# Field Guide to

# Laser Cooling Methods

Galina Nemova

SPIE Field Guides Volume FG45

John E. Greivenkamp, Series Editor

SPIE PRESS Bellingham, Washington USA Library of Congress Cataloging-in-Publication Data

Names: Nemova, Galina, author.

Title: Field guide to laser cooling methods / Galina Nemova.

Description: Bellingham, Washington : SPIE, [2019] | Series: SPIE field guides ; volume FG45 | Includes bibliographical references and index.

Identifiers: LCCN 2019025382 (print) | LCCN 2019025383 (ebook) | ISBN 9781510630574 (spiral bound) | ISBN 9781510630581 (pdf) | ISBN 9781510630598 (epub) | ISBN 9781510630604 (kindle edition)

Subjects: LCSH: Laser cooling.

Classification: LCC QC689.5.L35 N46 2019 (print) | LCC QC689.5.L35 (ebook) | DDC 621.5/6–dc23

LC record available at https://lccn.loc.gov/2019025382

LC ebook record available at https://lccn.loc.gov/2019025383

Published by

SPIE P.O. Box 10 Bellingham, Washington 98227-0010 USA Phone: 360.676.3290 Fax: 360.647.1445 Email: Books@spie.org Web: www.spie.org

Copyright © 2019 Society of Photo-Optical Instrumentation Engineers (SPIE)

All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means without written permission of the publisher.

The content of this book reflects the thought of the author. Every effort has been made to publish reliable and accurate information herein, but the publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Printed in the United States of America. First printing.

For updates to this book, visit http://spie.org and type "FG45" in the search field.



#### Introduction to the Series

Welcome to the SPIE Field Guides—a series of publications written directly for the practicing engineer or scientist. Many textbooks and professional reference books cover optical principles and techniques in depth. The aim of the SPIE Field Guides is to distill this information, providing readers with a handy desk or briefcase reference that provides basic, essential information about optical principles, techniques, or phenomena, including definitions and descriptions, key equations, illustrations, application examples, design considerations, and additional resources. A significant effort will be made to provide a consistent notation and style between volumes in the series.

Each SPIE Field Guide addresses a major field of optical science and technology. The concept of these Field Guides is a format-intensive presentation based on figures and equations supplemented by concise explanations. In most cases, this modular approach places a single topic on a page, and provides full coverage of that topic on that page. Highlights, insights, and rules of thumb are displayed in sidebars to the main text. The appendices at the end of each Field Guide provide additional information such as related material outside the main scope of the volume, key mathematical relationships, and alternative methods. While complete in their coverage, the concise presentation may not be appropriate for those new to the field.

The SPIE Field Guides are intended to be living documents. The modular page-based presentation format allows them to be updated and expanded. We are interested in your suggestions for new Field Guide topics as well as what material should be added to an individual volume to make these Field Guides more useful to you. Please contact us at fieldguides@SPIE.org.

> John E. Greivenkamp, *Series Editor* College of Optical Sciences The University of Arizona

Keep information at your fingertips with these other *SPIE Field Guides*:

- Crystal Growth, Ashok K. Batra and Mohan D. Aggarwal (Vol. FG38)
- Laser Pulse Generation, Rüdiger Paschotta (Vol. FG14)
- Lasers, Rüdiger Paschotta (FG12)
- Nonlinear Optics, Peter E. Powers (Vol. FG29)
- Probability, Random Processes, and Random Data Analysis, Larry C. Andrews and Ronald L. Phillips (Vol. FG22)
- Quantum Mechanics, Brian P. Anderson (Vol. FG44)
- Radiometry, Barbara G. Grant (Vol. FG23)
- Solid State Physics, Marek Wartak and Ching-Yao Fong (Vol. FG43)
- Spectroscopy, David W. Ball (Vol. FG08)

Other related SPIE Press books:

