
Appendix A

Ray Tracing

Considering the paraxial approximation, a method can be established to
propagate an optical ray in a system of refracting or reflecting surfaces. This
makes it possible to measure the paraxial properties of the optical system,
namely, focal points, principal points, and nodal points.

In Fig. A.1, the angles u and u0 of inclination of the incident and refracted
rays on a spherical surface of radius R are indicated, as well as the height y of
the incident ray on the spherical surface. In the paraxial approximation, the
height of the ray at the surface is measured along the segmented line passing
through the vertex V of the surface, and the tangents of the angles are taken as
the angles (in radians). Therefore,

u ¼ � y
s

(A.1)

and

u0 ¼ � y
s0
. (A.2)

Multiplying Gauss’ equation for the spherical surface of refraction [Eq. (1.21)]
by the height y,

n0y
s0

� ny
s
¼ y

n0 � n
R

. (A.3)

Figure A.1 Height and angles of inclination of a ray on a spherical refracting surface.
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And from Eqs. (A.1) and (A.2),

n0u0 ¼ nu� ðn0 � nÞcy, (A.4)

where c¼ 1/R is the curvature of the surface. Equation (A.4) allows the angle
of inclination of the ray to be propagated throughout the optical system.

To generalize propagation on various surfaces, let us consider two
spherical surfaces of an optical system, as shown in Fig. A.2. The equation to
propagate the angle from left to right of the jth surface becomes

njuj ¼ nj�1uj�1 � Pjyj, (A.5)

where Pj¼ (nj – nj–1)cj is the refractive power. Thus, n0j�1¼ nj and cj¼ 1/Rj.
On the other hand, the object for the ( j þ 1)th surface will be the image of

the jth surface and the object and image distances are related by the separation
or thickness tj between the surfaces as

sjþ1 ¼ s0j � tj, (A.6)

which is equal to

� yjþ1

uj
¼ � yj

uj
� tj, (A.7)

i.e.,

yjþ1 ¼ yj þ tjðnjujÞ, (A.8)

where tj¼ tj /nj is the reduced thickness.
Thus, whereas the angle is propagated with Eq. (A.5) the height is

propagated with Eq. (A.8). With these two equations, it can be seen how a ray
evolves in an optical system with any number of refracting and/or reflecting
surfaces. Equations (A.5) and (A.8) are the basis of the paraxial ray tracing
y-nu method [1, 2].

Figure A.2 Ray propagation on two surfaces.
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Focal length of a set of lenses
From Eq. (A.5), the focal length of a set of refracting surfaces (lenses) can
be determined. Suppose that there are M refracting surfaces. Then, for the
M surfaces,

nMuM ¼ nM�1uM�1 � PMyM
nM�1uM�1 ¼ nM�2uM�2 � PM�1yM�1
.
.
.
n1u1 ¼ n0u0 � P1y1,

(A.9)

and by adding these equations,

nMuM ¼ n0u0 �
XM
j¼1

Pjyj. (A.10)

The focal length of the system is determined when s0¼ –`, i.e., u0¼ 0 (and
y1¼ y0). Therefore,

f ¼ � y1
uM

(A.11)

and

1
f
¼ 1

nM

XM
j¼1

yj
y1

Pj. (A.12)

Focal length of a simple lens
As a result of Eq. (A.12), the focal length of a lens of thickness t immersed in
air can be calculated. The geometry for calculating the focal length is
illustrated in Fig. A.3. In this case, M¼ 2 and n0¼ n2¼ 1. Therefore,
Eq. (A.12) is reduced to

1
f
¼ P1 þ

y2
y1

P2. (A.13)

Using Eq. (A.8) for y2,

1
f
¼ P1 þ P2 þ P2

t1ðn1u1Þ
y1

(A.14)

and, with Eq. (A.5) for n1u1,
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1
f
¼ P1 þ P2 � P1P2

t
nl
, (A.15)

where nl¼ n1 and t¼ t1. This last equation is equivalent to

1
f
¼ ðnl � 1Þ

R1
þ ð1� nlÞ

R2
� ðnl � 1Þ

R1

ð1� nlÞ
R2

t
nl
. (A.16)

Thus, the result for the focal length of a lens of thickness t given in Eq. (1.50)
is obtained, i.e.,

1
f
¼ ðnl � 1Þ

�
1
R1

� 1
R2

�
þ ðnl � 1Þ2

R1R2

t
nl
. (A.17)

Principal planes
Principal planes can be located with respect to the vertices of the lens. Thus,
the secondary principal plane is at a distance V0P0 from vertex V0, and the
primary principal plane is at a distance VP from vertex V. The distance
between V0 and F0 is called the back focal length, f b ¼ V0F0, and the distance
between V and F is called the front focal length, f f ¼ VF. Thus,

V0P0 ¼ f b � f , (A.18)

and because

y1
f
¼ y2

f b
,

from Eq. (A.8),

Figure A.3 Calculation of the focal length of a lens.
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f b ¼ f
y1 þ t1ðn1u1Þ

y1
(A.19)

and, with Eq. (A.5),

f b ¼ f
y1 þ t1ð�P1y1Þ

y1
(A.20)

or

f b ¼ f � f
tP1

nl
. (A.21)

Therefore,

V0P0 ¼ �f
tðnl � 1Þ
nlR1

. (A.22)

Note that V0P0 depends on the power of the first side of the lens. If it is zero
(r1¼`), then the secondary principal plane is at V0.

