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Preface to the
Second Edition

The primary changes in this second edition include the introduction
of many more applications, chosen from a variety of fields such as
statics, dynamics, statistical communication theory, fiber optics, heat
conduction in solids, vibration phenomena, and fluid mechanics,
among others. In many cases these applications appear in the
chapter in which the particular special function is introduced.
However, because applications involving Bessel functions and
hypergeometric-type functions are far more extensive than those of
the other functions, they carry over to separate chapters devoted
entirely to applications (Chaps. 8 and 12).

As in the first edition, the text is suitable for use either as a
classroom text in various courses dealing with higher mathematical
functions or as a reference text for practicing engineers and scient-
ists. To this end I have tried to preserve the readability of the first
edition, improving it where I could by the addition of further
examples or clearer exposition. For instance, I have rearranged the
order of topics in Chap. 1 so that asymptotic formulas follow the
discussion of improper integrals, and in addition to the chapter on
applications, the discussion of Bessel functions has been expanded to
two chapters—one chapter devoted entirely to Bessel functions of the
first and second kinds (Chap. 6) and one devoted to Bessel functions
of other kinds, such as modified Bessel functions and spherical Bessel
functions (Chap. 7). These discussions on Bessel functions also
include some new material such as the introduction of addition
formulas, Kelvin's functions, and Struve functions.

I am grateful to a number of students and colleagues for their
helpful , suggestions concerning this second edition. In particular, I
wish to thank B. K. Shivamoggi, K. Vajravelu, and M. Belkerdid for
their input concerning the choice of certain applications. I am further
indebted to B. K. Shivamoggi for reading most of the new material

xi
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xii Preface to the Second Edition

and offering many useful suggestions. Finally, I wish to thank the
entire production staff of McGraw-Hill and, in particular, acknow-
ledge my editor, Robert Hauserman, for his continued support of this
project.

L. C. Andrews

Publishers' note: This new printing of the Second Edition of Special Functions of
Mathematics for Engineers, originally published by McGraw-Hill in 1992, includes
known corrections to the text and formulas. Because of the importance of this material in
modern engineering, SPIE—The International Society for Optical Engineering and
Oxford University Press are republishing it to make it available to the engineering,
science, and mathematics communities. A Third Edition is planned, which will
incorporate widely used mathematics software to help the reader make the transition to
numerical calculations.
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Preface to the
First Edition

Modern engineering and physics applications demand a more thor-
ough knowledge of applied mathematics than ever before. In particu-
lar, it is important to have a good understanding of the basic
properties of special functions. These functions commonly arise in
such areas of application as heat conduction, communication systems,
electro-optics, nonlinear wave propagation, electromagnetic theory,
quantum mechanics, approximation theory, probability theory, and
electric circuit theory, among others. Special functions are sometimes
discussed in certain engineering and physics courses, and mathemat-
ics courses such as partial differential equations, but the treatment of
special functions in such courses is usually too brief to focus on many
of the important aspects, such as the interconnecting relations
between various special functions and elementary functions. This
book is an attempt to present, at the elementary level, a more
comprehensive treatment of special functions than can ordinarily be
done within the context of another course. It provides a systematic
introduction to most of the important special functions that com-
monly arise in practice and explores many of their salient properties.
I have tried to present the special functions in a broader sense than is
often done by not introducing them as simply solutions of certain
differential equations. Many special functions are introduced by the
generating-function method, and the governing differential equation
is then obtained as one of the important properties associated with
the particular function.

In addition to discussing special functions, I have injected through-
out the text by way of examples and exercises some of the techniques
of applied analysis that are useful in the evaluation of nonelementary
integrals, summing series, and so on. All too often in practice a
problem is labeled "intractable" simply because the practitioner has
not been exposed to the "bag of tricks" that helps the applied analyst
deal with formidable-looking mathematical expressions.

During the last 10 years or so at the University of Central Florida
we have offered an introductory course in special functions to a mix of

AN
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xiv Preface to the First Edition

advanced undergraduates and first-year graduate students in mathe-
matics, engineering, and physics. A set of lecture notes developed for
that course has finally led to this textbook. The prerequisites for our
course are the basic calculus sequence and a first course in
differential equations. Although complex variable theory is often
utilized in studying special functions, knowledge of complex variables
beyond some simple algebra and Euler's formulas is not required
here. By not developing special functions in the language of complex
variables, the text should be accessible to a wider audience. Natur-
ally, some of the beauty of the subject is lost by this omission.