- How to Set Up a Laser Lab, Ken L. Barat (Vol. SL02)
- Laser Beam Quality Metrics, T. Sean Ross (Vol. TT96)
- Laser Plasma Physics: Forces and the Nonlinearity Principle, Heinrich Hora (Vol. PM250)
- Laser Safety in the Lab, Ken L. Barat (Vol. PM212)
- Laser Systems Engineering, Keith J. Kasunic (Vol. PM271)
- Solid State Lasers: Tunable Sources and Passive Q-Switching Elements, Yehoshua Y. Kalisky (Vol. PM243)
- The Physics and Engineering of Solid State Lasers, Yehoshua Y. Kalisky (Vol. TT71)
- Powering Laser Diode Systems, Grigoriy A. Trestman (Vol. TT112)

| Preface                                                     | xi   |
|-------------------------------------------------------------|------|
| Glossary                                                    | xiii |
| Introduction                                                | 1    |
| Brief History of Laser Cooling                              | 1    |
| Laser Cooling and Trapping of Atoms and Ions                | 2    |
| Methods of Laser Cooling                                    | 3    |
| Potential and Kinetic Energy                                | 4    |
| Conservation Laws                                           | 5    |
| Gases, Liquids, Solids, and Plasma                          | 6    |
| The Zeroth Law of Thermodynamics                            | 7    |
| Temperature and Thermometers                                | 8    |
| Maxwell–Boltzmann Distribution                              | 9    |
| Thermal Physics                                             | 10   |
| Matter and Light                                            | 11   |
| Angular Momentum of Atoms                                   | 11   |
| Multi-electron Atoms                                        | 12   |
| Density Matrix                                              | 13   |
| Interaction of Light with a Two-Energy-Level<br>System      | 14   |
| Rabi Frequency                                              | 15   |
| Dressed Atom                                                | 16   |
| The Doppler Effect                                          | 17   |
| The Stark Effect                                            | 18   |
| The Zeeman Effect                                           | 19   |
| Emission-Broadening Processes                               | 20   |
| Homogeneous (Collisional) Broadening                        | 21   |
| Inhomogeneous Broadening                                    | 22   |
| Electric Susceptibility                                     | 23   |
| Radiative Force                                             | 24   |
| Doppler Cooling                                             | 25   |
| Doppler Cooling                                             | 25   |
| Semi-classical Treatment of Doppler Cooling: Force          | 26   |
| Semi-classical Treatment of Doppler Cooling:<br>Temperature | 27   |

| Table | of | Contents |
|-------|----|----------|
|-------|----|----------|

| Sisyphus Cooling<br>Motivation for Sisyphus Cooling<br>Sisyphus Cooling | <b>28</b><br>28<br>29 |
|-------------------------------------------------------------------------|-----------------------|
| Sisyphus Cooling                                                        | 20                    |
| Traps                                                                   | 30                    |
| Earnshaw's Theorem                                                      | 30                    |
| Traps                                                                   | 31                    |
| High-Field and Low-Field Seekers                                        | 32                    |
| Optical Dipole Trap                                                     | 33                    |
| Optical Dipole Trap                                                     | 33                    |
| Heating Mechanism                                                       | 34                    |
| Optical Lattices                                                        | 35                    |
| Optical Lattice versus Solid State Crystal Lattice                      | 36                    |
| Magnetic Trap                                                           | 37                    |
| Magnetic Fields of Circular Current Loop                                | 37                    |
| Landau–Zener Problem                                                    | 38                    |
| Majorana's Spin-Flip Transitions                                        | 39                    |
| Magnetic Trap                                                           | 40                    |
| Quadrupole Trap                                                         | 41                    |
| Time-Orbiting-Potential Trap                                            | 42                    |
| Ioffe–Pritchard Trap                                                    | 43                    |
| Comparison of Trap Types                                                | 44                    |
| Magneto-optical Trap                                                    | 45                    |
| Magneto-optical Trap (MOT)                                              | 45                    |
| MOT Loading                                                             | 46                    |
| Loading Cooling Methods                                                 | 47                    |
| Cooling-Free Loading Methods                                            | 48                    |
| Collisions                                                              | 49                    |
| Collisions                                                              | 49                    |
| Scattering Amplitude                                                    | 50                    |
| Cross Sections                                                          | 51                    |
| Radial Potentials and Partial Wave Expansion                            | 52                    |
| Scattering of Identical Particles                                       | 53                    |
| Pseudo-potential                                                        | 54                    |

