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Preface

In the early years of aviation, guidance was provided by mechanical gyros
based on spinning wheels or disks. According to the conservation of angular
momentum, the orientation of the spinning object axis is unaffected by tilting
or rotation of the support on which the spinning object is mounted. The
spinning top therefore defines a direction in space that is used as a reference.
By the end of the 1930s, the performance of mechanical gyros had improved
considerably, and their use was widespread in commercial and military
aircraft. World War II resulted in the mass production of mechanical gyros on
an unprecedented scale, with increased accuracy and resolution. In subsequent
years, the boom in commercial air travel and military requirements for
improved aviation significantly expanded the marketplace for inertial
navigation systems based on these gyroscopes.

The implementation of navigation systems for aerospace platforms
remained an important issue as mechanical gyros were responsible for nearly
50% of aircraft departure delays. Thus, the demonstration of the ring laser
gyro shortly after the invention of the laser became an area of extreme interest
for both military and commercial aviation. The US Department of Defense
spent hundreds of millions of dollars to support research and development,
followed by funds to support the establishment of manufacturing lines at US
companies in the 1960s and 1970s. These efforts led to the introduction of ring
laser gyro systems onto military and commercial aerospace platforms in the
late 1970 and early 1980s.

In the 1970s, the fabrication of the first low-loss single-mode optical fiber
occurred at Corning. Shortly thereafter, Dr. Victor Vali and Professor
Richard Shorthill at the University of Utah constructed and operated the first
open-loop fiber optic gyro. Their idea was simple: construct a Sagnac
interferometer with a multi-turn fiber coil, which increases the total area
subtended by the coil in proportion to the number of turns and enhances the
Sagnac phase shift by the same ratio. This opened up the possibility of moving
away from the severe requirement associated with manufacturing ring laser
gyros in ultra-clean environments with ultra-pure gases, very-low-expansion-
coefficient ceramics, and very-low-backscatter mirrors.

Xi
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An immediate issue with the fiber optic gyro involved the need for eight
orders of magnitude of dynamic range for the navigation of aircraft and
extreme linearity. The open-loop fiber optic gyro at the time seemed capable
of a dynamic range of three or four orders of magnitude with sufficient levels
of linearity. The solution introduced by Cahill and Udd at McDonnell
Douglas Astronautics Company used a closed-loop fiber gyro approach that
solved in principle the dynamic range and linearity issue with performance
and underlying equations similar to those of the ring laser gyro. Like in other
closed-loop systems, the output signal of the gyro, which is proportional to the
rotation rate, is fed back to the phase modulator in the Sagnac loop in order
to cancel the output signal. The readout of the gyro is then the feedback
voltage applied to the modulator, which is also proportional to the rotation
rate. The benefits of the closed-loop gyro stem from the fact that the output
always equals or is very near zero, no matter how large the rotation rate is, up
to a very large value imposed mostly by the large voltage dynamic range of
the feedback circuit. The dynamic range is therefore greatly increased, and its
linearity is excellent because the signal never deviates far from zero. This
solution offered the potential for an all-solid-state rotation sensor with a lower
overall cost.

Realizing the potential of the fiber optic gyro, like the ring laser gyro, has
been a long and expensive process. Many researchers have made important
enabling contributions, and many more engineers have worked diligently for
many years on solving the problems associated with realizing viable inertial
navigation and guidance at affordable costs. This book contains contributions
from key engineers and scientists who have worked from as early as 1977 to
the present on manufacturing high-performance fiber gyros for many
applications.

In this book, Eric Udd provides a chapter that overviews early work on
developing open-loop and closed-loop fiber gyros at McDonnell Douglas.
These efforts resulted in the first solid-state fiber optic gyros and were highly
directed toward demonstrating feasibility for a range of aerospace and oil and
gas applications. In parallel, Professor John Shaw at Stanford University
obtained funding from Litton Guidance and Control that fueled many
successful years of research to improve the performance of fiber optic gyros.
In particular, his research group pioneered a series of novel all-fiber
components in its early years—especially fiber couplers with extremely low
loss and backscattering, and a fiber polarizer with an exceedingly high
extinction ratio—that were implemented to eliminate the bulk components
used in McDonnell Douglas early prototypes and produced gyros with record-
breaking rotation sensitivities. Many of Professor Shaw’s graduate students
went on to make major contributions to fiber optic gyro technology, including
Hervé Arditty and Hervé Lefévre (at Thomson CSF, then Photonetics, and
now IxBlue), George Pavlath (at Litton Guidance and Control, now
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Northrop Grumman), Ralph Bergh (who has founded and operated a series of
companies supporting fiber gyros), and Michel Digonnet, who succeeded
Professor Shaw at the Edward L. Ginzton Laboratory at Stanford.