To determine VP, consider that the lens is rotated and the same procedure
of the previous case is carried out, therefore,

VP ¼ �f
tðnl � 1Þ
nlR2

. (A.23)

Focal length of a set of thin lenses
Approximating a set of lenses N by thin lenses (immersed in air), Eq. (A.12) is
simplified as follows:

1
f
¼

XN
k¼1

yk
y1

1
f k

,

where yk is the height of the ray in the kth lens and fk is the focal length of the
kth lens. For example, the focal length of two thin lenses at a distance d will be
given by

1
f
¼ 1

f 1
þ y2

y1

1
f 2

.

Using Eq. (A.8) for y2 and then Eq. (A.5) for (n1u1) leads to the known result

1
f
¼ 1

f 1
þ 1
f 2

� 1
f 1

1
f 2

d.
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Appendix B

Refractive Index

The refractive index in a medium measures the change in the speed of light in
the medium with respect to the speed of light in a vacuum. Because the speed
of light in a medium depends on the frequency n, the refractive index also
depends on the frequency. Denoting by n the refractive index, y the speed of
light in the medium, and c the speed of light in a vacuum, the refractive index
is given by the equation

nðnÞ ¼ c
yðnÞ , (B.1)

which is also known as the dispersion relation.
From the microscopic point of view, in a classical approximation, the

speed change occurs due to the phase change of the electromagnetic wave
reemitted by the induced electric dipoles that make up the medium with
respect to the incident electromagnetic wave (of speed c).

Refractive index in dielectric materials
To obtain a first model of the refractive index in a dielectric medium, it is
initially assumed that the medium in the presence of an external electric field is
composed of N induced dipoles of the type p¼ –er (electron attached to an
atom) per unit volume. Because the dipole is surrounded by other dipoles, in
the presence of a harmonic electromagnetic wave of amplitude E0 and
frequency n, the dipole will oscillate similarly to a driven damped harmonic
oscillator. Thus, if

E ¼ E0e�ivt (B.2)

represents the harmonic wave, with v¼ 2pn, the electric force on the charge e
will be

F ¼ �eE: (B.3)
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The charge displacement vector e satisfies

me
d2r
dt2

þmeg
dr
dt

þ kr ¼ �eE0e�ivt, (B.4)

where me is the mass of the charge e, g is the damping constant (due to the
presence of the other dipoles), and k is the constant that explains the force that
holds the charge together for the atom.

In steady state, the response of the dipole will be

r ¼ r0e�iðvtþdÞ; (B.5)

i.e., it will oscillate with the same frequency as the incident wave, but with an
offset d. By inserting Eq. (B.5) in Eq. (B.4),

r0 ¼
�eE0∕me

ðv2
0 � v2Þ � igv

eid, (B.6)

with v2
0 ¼ k∕me. With this result,

r ¼ � ðe∕meÞ
ðv2

0 � v2Þ � igv
E, (B.7)

and the induced electric polarization vector P¼ –Ner is

P ¼ Ne2∕me

ðv2
0 � v2Þ � igv

E: (B.8)

Thus, the macroscopic effect of the electromagnetic wave incident on the
medium is a polarization vector, which is proportional to E. In general, the
equation above can be written as

P ¼ ϵ0xE, (B.9)

where ϵ0 is the permittivity of the vacuum (a constant) and x is the electrical
susceptibility of the medium, which measures the degree of proportionality
with E and is defined as x¼ ϵ/ϵ0 �1, where ϵ is the permittivity of the medium.

On the other hand, in dielectric (nonmagnetic) media, there is the
magnetic polarization vector, M¼ 0; the electric current density vector, J¼ 0;
and the free charge density, r¼ 0. Thus, Maxwell’s equations for the medium
have the form [1]

∇� E ¼ �m0
∂H
∂t

, (B.10)
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∇�H ¼ ϵ0
∂E
∂t

þ ∂P
∂t

, (B.11)

∇ ⋅ E ¼ �∇ ⋅ P
ϵ0

, (B.12)

∇ ⋅H ¼ 0, (B.13)

where H is the magnetic vector and m0 is the vacuum permeability.
The wave equation that results from taking ∇� (∇�E)¼ –m0∂(∇�H)/∂t,

and also using Eqs. (B.11) and (B.9), is

∇ð∇ ⋅ EÞ � ∇2E ¼ �m0ϵ0ð1þ xÞ ∂
2E
∂t2

. (B.14)

Isotropic media

A medium is isotropic if its physical properties do not depend on direction. In
particular, in optics, a medium is said to be isotropic if the refractive index
does not depend on the direction of propagation of light. This implies that in
Eq. (B.9) the electrical susceptibility is described by a scalar. Otherwise, in an
anisotropic medium (in which the refractive index depends on the direction),
the electrical susceptibility is described by a tensor (3� 3 matrix).