The text is not intended to be an exhaustive treatment of special
functions. It concentrates heavily on a few functions, using them as
illustrative examples, rather than attempting to give equal treatment
to all. For instance, an entire chapter is devoted to the Legendre
polynomials (and related functions), while the other orthogonal
polynomial sets, including Hermite, Laguerre, Chebyshev, Gegen-
bauer, and Jacobi polynomials, are all lumped together in a single
separate chapter. However, once the student is familiar with Legen

-dre polynomials (which are perhaps the simplest set) and their
properties, it is easy to extend these properties to other polynomial
sets. Some applications occur throughout the text, often in the
exercises, and Chap. 7 is devoted entirely to applications involving
boundary-value problems. Other interesting applications which lead
to special functions have been omitted, since they generally presup-
pose knowledge beyond the stated prerequisites.

Because of the close association of infinite series and improper
integrals with the special functions, a brief review of these important
topics is presented in the first chapter. In addition to reviewing some
familiar concepts from calculus, this first chapter contains material
that is probably new to the student, such as the Cauchy product,
index manipulation, asymptotic series, Fourier trigonometric series,
and infinite products. Of course, our discussion of such topics is
necessarily brief.

I owe a debt of gratitude to the many students who took my course
on special functions over the years while this manuscript was being
developed. Their patience, understanding, and helpful suggestions
are greatly appreciated. I want to thank my colleague and friend,
Patrick J. O'Hara, who graciously agreed on several occasions to
teach from the lecture notes in their early rough form, and who made
several helpful suggestions for improving the final version of the
manuscript. Finally, I wish to express my appreciation to Ken
Werner, Senior Editor of Scientific and Technical Books Department,
for his continued faith in this project and efforts in getting it
published.
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Notation for
Special Functions

Notation

Ai (x ), Bi(x)

bei (x ), ber (x ), bei, (x),
bern (x)

B (x, y)

Bx (p, q)

bR (x )

C(x), C 1 (x), C2(x)

Crz (x )

Ci (x)

cnu, dnu

D,, (x)

Ei (x), E1(x)

E(m)

E(m, <P)

E(a,;c,;x)

EP (x)

erf x, erfcx

(x)

F(a,b,c;x)= 2Fi(a,b;c;x)

F(m, 0)
,F,(a„;c,;x)

F(x)

Y(a, x ), r(a, x )

G(a, b;c;x)

Gm,"(x Ia')

Name of function

Airy functions of the first and second kinds

Kelvin's functions

Beta function

Incomplete beta function

Bessel polynomial

Fresnel cosine integrals

Gegenbauer polynomial

Cosine integral

Jacobian elliptic functions

Parabolic cylinder function

Exponential integral

Complete elliptic integral of the second kind

Elliptic integral of the second kind

MacRobert E function

Weber function

Error functions

Riemann zeta function

Hypergeometric function

Elliptic integral of the first kind

Generalized hypergeometric function

Gamma function

Incomplete gamma functions

Hypergeometric function of the second kind

Meijer G function

xv
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xvi Notation for Special Functions

Notation Name of function

H,, (x ), H, (x) Hermite polynomial, Hermite function

I	 (x) Struve function of the first kind

H,"(x ), H (̀ )(x) Hankel functions of the first and second
kinds

h ,"(x ), h. (x) Spherical Hankel functions of the first and
second kinds

i,,(x) Modified spherical Bessel function of the
first kind

4(x) Modified Bessel function of the first kind

Jij, (x) Integral Bessel function

j,, (x) Spherical Bessel function of the first kind

Jp (x) Bessel function of the first kind

J,, (x) Anger function

kei (x), ker (x) Kelvin's functions

K(m) Complete elliptic integral of the first kind

kn (x) Modified spherical Bessel function of the
second kind

Kp (x) Modified Bessel function of the second kind

li (x) Logarithmic integral

Ln (x) Laguerre polynomial

Lnm'(x ), L(x) Associated Laguerre polynomial, associated
Laguerre function

L,, (x) Modified Struve function

M(a; c; x) = ,F,(a; c; x) Confluent hypergeometric function

Mk,,,, (x) Whittaker function of the first kind

Pn (x), 1,(x) Legendre polynomial, Legendre function

P' (x) Associated Legendre function of the first
kind

Pá° b '(x) Jacobi polynomial

H(m, a) Complete elliptic integral of the third kind

II(m, 0, a) Elliptic integral of the third kind

V (x) Digamma or psi function

V(- '(x) Polygamma function

Q,, (x) Legendre function of the second kind

Q' (x) Associated Legendre function of the second
kind

Si (x), si (x) Sine integrals

S (x), S1 (x ), S2 (x) Fresnel sine integrals
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Notation for Special Functions xvii

Notation Name of function

sn u Jacobian elliptic function
T,,(x) Chebyshev polynomial of the first kind
U,,(x) Chebyshev polynomial of the second kind
U(a; c; x) Confluent hypergeometric function of the

second kind

Wk,,,, (x) Whittaker function of the second kind
y„ (x) Spherical Bessel function of the second kind
Yp (x) Bessel function of the second kind
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