Field Guide to Laser Cooling Methods

| Evaporative Cooling                              | 55 |
|--------------------------------------------------|----|
| Trapping Charged Particles                       | 56 |
| Trapping Charged Particles                       | 56 |
| Paul Traps                                       | 57 |
| Paul's Discovery                                 | 58 |
| Potentials in Quadrupole 3D and 2D Paul Traps    | 59 |
| The Mathieu Equation                             | 60 |
| Cyclotron Motion                                 | 61 |
| Penning Traps                                    | 62 |
| Penning Trap Frequencies                         | 63 |
| Other Ion Trap Designs                           | 64 |
| Quantum Jumps                                    | 65 |
| Trapped Ions and Their Applications              | 66 |
| Sub-recoil Cooling                               | 67 |
| Motivation for Sub-recoil Cooling                | 67 |
| Spin-Polarized Atoms                             | 68 |
| Optical Pumping and Selection Rules              | 69 |
| Dark States and Coherent Population Trapping     | 70 |
| Random Walk                                      | 71 |
| Velocity-Selective Coherent Population Trapping  | 72 |
| Free-Space Raman Cooling                         | 74 |
| Interaction with a Trapped Atom                  | 75 |
| Lamb–Dicke Regime                                | 76 |
| Weak and Strong Confinement                      | 77 |
| Motional Sideband Excitation                     | 78 |
| Raman Sideband Cooling                           | 79 |
| Degenerate Raman Sideband Cooling                | 80 |
| Electromagnetically Induced Transparency Cooling | 81 |
| Bose-Einstein Condensate                         | 82 |
| Thermal Distribution Functions                   | 82 |
| Matter Waves                                     | 83 |
| Bosons and Fermions                              | 84 |
| Bose–Einstein Condensate                         | 85 |
| Alkali Atoms                                     | 86 |

| Diagnostics                                           | 87  |
|-------------------------------------------------------|-----|
| Atom–Light Interactions                               | 87  |
| Fluorescence Imaging                                  | 88  |
| Absorption Imaging                                    | 89  |
| Fourier-Filtering Techniques                          | 90  |
| Dispersive Dark-Ground Imaging                        | 91  |
| Phase-Contrast Imaging                                | 92  |
| Time-of-Flight Method                                 | 93  |
| Rare-Earth-Doped Solids                               | 94  |
| Rare-Earth Ions                                       | 94  |
| Ions in Solids                                        | 95  |
| Judd–Ofelt Theory                                     | 96  |
| Radiative Transitions                                 | 97  |
| Einstein $B$ Coefficient                              | 98  |
| Cross Sections                                        | 99  |
| Phonons                                               | 100 |
| Vibrations in 1D Periodic Systems                     | 100 |
| Phonons                                               | 101 |
| Nonradiative Transitions                              | 102 |
| Ion-Ion Interaction                                   | 103 |
| Resonant Radiative and Nonradiative Transfer          | 103 |
| Another Energy Transfer Process                       | 104 |
| Laser Cooling of Rare-Earth-Doped Solids              | 105 |
| Pringsheim's Cooling                                  | 105 |
| Thermodynamics of Optical Cooling of Solids           | 106 |
| Laser Cooling with ASF in Different Systems           | 107 |
| Electrons in Stark Sublevels of Rare-Earth Ions       | 108 |
| Two-Level Model of RE-Doped Solids                    | 109 |
| Laser Cooling in Two-Level RE-Doped Systems           | 110 |
| Laser Cooling in Ideal RE-Doped Hosts                 | 111 |
| Laser Cooling in Real RE-Doped Hosts                  | 112 |
| Host Materials for Laser Cooling                      | 113 |
| Obstacles to Laser Cooling of RE-Doped Solids         | 114 |
| Optimization of RE-Doped Samples for Laser<br>Cooling | 115 |

| Achievements in Laser Cooling of RE-Doped   | 116 |
|---------------------------------------------|-----|
| Ontical Cavities for Laser Cooling          | 117 |
| Thermal Links                               | 118 |
| Radiation-Balanced Laser                    | 119 |
| Raman Cooling of Solids                     | 120 |
| Spontaneous Raman Scattering                | 120 |
| Stimulated Raman Scattering                 | 121 |
| Raman Cooling of Solids                     | 122 |
| Raman Laser with Heat Mitigation            | 123 |
| Laser Cooling with STIRAP                   | 124 |
| Stimulated Raman Adiabatic Passage (STIRAP) | 124 |
| Laser Cooling with STIRAP                   | 125 |
| Brillouin Cooling                           | 126 |
| Hybrid Laser Cooling                        | 127 |
| Equation Summary                            | 128 |
| Bibliography                                | 133 |
| Index                                       | 136 |

#### Preface

Cooling or refrigeration is based on heat removal and dates back thousands of years to when people tried to preserve their food using ice and snow. The laser—a groundbreaking scientific achievement of the 20<sup>th</sup> century— has revolutionized the cooling process. The advent of lasers brought laser cooling, also known as optical refrigeration, into existence. Today, laser cooling and its applications represent one of the major subfields of atomic, molecular, and solid state physics.