Assuming that the electrical medium is isotropic, then in Eq. (B.12),

∇ ⋅ ðϵ0Eþ xϵ0EÞ ¼ ð1þ xÞ∇ ⋅ E ¼ 0, (B.15)

which implies that ∇ ·E¼ 0, since x ≥ 0. Therefore, the wave equation for the
isotropic dielectric medium is given by

∇2E ¼ m0ϵ0ð1þ xÞ ∂
2E
∂t2

; (B.16)

thus, the speed of light in the medium is determined from

1
y2

¼ m0ϵ0ð1þ xÞ: (B.17)

Because c2¼ 1/m0ϵ0, the refractive index turns out to be

n2 ¼ 1þ x. (B.18)

And with the result obtained for the medium of the example given by
Eq. (B.8), then

n2 ¼ 1þ Ne2

meϵ0
1

½ðv2
0 � v2Þ � igv� . (B.19)
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Starting from the previous result, a generalization of the medium is
achieved by assuming that instead of a single type of electric dipole there are
M types of dipoles [2]. If Nj is the volume density of the jth type of dipole, then

gj ¼
Nj

N
(B.20)

is the fraction of jth type of dipole and
P

M
j¼1 gj ¼ 1. With this in mind, the

refractive index can then be written in a general form as

n2 ¼ 1þ Ne2

meϵ0

XM
j¼1

gj
½ðv2

0j � v2Þ � igjv�
, (B.21)

where there are now several eigenfrequencies v0j and damping constants gj
corresponding to each type of dipole.

According to Eq. (B.21), the refractive index is a quantity of complex
variable, i.e., n¼ nR + inI. Taking the real and imaginary parts of the square of
the refractive index,

n2R � n2I ¼ 1þ Ne2

meϵ0

XM
j¼1

ðv2
0j � v2Þ

½ðv2
0j � v2Þ2 þ g2j v

2� gj (B.22)

and

2nRnI ¼
Ne2

meϵ0

XM
j¼1

gjv

½ðv2
0j � v2Þ2 þ g2j v

2� gj. (B.23)

Although this model requires adjustments to be applied in real cases, it
allows us to see the dependence of the refractive index on frequency. On the
other hand, it shows that the refractive index has two components: a real one
nR, with which refraction can be explained, and an imaginary one nI, which
represents the absorption in the medium.

The general behavior of nR and nI through Eqs. (B.22) and (B.23) is shown
in Fig. B.1 for two resonance frequencies: v01 and v02. The damping
constants gj are usually small compared with the respective resonance
frequencies v0j. When v � v0j, the imaginary part of the refractive index takes
relevant values that give rise to absorption bands. When v moves away from
the resonant frequencies, the imaginary part of the index of refraction is
practically zero, and the real part of the index of refraction increases with
frequency. This behavior is called normal dispersion. When the real part of the
refractive index decreases with frequency, it is called anomalous dispersion
(region where absorption occurs).
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The speed of light in the medium can also be given in terms of the
permittivity ϵ and the permeability m of the medium (which also depend on
the frequency of the electromagnetic wave incident on the medium); i.e.,

1
y2

¼ mϵ. (B.24)

Therefore, the refractive index is

n2 ¼ mϵ
m0ϵ0

. (B.25)

For nonmagnetic materials, the m � m0 approximation can be made, and
in this case the refractive index can be calculated as

n ¼
ffiffiffiffiffi
ϵ
ϵ0

r
. (B.26)

Figure B.1 General behavior of the real and imaginary parts of the refractive index
according to Eqs. (B.22) and (B.23).
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Appendix C

Optical Glasses

The refractive index varies with the speed of the electromagnetic wave in the
medium, as shown in Appendix B. In turn, the speed depends on the
frequency of the wave (or the wavelength in a vacuum, for l ¼ c/n, where n is
the wave frequency). As a function of wavelength, away from resonance
frequencies, the refractive index decreases with increasing wavelength; near
resonance frequencies, where absorption occurs, the refractive index increases.
This can be understood by the dispersion relation obtained in Eq. (B.21). In
practice, the dispersion relation for each medium is obtained empirically as a
function of the wavelength. For example, the glass used for microscope slides,
soda lime silica, can be characterized in the visible range by the relationship
obtained by Rubin [1]:

n ¼ 1.5130� 0.003169l2 þ 0.003962l�2: (C.1)

Another way to characterize optical glasses is by the refractive index at
three wavelengths corresponding to two spectral lines of hydrogen and one
spectral line of helium, as shown in Table C.1.

With these spectral lines, the visible range is covered. These are used for
analysis of chromatic aberrations. The indices of the corresponding colors are
indicated by nF, nd, and nC. On the other hand, a measure of chromatic
dispersion is given by

V ¼ nd � 1
nF � nC

, (C.2)

which is called the Abbe number. Usually, when the refractive index of a
medium is said to be n, by default (unless otherwise stated) this value
corresponds to the index nd.