Several people from the Stanford group have contributed chapters to this
book. Hervé Lefévre provides a “potpourri of fortunate events” that serves as
a broad overview of the history and fundamental physics of the fiber optic
gyroscope, and the events that turned out just right for fiber optic gyros. With
Hervé Arditty, Hervé Lefévre promoted the “minimum configuration” fiber
optic gyro, i.e., the configuration that comprises the minimum number of
components required to enforce reciprocity, a key property that was
ultimately instrumental in the remarkable overall performance of the fiber
optic gyroscope. These components were eventually implemented in an
integrated-optic chip fabricated in lithium niobate, a technology that was also
critical to the gyroscope’s success. These insights, as well as the early
development of effective phase modulation techniques, were among the key
contributions they both made to fiber optic gyro technology. George Pavlath
of Northrop Grumman overviews the state of the art of closed-loop fiber optic
gyros and their applications. In the early 1980s, Litton Guidance and Control
selected him to lead their fiber optic gyro program, and over the decades he
has guided that group to many important achievements, including the
implementation of fiber optic gyros on major aerospace platforms. Most
notably, Litton Guidance and Control provided the compact closed-loop fiber
gyros that navigated all of the Mars rovers, including Spirit, Opportunity, and
Curiosity. Pavlath’s chapter outlines the achievements of Litton Guidance and
Control and Northrop Grumman. Ralph Bergh’s chapter outlines a recently
improved signal-processing approach for optimizing the closed-loop fiber
gyro operation. The work at the Edward L. Ginzton Laboratory that
Professor Shaw started continues under the direction of Professor Michel
Digonnet. The chapter by Digonnet and his former graduate student Dr.
Jacob Chamoun describes some of the latest efforts toward interrogating the
fiber gyro with a coherent light source, instead of the conventional broadband
light source, in order to produce the next generation of fiber gyros with
improved scale-factor stability and reduced noise.

In the late 1970s, Professor Shaoul Ezekial at MIT demonstrated a
different type of optical rotation sensor: the passive ring resonator. With
James Davies, he later independently demonstrated a closed-loop fiber optic
gyro similar to that of McDonnell Douglas. One of his students, Glen
Sanders, joined Honeywell in Minneapolis in 1983. Honeywell was a leader in
ring laser gyros but initiated research efforts in fiber optic gyros and resonant
fiber optic gyros in the mid-1980s. This position increased in October 1986
when Honeywell acquired Sperry and their active fiber gyro program in
Phoenix. Glen Sanders joined the Phoenix group in the late 1980s and became
a leader of the fiber gyro program there. He was joined by key co-developer
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Lee Strandjord and, later, by Steve Sanders in 1998. They continued to
develop fiber optic gyros, particularly for high-performance applications, and
they have demonstrated state-of-the-art approaches in RFOGs. They, and
other Honeywell co-authors, summarize the history and status of this work in
their chapter.

Also in the early 1980s, Richard Dyott of Andrew Corporation led his
group in developing D-shaped optical fiber with an elliptical core. The D
shape enabled the fabrication of fiber polarizers and polarization-preserving
optical fibers. Andrew Corporation made satellite dishes, and their focus was
on stabilizing these units. KVH Industries, Inc. acquired the fiber gyro
capabilities of Andrew Corporation and improved the linearity and range of
the open-loop fiber gyro. The result has been successful at producing units for
the middle range of the rotation sensor market. Jay Napoli of KVH outlines
the state of the art of these developments in his chapter.

Other companies continue to enter the fiber gyro marketplace as key
patents have expired and new methods for enhanced performance are
developed. The chapter by Al Cielo Inertial Solutions, Ltd provides an
example of this type of company.

One of the keys to success of the fiber optic gyro are components and
associated packaging that meet stringent requirements to reduce error sources.
Examples of these components include polarization-maintaining optical fiber
with thin coatings suitable for winding, polarizing optical fiber packaged for
maximum and stable extinction ratios, and fiber couplers. Overall, the
properties of polarization-maintaining fibers, fiber polarizers, and fiber
couplers have enabled reductions in the fiber gyro bias drift by many orders
of magnitude. Chris Emslie describes the specialty optical fibers and
components that have played a significant role in fiber gyro development,
and offers examples produced by the University of Southampton, Fibercore,
and other key players.

In a fiber optic gyro, the configuration and packaging of the fiber coil is
particularly important to reduce the errors induced by temperature variations,
acoustic waves, and strains, as required to achieve high performance. Steve
Yao at General Photonics offers a close look at quadrupole fiber-coil
windings and the associated test procedures that are used to meet this goal.

The last chapter of the book is a personal history of the fiber gyro by Eric
Udd. It provides a glimpse of some of the motivations, events, and people
associated with the fiber gyro development and its introduction as an
important product for many applications from 1977 to the present.

This book arose from efforts to form a special session to commemorate
the 40" anniversary of the first hardware demonstration of the fiber gyro in
1976 by Vali and Shorthill. The invited expert papers published in the
conference proceedings were extended and new material added in an effort to
present both a historical perspective and a more in-depth representation of the
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existing state of the art. New chapters were prepared that extend the range of
topics covered. We would like to thank the contributors to this book for their
efforts over more than four decades to convert the dream of high-performance
solid-state rotation sensors into reality.

Eric Udd
Columbia Gorge Research, LLC

Michel Digonnet
Stanford University
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