This Field Guide provides an overview of the basic principles of laser cooling of atoms, ions, nanoparticles, and solids, including Doppler cooling, polarization gradient cooling, different sub-recoil schemes of laser cooling, forced evaporation, laser cooling with anti-Stokes fluorescence, hybrid laser cooling, and Raman and Brillouin cooling. It also covers radiation-balanced lasers and Raman lasers with heat mitigation, and considers the basic principles of optical dipole traps, magnetic traps, and magneto-optical traps. This Field Guide will serve both to introduce students, scientists, and engineers to this exciting field, and to provide a quick reference guide for the essential math and science.

I would like to thank SPIE Press Manager Timothy Lamkins and Series Editor John Greivenkamp for the opportunity to write a Field Guide for one of the most interesting areas of photonics, as well as SPIE Press Sr. Editor Dara Burrows for her help.

This book is dedicated to my mom, Albina.

Galina Nemova September 2019

#### **Fundamental constants**

 $\mu_B = 9.27400899 \times 10^{-24} \text{ (J} \cdot \text{T}^{-1})$  Bohr magneton  $k_B = 1.3806503 \times 10^{-23} \text{ (J} \cdot \text{K}^{-1)}$ Boltzmann constant  $\varepsilon_0 = 8.854187817 \times 10^{-12}$ vacuum permittivity or  $(\mathbf{F} \cdot \mathbf{m}^{-1})$ electric constant  $m_e = 9.10938188 \times 10^{-31}$  (kg) electron mass  $g_s = 2.0023193043737$ electron spin *g*-factor  $e = 1.6021766208 \times 10^{-19}$ (C) elementary charge  $\alpha = 7.297352533 \times 10^{-3}$ fine structure constant  $\mu_0 = 4\pi \times 10^{-7} \, (\text{H} \cdot \text{m}^{-1})$ permeability of vacuum  $h = 6.62606876 \times 10^{-34} \text{ (J} \cdot \text{s)}$ Planck's constant  $\hbar = h/2\pi = 1.054571596 \times 10^{-34}$ reduced Planck's con- $(J \cdot s)$ stant  $c = 299792458 \text{ (m} \cdot \text{s}^{-1}\text{)}$ speed of light in vacuum  $\sigma = 5.67 \times 10^{-8} (Wm^{-2}K^{-4})$ Stefan-Boltzmann constant

#### Units of measure

| С | coulomb | kg | kilogram |
|---|---------|----|----------|
| F | farad   | m  | meter    |
| Η | henry   | s  | second   |
| J | joule   | Т  | tesla    |
| Κ | kelvin  |    |          |

# Frequently used symbols

It is impossible to avoid using the same symbols for more than one quantity. A list of symbols denoting a single quantity is presented here; other symbols are defined in the body of the book.

- $\Gamma$  Landau–Zener parameter
- $\Delta$  detuning
- η efficiency
- к thermal conductivity
- $\lambda$  wavelength
- $\lambda_{deB}$  de Broglie wavelength
- μ magnetic dipole moment (also known as a magnetic moment or magnetic dipole)
- ν frequency

# **Glossary of Symbols and Acronyms**

- $\rho$  density operator
- $\sigma_a$  absorption cross section
- $\sigma_e$  emission cross section
- $\psi$  wave function
- $\omega$  angular frequency
- **B** magnetic field
- E electric field
- $E_F$  Fermi energy
- $g_F$  Landé *g*-factor
- $g_l$  electron orbital *g*-factor
- $g_s$  electron spin g-factor
- k wave vector
- $k_r$  restoring-force constant
- t time
- T temperature
- v velocity
- $v_s$  speed of sound