Optical glasses are made from SiO2 and a combination of light metals
(crown glass) or heavy metals (flint glass), with which it is possible to set the
refractive indices and the desired Abbe number.
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An Abbe diagram plots the refractive index nd versus the Abbe number for
a range of different optical glasses, as shown in Fig. C.1. Each glass is
identified by a labeled point on the graph nd versus V. Thus, the glasses used
in the manufacture of optical elements (lenses, prisms, mirrors, etc.) are
identified with the name of the glass (and not with the refractive index).

For example, consider an achromatic doublet manufactured by a
commercial company. The catalog says that the first lens is made of BK7
glass and the second is made of SF5 glass. The difference in glasses is intended
to correct axial chromatic aberration (for blue and red colors). It can seen
in Fig. C.1 that the index nd for BK7 glass is 1.52 ± 0.05 (1.5168) and its
Abbe number is 64.0 ± 0.5 (64.17), and the index nd for SF5 glass is
1.68 ± 0.05 (1.6727) and its Abbe number is 32.0 ± 0.5 (32.21).

Table C.1 Spectral lines to characterize optical glasses.

Line Wavelength Element Color

F 486.13 H blue

d 587.56 He yellow

C 656.27 H red

Figure C.1 Abbe diagram of optical glasses. Reprinted from [2] with permission granted by
the GNU Free Documentation License.
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Appendix D

Chromatic Aberrations

Chapter 1 deals with imaging systems for a single wavelength. When the light
coming from the object is polychromatic, the parameters that depend on the
refractive index change according to the color of the light; e.g., the focal
length of a lens, see Eq. (1.50), and the position of the principal planes, see
Eqs. (1.51) and (1.52). Consequently, for each color there will be an image of a
different size and in a different axial position.

Let us consider the three wavelengths shown in Table D.1 with which
optical glasses are characterized.

Denoting the focal lengths for these colors as fF, fd, and fC, the equations
for locating the image in each case are

1
s0F

� 1
sF

¼ 1
f F

, (D.1)

1
s0d

� 1
sd

¼ 1
f d

, (D.2)

1
s0C

� 1
sC

¼ 1
f C

. (D.3)

In the case of a lens, the distance between the object and the first surface
of the lens is the same in all three cases, i.e., sF � ðVPÞF ¼ sd � ðVPÞd ¼
sC � ðVPÞC . The former also implies that, in general, the distance of the object
is different depending on the color. For the image, the situation is a bit more
complex, since in general s0F þ ðV0P0ÞF ≠ s0d þ ðV0P0Þd ≠ s0C þ ðV0P0ÞC .

Table D.1 Spectral lines to characterize optical glasses.

Line Wavelength (nm) Element Color

F 486.13 H blue

d 587.56 He yellow

C 656.27 H red

291



The axial difference between the positions of the images corresponding to
the spectral lines F and C,

AchrL ¼ ðs0F þ ðV0P0ÞF Þ � ðs0C þ ðV0P0ÞCÞ
¼ ðs0F � s0CÞ þ ððV0P0ÞF � ðV0P0ÞCÞ,

(D.4)

is called the axial chromatic aberration. For example, Fig. D.1 shows the
position of the images for the spectral lines F, d, and C for a lens of focal
length fd ¼ 50 mm (R1¼ 25.84 mm, R2¼`, thickness t¼ 4.5 mm; glass BK7)
when the object is at sd¼�100 mm, which gives a magnification mt¼�1 for
the spectral line d. In this example, the primary principal plane is at the vertex
of the first surface; thus, sd¼ sF¼ sC. The parameters for this example are
summarized in Table D.2. All distances (except wavelength) are given in
millimeters. From these data it follows that the axial chromatic aberration is
AchrL¼�3.05 mm.

Suppose that the object is a point and the system is free of primary
monochromatic aberrations. Then, for the spectral lines F, d, and C, there
are three image points located at s0F ¼ 94.67mm, s0d ¼ 96.77mm, and
s0C ¼ 97.73mm, respectively. Where should the image plane be located? If it
is set at s0F , there will be a blue dot in focus, but the yellow and red images will
be out of focus. Analogous situations occur if the image plane is located at s0d
and s0C. However, in the middle of the blue and red images there will be a
circle of least confusion, and this will be the place where the best image can be
seen. By focusing on s0F , there will be a red dot larger than the yellow dot. On
the other hand, focusing on s0C will result in a blue dot that is larger than the
yellow dot. This means that the edge of the image of a polychromatic object

Figure D.1 Axial chromatic aberration in a positive lens.

Table D.2 Parameters of a positive lens and the image according to the spectral lines to
characterize optical lenses when the object is at �100 mm from the primary principal plane.

Line l(nm) f V0P0 s0 mt

F 486.13 49.46 �3.21 94.67 �0.9788

d 587.56 50.00 �3.23 96.77 1

C 656.27 50.24 �3.23 97.73 �1.0097
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obtained with a simple lens (like the example shown in Fig. D.1) looks red
from a distance s0F , whereas it looks blue from a distance s0C .

