of a design cycle. Early testing at the component and 
subassembly level can be used to validate basic physics and model uncertainties. 
System-level validation supports requirements verification and provides 
confidence in analyses that are used to extrapolate performance outside of a 
limited test domain.  

This book serves as a compilation of many of the analyses and integrated 
methods that the authors have employed and developed in their collective 
experience supporting the development of optical systems. There are 14 chapters 
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that address key aspects of optomechanical analysis, including the detailed use of 
FEA methods and techniques to integrate and couple the thermal, structural, and 
optical analysis tools. There are additional disciplines involved in optical system 
engineering that may also be incorporated in a broader integrated analysis 
process that includes controls, radiometry, stray light, and aerodynamics, whose 
discussions are beyond the scope of this text. 

Chapter 1 starts with an introduction to mechanical analysis using finite 
element methods and considerations in the integration of thermal, structural, and 
optical analyses. Included is a review of mechanical engineering basics, an 
overview of materials commonly used in optical systems, and finite element 
theory. A section on FEA modeling checks is presented that underscores the 
importance of verifying models and analyses.  

Chapter 2 presents the fundamentals of optics, common optical performance 
metrics, and image formation. Included are discussions on polarized light, 
diffraction, conic surfaces, the impact of mechanical obscurations on optical 
performance, and optical system error budgets. This chapter serves as the basis of 
how mechanical perturbations, including optical surface errors and index of 
refraction changes due to temperature and stress, affect the performance of 
optical systems.  

Chapter 3 provides an overview of Zernike polynomials and their utility in 
representing discrete data such as finite element results and as a means of data 
transfer from the thermal and structural tools into optical design software. Other 
relevant polynomial forms are also discussed.  

Chapter 4 presents optical-surface-error analyses and methods to predict 
optical performance that account for FEA-derived optical surface errors. Two 
methods using optical sensitivity coefficients are discussed to predict wavefront 
error as a function of both rigid-body errors and higher-order elastic surface 
deformations. Use of optical sensitivity coefficients are beneficial early in the 
design stages for “closed-loop” analyses that allow mechanical engineers to 
predict optical performance as a function of mechanical design variables and 
account for the effects of environmental disturbances. The integration of FEA-
derived optical surface errors within commercially available optical design 
software enables the development of a “perturbed” optical model, from which the 
full range of optical simulations and performance evaluations may be exercised 
to assess thermal and structural effects.  

Chapters 5 and 6 discuss finite element model construction and analysis 
methods for predicting displacements of optical elements and support structures. 
Specific topics include modeling methods for individual optical components, 
various techniques to model lightweight mirrors, methods to create powered 
optical surfaces, use of symmetry for efficient modeling practices, and methods 
to analyze the effects of a variety of surface coating effects. Chapter 6 introduces 
kinematic mounting principles and focuses on the modeling of optical mounts, 
adhesive bonds, flexures, test supports, and the use of Monte Carlo methods to 
evaluate the effects of optical mount misalignments.  
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For many of the topics discussed in Chapters 5 and 6, analysis and modeling 
approaches range from first-order to detailed, high-fidelity simulations. The 
engineer may adopt an analysis strategy where the model fidelity maps to design 
maturity and requirements accuracy. Low-fidelity models are performed early in 
the design stages for the “80% solution.” These models are easily modified as the 
design evolves to support design trades and sensitivity studies. High-fidelity 
models that are more time consuming to build, modify, run, and post-process can 
be developed when the design has matured to provide high accuracy.  

Chapter 7 provides an overview of structural dynamics, including normal 
modes, damping, harmonic, random, vibro-acoustic, and shock analyses. 
Analysis techniques are presented to predict pointing errors and LOS jitter using 
FEA and optical sensitivity coefficients, including the subsequent impact on 
optical system performance. Strategies and techniques to reduce the LOS jitter, 
including the identification of critical modes in the mechanical structure, the use 
of passive and active stabilization techniques, and the impact of sensor 
integration time, are included in the discussion. For large-aperture optical 
systems, methods are presented to predict optical surface distortions and 
wavefront error due to dynamic excitation of the optical surfaces. 

Chapter 8 focuses on mechanical stress. Stress needs to be managed for 
several reasons in an optical system including structural integrity where 
excessive stress can lead to permanent misalignments or structural failure of 
optical elements, mounts, and support structures. An introduction to stress 
analysis using FEA is presented along with methods to predict the design 
strength of optical glass. The latter half of Chapter 8 describes the phenomenon 
of stress birefringence and presents analysis techniques to account for the effects 
of mechanical stress on optical performance. First-order estimates are provided 
using the photo-elastic equations along with more involved methods to compute 
optical performance metrics such as retardance and polarization errors due to 
complex mechanical stress states.  

Chapter 9 presents optothermal analysis methods, including thermo-elastic 
and thermo-optic modeling techniques. This class of analyses helps drive thermal 
management strategies used to preserve optical-element surface errors and index-
of-refraction changes in the presence of temperature changes. Methods to 
compute externally derived OPD maps using interferogram files and phase 
surfaces along with techniques to map temperatures between thermal and 
structural models that have varying mesh densities are presented. This latter 
process is a critical step in the STOP modeling effort and is often a technical 
challenge for program teams. Additional topics include a discussion on bulk 
volumetric absorption and the use of thermal analysis software to perform 
analogous analyses, including moisture effects and adhesive curing. 

Chapter 10 provides an introduction to the analysis of adaptive optics. 
Adaptive optic concepts and definitions, including correctability and influence 
functions, are discussed along with the mathematics to compute actuator motion 
to minimize optical surface deformations. Practical details on adaptive optics are 
discussed, including predicting residual surface errors due to actuator failure, 
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stroke limits, resolution, and tolerancing are also presented. Examples are 
provided on the design of adaptive optics and actuator placement using design 
optimization methods. Additional topics in the chapter include stress-optic 
polishing and the use of adaptive tools to solve an analogous class of problems. 
This latter topic utilizes the same mathematical process for determining actuator 
inputs to predict the combination of a set of predefined disturbances to best 
match any arbitrary surface error. Examples are presented that solve for the 
combination of mount distortions and CTE variations to match interferometric 
test data.  

Chapter 11 discusses structural optimization theory and applications. 
Numerical optimization consists of powerful techniques that enable a more-
efficient evaluation of a broad design space beyond which may be evaluated via 
parametric design trades. The chapter discusses the use of optical performance 
metrics in structural optimization simulations and also provides a general 
discussion on multidisciplinary optimization.  

Chapter 12 presents the use of FEA substructuring techniques for optical 
systems. The use of substructuring or superelements provides many benefits in 
detailed FEA simulations to provide for a more rapid turnaround of results for 
greater insight and impact. Superelement theory is presented along with common 
types of superelements. Examples of modeling kinematic mounts and segmented 
optical systems using superelements are presented. 

The final two chapters present examples of the optomechanical and 
integrated analyses discussed in the previous chapters. Chapter 13 addresses a 
variety of analyses on a reflective telescope, and Chapter 14 details the integrated 
optomechanical analysis of two lens assemblies.  
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