# Quantum mechanical symbols

- d atomic dipole moment
- *F* total angular momentum quantum number (used by spectroscopists for atoms with an odd isotope number)
- **F** total angular momentum (for atoms with an odd isotope number)
- $|{\bf F}|$  magnitude of the total angular momentum  ${\bf F}$
- I nuclear spin angular momentum
- *j* total angular momentum quantum number (for a single particle)
- J total angular momentum quantum number (used by spectroscopists for atoms with an even isotope number)
- J total angular momentum (for atoms with an even isotope number)
- $|\mathbf{J}|$  magnitude of the total angular momentum  $\mathbf{J}$
- *l* orbital angular momentum quantum number or orbital quantum number (for a single particle)
- *L* orbital angular momentum quantum number (for a system of several particles)

# **Glossary of Symbols and Acronyms**

- L orbital angular momentum (for a system of several particles)
- $|\mathbf{L}|$  magnitude of the orbital angular momentum  $\mathbf{L}$
- $m_l$  magnetic quantum number
- *n* principal quantum number (for a single particle)
- *s* spin quantum number (for a single particle)
- *S* spin quantum number (for a system of several particles)
- **S** spin angular momentum (for a system of several particles)
- $|\mathbf{S}|$  magnitude of the spin angular momentum  $\mathbf{S}$

#### **Acronyms and Abbreviations**

| AC                     | alternating current                                       |
|------------------------|-----------------------------------------------------------|
| ASF                    | anti-Stokes fluorescence                                  |
| BEC                    | Bose–Einstein condensate                                  |
| BYF                    | $BaY_2F_8$                                                |
| CARS                   | coherent anti-Stokes Raman scattering                     |
| CG                     | Clebsch–Gordan (coefficient)                              |
| CNBZn                  | $CdF_2$ - $CdCl_2$ - $NaF$ - $BaF_2$ - $BaCl_2$ - $ZnF_2$ |
| DC                     | direct current                                            |
| ED                     | electrical dipole                                         |
| EIT                    | electromagnetically induced transparency                  |
| $\mathbf{E}\mathbf{M}$ | electromagnetic                                           |
| ESA                    | excited-state absorption                                  |
| EQ                     | electric quadrupole                                       |
| f-factor               | oscillator strength                                       |
| FMHM                   | full width at half maximum                                |
| GEF                    | geometrical efficiency factor                             |
| IPTS                   | International Practical Temperature Scale                 |
| KPC                    | $\mathrm{KPb}_2\mathrm{Cl}_5$                             |
| LD                     | Lamb–Dicke (regime)                                       |
| LO                     | longitudinal optical                                      |
| MAT                    | minimum achievable temperature                            |
| MD                     | magnetic dipole                                           |
| MOT                    | magneto-optical trap                                      |
| ODT                    | optical dipole trap                                       |
| PSD                    | phase-space density                                       |
|                        |                                                           |

**Glossary of Symbols and Acronyms** 

| QM             | quantum model                                                               |
|----------------|-----------------------------------------------------------------------------|
| RE             | rare earth                                                                  |
| $\mathbf{RF}$  | radiofrequency                                                              |
| rms            | root-mean-square                                                            |
| RWA            | rotating-wave approximation                                                 |
| $\mathbf{SCM}$ | semi-classical model                                                        |
| SHG            | second harmonic generation                                                  |
| SLT            | second law of thermodynamics                                                |
| SNR            | signal-to-noise ratio                                                       |
| SRAP           | stimulated Raman adiabatic passage                                          |
| SRE            | selective resonant enhancement                                              |
| SSRS           | stimulated Stokes Raman scattering                                          |
| STIRAP         | stimulated Raman adiabatic passage                                          |
| ТА             | transverse acoustic                                                         |
| TIR            | total internal reflection                                                   |
| ТО             | transverse optical                                                          |
| TOF            | time-of-flight                                                              |
| TOP            | time-orbiting potential                                                     |
| VECSEL         | vertical-external-cavity surface-emitting laser                             |
| VSCPT          | velocity-selective coherent population trapping                             |
| VUV            | vacuum ultraviolet                                                          |
| YAG            | Y <sub>3</sub> Al <sub>5</sub> O <sub>12</sub> (yttrium aluminium garnet)   |
| YLF            | $YLiF_4$ (yttrium lithium fluoride)                                         |
| ZBLAN          | ZrF <sub>4</sub> -BaF <sub>2</sub> -LaF <sub>3</sub> -AlF <sub>3</sub> -NaF |
| ZBLANP         | $ZrF_4$ - $BaF_2$ - $LaF_3$ - $AlF_3$ - $NaF$ - $PbF_3$ (heavy-metal        |
|                | fluoride glass)                                                             |