Magnification also depends on the wavelength in an image plane; there
will be a superposition of images of different colors and sizes (one in focus and
others out of focus). If h0F ¼ mtFh and h0C ¼ mtCh are the heights of the
images, the difference

AchrT ¼ h0F � h0C (D.5)

is defined as transverse chromatic aberration.
With a negative lens, the order in which the images are placed for each

color is opposite to that of the positive lens. This can be seen with an
example similar to the positive lens. For a lens of focal length fd¼�50 mm
(R1¼�25.84 mm, R2¼`, thickness t¼ 3.5 mm; BK7 glass) when the object is
at sd¼�100 mm, the virtual image for blue is closer to the lens than the image
for red (and the image for yellow in between; Fig. D.2).

The values of the distances are shown in Table D.3. The chromatic
aberration in this case is AchrL¼ 0.36 mm.

Achromatic doublet
The union of two lenses results in a single lens called a doublet achromatic.
This assumes that the radius of curvature of the posterior face of the first lens
must be equal to the radius of curvature of the anterior face of the second lens,
i.e., R12¼R21 (Fig. D.3).

Figure D.2 Axial chromatic aberration in a negative lens.

Table D.3 Parameters of a negative lens and the virtual image according to the spectral
lines to characterize optical lenses when the object is �100 mm from the primary principal
plane.

Line l(nm) f V0P0 s0 mt

F 486.13 �49.46 �2.30 �35.39 0.3309

d 587.56 �50.00 �2.31 �35.64 0.3333

C 656.27 �50.24 �2.31 �35.75 0.3344

293Chromatic Aberrations



Suppose we want to obtain an achromatic doublet of focal length fd. From
the thin lens approximation, the focal length of the combination of two thin
lenses [Eq. (1.53)] will be

1
f d

¼ 1
f 1d

þ 1
f 2d

, (D.6)

since the separation between the lenses is zero. For each lens,

1
f 1d

¼ P1d ¼ ðn1d � 1Þ
�

1
R11

� 1
R12

�
¼ ðn1d � 1Þk1 (D.7)

and

1
f 2d

¼ P2d ¼ ðn2d � 1Þ
�

1
R21

� 1
R22

�
¼ ðn2d � 1Þk2. (D.8)

In Eqs. (D.7) and (D.8), the factors k1 and k2 have been introduced for the
difference in curvatures. Thus, the power of the achromatic doublet in the
approximation of thin lenses is

P ¼ ðn1d � 1Þk1 þ ðn2d � 1Þk2. (D.9)

The achromatic doublet implies that the power is constant as the wavelength
changes in the neighborhood of l¼ 587.56 nm, i.e.,

�
∂P
∂l

�
d
¼ 0: (D.10)

In other words,

Figure D.3 Achromatic doublet.
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k1
∂n1
∂l

þ k2
∂n2
∂l

¼ 0: (D.11)

By approximating the variation of the refractive index with nF – nC and
the variation of the wavelength with lF – lC,

k1
n1F � n1C
lF � lC

� k2
n2F � n2C
lF � lC

¼ 0: (D.12)

By multiplying and dividing each addend by (n1d� 1) and (n2d – 1),
respectively, to introduce the Abbe number,

0 ¼ k1
ðn1F � n1CÞ
ðn1d � 1Þ

ðn1d � 1Þ
ðlF � lCÞ

� k2
ðn2F � n2CÞ
ðn2d � 1Þ

ðn2d � 1Þ
ðlF � lCÞ

¼ k1
ðn1d � 1Þ

ðlF � lCÞV 1
� k2

ðn2d � 1Þ
ðlF � lCÞV2

.

(D.13)

By eliminating the common factor from the denominator and using the
definition of power for each lens, i.e., Eqs. (D.7) and (D.8),

P2d

V 2
¼ �P1d

V1
. (D.14)

This equation and Eq. (D.6) in the form of powers Pd¼P1dþP2d allow us
to write the power of each lens as a function of the Abbe numbers of each
glass and the power of the achromatic doublet, as follows,

P1d ¼ Pd
�V 1

V 2 � V1
(D.15)

and

P2d ¼ Pd
V 2

V 2 � V 1
. (D.16)

After this, the curvature factors are obtained:

k1 ¼
P1d

n1d � 1
(D.17)

and

k2 ¼
P2d

n2d � 1
. (D.18)

To finalize the design of the doublet, the radii of curvature of the lenses
must be determined. A very common design proposes that the first lens
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be an equiconvex lens of crown glass [1]. Thus, the radii satisfy the following
relations:

R11 ¼ �R12, R12 ¼ R21 and R22 ¼
R12

1� k2R12
. (D.19)

Example: achromatic doublet
Suppose an achromatic doublet of focal length fd ¼ 50 mm is desired. The
power would be P¼ 20 D. Using the glasses LAKN22 for the first lens and
SFL6 for the second lens (Appendix C) and Eqs. (D.15–D.18), together with
the definition of the curvature factors, leads to the results for the radii of
curvature shown in Table D.4.

To have real lenses, we need to assign a thickness to each lens, e.g., 8 mm
for the first lens and 4 mm for the second. The (real) achromatic doublet is
summarized in Table D.5. With these parameters, the focal length for the
spectral line d becomes fd¼ 50.85 mm.

To see the improvement in imaging, compare the image with this doublet
and image with the single lens of Fig. D.1 by placing an object at sd¼�101.7
mm from the doublet (such that the magnification is again mt¼�1 for the
spectral line d). The parameters for the three spectral lines are shown in
Table D.6. The axial chromatic aberration is AchrL¼�0.19 mm, i.e., only

Table D.4 Design parameters of an
achromatic doublet in the thin lens
approximation.

P(D) 20

V1 55.89

V2 25.39

n1d 1.6511

n2d 1.8051

k1(D) 56.29

k2(D) �20.68

R11(mm) 35.52

R22(mm) �133.97

Table D.5 Achromatic doublet. The units of radius and
thickness are given in millimeters.

Surface Radius Thickness Index

1 35.52 8 LAKN22

2 �35.52 4 SFL6

3 �133.97
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6% of the aberration obtained with the simple lens. On the other hand, the
magnification of each color varies very little, which makes transverse
chromatic aberration negligible. Thus, with the achromatic doublet, a high-
quality image is achieved.

Although the original design calls for a focal length of 50 mm on the d
line, the proposed actual doublet has a slightly higher value. With a small
adjustment in the radii of curvature of the first lens, the desired value can be
obtained (e.g., with R11¼ –R12¼ 34.7 mm, fd¼ 50.01 mm is obtained).

Achromatic doublets are very common in imaging systems because, in
addition to producing good-quality images, they also reduce spherical
aberration. Another possible solution to reduce chromatic aberration is to
design two lenses of the same glass separated by the distance [( f1dþ f2d)/2].
This can be consulted in [2].
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Table D.6 Parameters of an achromatic doublet and the image along the spectral lines to
characterize optical lenses when the object is at �101.7 mm from the primary principal plane
for the spectral line d.

Line l(nm) f VP V0P0 s0 mt

F 486.13 50.83 1.05 �6.13 95.54 �1.0002

d 587.56 50.85 1.10 �6.13 95.57 1

C 656.27 50.90 1.12 �6.14 95.73 �1.0014
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Appendix E

Prisms

A prism is an optical element with flat faces of which at least two are mirror-
polished and inclined toward each other, such that light can be reflected or
transmitted by them. Prisms used to reflect light do so by total internal
reflection on one or more of their faces and serve to change the orientation of
images in an optical system or the direction of light propagation [1]. On the
other hand, prisms that make use of refraction are used as elements to scatter
light and to measure the change of the refractive index in a medium (prism)
with the wavelength or spectral components of a light source.

Reflecting prisms
Figure E.1 shows images of reflecting prisms: (a) right-angle prism, (b) Porro
prism, (c) pentaprism, and (d) Amici prism. In these prisms, a beam of light
falls on one of the faces and the transmitted beam must undergo at least one
total internal reflection. Right-angle and Porro prisms are geometrically the
same; the difference is their orientations with respect to the direction of light.
Assuming that light falls from left to right, the path followed by light in this
type of prism is illustrated in Fig. E.2. To see how the orientation changes in

Figure E.1 Reflecting prisms: (a) right-angle prism, (b) Porro prism, (c) pentaprism, and
(d) Amici prism.
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the image, a couple of symbols are included in the incident beam: an arrow
pointing up and a circle to the left (out of the plane of the paper). Light is also
assumed to propagate toward the observer. After the reflection on the
diagonal face, the right-angle prism deflects the light 90°, inverts the arrow,
and keeps the orientation of the circle, such that when looking at the arrow
pointing up again (with a rotation of 180°), the circle faces right (reverses from
left to right). The Porro prism reflects light parallel to the incident beam,
rotates the arrow twice, and maintains the orientation of the circle, so that
when looking at the arrow, the circle stays to the left (does not change
orientation�). The pentaprism deflects light 90° and does not change
orientation. The Amici prism deflects the light 90°, reverses the arrow, and
reflects the circle twice off the roof of the prism, changing its orientation in
such a way that when looking again at the arrow pointing up, the circle is on
the left (it does not change orientation).

A configuration that allows the direction of light propagation to be
maintained with an inversion of the image (central symmetry) is achieved by
combining two Porro prisms, as shown in Fig. E.3. This system of prisms is
usually used in binoculars (terrestrial telescope) in which the image is seen
from the front. The Amici prism is also often used in eyepieces to correct
image inversion in spotting scopes. The pentaprism is often used in range
finders and alignment instruments in topographic surveying. A variant of the
pentaprism results from changing one of the flat reflecting faces to a roof-
shaped face (similar to the Amici prism); this is usually used in reflex-type
cameras.

Another very useful prism is the Dove prism, the configuration of which is
shown in Fig. E.4. An incident ray parallel to the base is refracted at the first
face, then reflected internally at the base (midpoint), and finally emerges
parallel to the incident ray by reversing the arrow. This prism must be used
with collimated light and has the following property: if the prism is rotated
about the optical axis (incident beam) by a certain angle, the image is rotated
by twice that angle. For example, in some slit lamps (ophthalmic instruments),

(a) (b) (c) (d)

Figure E.2 Direction that light follows when reflected internally in the (a) right-angle prism,
(b) Porro prism, (c) pentaprism, and (d) Amici prism.

�The orientation between the arrow and circle.
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the Dove prism is placed between the two lenses of a confocal system that
projects a line of light onto the surface of the cornea. To observe corneal
astigmatism, it is common to rotate the line by an angle of 90°, which is done
by rotating the cylindrical support that contains the Dove prism by an angle
45°. It is very convenient for an instrument operator to rotate the beamline.

Beamsplitter cubes
Another widely used prism configuration is the beamsplitter cube formed by
two right prisms joined by their diagonal faces to divide an incident beam into
transmitted and reflected beams [Fig. E.5(a)]. One of the faces of the
diagonals is covered with a reflective film (semi-mirror), and the diagonals are

Figure E.3 A combination of two Porro prisms to invert the image (central symmetry with
respect to a point on the optical axis) and maintain the direction of propagation.

Figure E.4 Dove prism.

(a) (b)

Figure E.5 (a) Nonpolarizing and (b) polarizing beamsplitter cubes.
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joined using an optical adhesive. The thickness of the reflective film
determines the percentages of light reflected and transmitted on the diagonal.
The refractive index of the optical adhesive must be close to that of the prisms
to avoid unwanted reflections. One of the most common cubes transmits 50%
and reflects 50% of the light.

The cubes are also designed to separate an unpolarized beam into a
transmitted beam with polarization p and a reflected beam with polarization s,
as shown in Fig. E.5(b). The diagonal of one of the prisms is covered with a
dielectric film or metal–dielectric mixture. When the incident beam reaches
the film, the beam with polarization parallel to the plane of incidence (p) is
transmitted, while the beam with polarization orthogonal to the plane of
incidence (s) is reflected.

Refracting prisms
Prisms can also be used to analyze the spectral components (in wavelength or
frequency) of a light source. Because the refractive index is a function of
wavelength, a polychromatic light beam refracts into multiple beams
depending on its wavelength. This physical separation of the refracted rays
allows the light spectrum to be measured. To determine the deviation of the
refracted ray as a function of the refractive index, let us consider the refraction
of a ray at two faces of a prism that form an angle a, as shown in Fig. E.6.

Suppose that the prism is immersed in a medium of index n1 and that the
index of refraction of the prism for the beam considered is n2. Snell’s law on
both sides would be

n1 sin ui1 ¼ n2 sin ut1 (E.1)

and

Figure E.6 Refraction of a beam at two faces of a prism.
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n2 sin ui2 ¼ n1 sin ut2. (E.2)

From the geometry of Fig. E.6, a ¼ ut1þ ui2. Changing ui2 to a – ut1 in
Eq. (E.2),

sin ut2 ¼
n2
n1

ðsina cos ut1 � cosa sin ut1Þ, (E.3)

which is equal to

sin ut2 ¼ sina

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
n2
n1

�
2
� sin2ui1

s
� cosa sin ui1. (E.4)

If n1¼ 1 and n2¼ n, the index of refraction of the prism for a ray of a
certain wavelength is given by

n2 ¼ sin2ui1 þ
ðsin ut2 þ sin ui1 cosaÞ2

sin2a
. (E.5)

Using a prism characterized in its refractive indices according to
wavelength, we can measure the light spectrum of a source by observing
the position of the refracted rays on a length scale. One configuration
used in prism spectrometers is based on the minimum value of the angle
d¼ ui1 þ ut2 – a, which measures the deviation of the refracted ray leaving the
prism with respect to the ray that is incident on the prism. The minimum of d
occurs when ut2¼ ui1¼ umin [2]. In this case,

n ¼ sin umin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ cosaÞp
sina

, (E.6)

and because umin¼ (dmin þ a)/2, then

n ¼ sin½ðdmin þ aÞ∕2�
sinða∕2Þ . (E.7)

In particular, if the prism is constructed as an isosceles triangle, where a is the
angle between the two equal sides, the ray refracted inside the prism will be
parallel to the other side of the prism (base of the prism), as shown in Fig. E.7.

Another prism used in spectroscopy is the Pellin–Broca prism. The
operating principle of this prism can be understood as a variant of an
equilateral prism (b¼a¼ 60° in Fig. E.7).

Suppose that in the equilateral prism of Fig. E.8(a) a ray of a given
wavelength is incident at the condition of least deviation (the ray refracted in
the prism is parallel to the base). If the equilateral prism is separated into two
prisms of 30° – 60° – 90°, as in Fig. E.8(b), the refracted ray still satisfies the
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minimum deviation condition. If additionally a mirror is placed at 45° and the
second prism is moved, as shown in Fig. E.8(c), the minimum deviation
condition in the second prism still holds. The end result is that if the minimum
deviation condition is met, the refracted beam, regardless of wavelength, will
refract at an angle of 90° with respect to the incident ray.

If a 45° – 45° – 90° prism is used instead of the mirror, a prism like the one
shown in Fig. E.9 can be created. This is the Pellin–Broca prism [3].

Thus, for a polychromatic incident ray, the ray refracted at 90°
corresponds to a given wavelength. Rays of other wavelengths do not
propagate under the minimum deviation condition and emerge from the prism
at an angle other than 90°. However, with a small tilt around an axis
orthogonal to the plane of the paper, the minimum deviation condition can be
adjusted for another wavelength. In particular, if the axis of rotation passes
through a point defined by the intersection of the angle bisector ∠BAD and
the side BC, i.e., point O in Fig. E.9, the ray refracted at 90° with respect to
the incident ray maintains its lateral position.

This situation is illustrated in Fig. E.10 for two rays of different
wavelengths in a prism whose indices of refraction for the two wavelengths are

Figure E.7 An isosceles prism in which the minimum deviation of the ray occurs when the
ray refracted within the prism propagates parallel to the base prism.

(a) (b) (c)

Figure E.8 Pellin–Broca prism principle. (a) Equilateral prism and a ray in condition of
minimum deviation. (b) Separation of the equilateral prism into two prisms of 30° – 60° – 90°
maintaining the condition of minimum deviation. (c) Change of the path of the ray by a mirror
at 45° maintaining the condition of minimum deviation in the prisms. The end result is that
the refracted ray makes an angle of 90° with the incident ray.
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1.5628 and 1.6361. In Fig. E.10, there is an overlay of the prism with the two
orientations (with the axis of rotation at O) that satisfy the minimum
deviation condition for each wavelength. The orientation corresponding to the
refractive index 1.5628 is shown in gray, and the orientation corresponding to

Figure E.9 Pellin–Broca prism.

Figure E.10 Illustration of the advantage of rotating the prism at point O. Regardless of the
wavelength, the ray refracted at 90° maintains its lateral position.
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the refractive index 1.6361 is shown in black. The tilt angle is 3.5°. Indeed, the
two refracted rays maintain their spatial location thanks to the rotation of the
prism at point O. If it rotates at another point, the two rays are refracted with
a lateral offset from each other. Thus, the pivot point at O offers an advantage
when designing a spectrometer.
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Appendix F

Polarization Ellipse

To determine the general polarization state, let us consider the real part of the
amplitudes of the electric vector given in Eq. (2.31), i.e.,

Ex ¼ jEoxj cos dx, (F.1)

Ey ¼ jEoyj cos dy. (F.2)

Multiplying by sin dx and sin dy the functions cos dx and cos dy from
Eqs. (F.1) and (F.2), as follows

Ex

jEoxj
sin dy ¼ cos dx sin dy, (F.3)

Ey

jEoyj
sin dx ¼ cos dy sin dx, (F.4)

and then subtracting Eq. (F.4) from Eq. (F.3) leads to

Ex

jEoxj
sin dy �

Ey

jEoyj
sin dx ¼ sinðdy � dxÞ: (F.5)

By an analogous procedure, multiplying by cos dx and cos dy the functions
cos dx and cos dy of Eqs. (F.1) and (F.2), and then subtracting, leads to

Ex

jEoxj
cos dy �

Ey

jEoyj
cos dx ¼ 0: (F.6)

Finally, squaring Eqs. (F.5) and (F.6), and then adding them, leads to

E2
x

jEoxj2
� 2

Ex

jEoxj
Ey

jEoyj
cosðDdÞ þ E2

y

jEoyj2
¼ sin2ðDdÞ, (F.7)
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with Dd¼ dy – dx. This equation represents a rotated conic.� By rotating the
axes, the crossed term of ExEy is eliminated. The angle of rotation is

tan 2c ¼ � 2 cosðDdÞ∕ðjEoxjjEoyjÞ
1∕jEoxj2 � 1∕jEoyj2

. (F.8)

By defining

tana ¼ jEoyj
jEoxj

, (F.9)

then

tan 2c ¼ tan 2a cosDd. (F.10)

The sign of the discriminant of Eq. (F.7),

cos2ðDdÞ∕ðjEoxjjEoyjÞ2 � 1∕ðjEoxjjEoyjÞ2 ¼ � sin2ðDdÞ
ðjEoxjjEoyjÞ2

, 0, (F.11)

determines the type of conic. Because the result is less than zero, Eq. (F.7) is
an ellipse rotated by the angle c in the Cartesian system xy.

�The quadratic form Ax2 þ 2Bxy þ Cy2¼D represents a rotated conic in the Cartesian system
xy. If B2 – AC < 0, it is an ellipse; if B2 – AC¼ 0, it is a parabola; if B2 – AC > 0, it is a
hyperbola. The unrotated version of the conic in a new Cartesian system x 0y 0 is achieved by a
coordinate transformation corresponding to an eigenvalue problem of a symmetric matrix 2 � 2
whose elements are the coefficients A, B, and C. In the rotated coordinate system, the
new coefficients are given by A0 ¼ 1

2 [ðAþ CÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA� CÞ2 þ 4B2

p
], C0 ¼ 1

2 [ðAþ CÞ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA� CÞ2 þ 4B2

p
]; the angle of rotation can be determined from c ¼ 1

2 arctanð 2B
A�CÞ.
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