Show that

$$
\frac{B_{\chi}(\rho)}{B_{\chi}(0)}={ }_{1} F_{1}\left(\frac{7}{6} ; 1 ;-\frac{\kappa_{m}^{2} \rho^{2}}{4}\right) .
$$

14. Starting with Eq. (133), derive Eq. (134) by expressing the complex expressions in polar coordinates, i.e., write

$$
x+i y=r e^{i \theta},
$$

where $r=\sqrt{x^{2}+y^{2}}$ and $\theta=\tan ^{-1}(y / x)$. Consequently, verify Eqs. (135).
15. By directly evaluating the integrals, verify Eq. (145).
16. Verify that the substitution of (154) into (153) leads to (156).
17. Given a Gaussian-beam wave at the transmitter with beam characteristics $W_{0}=0.03 \mathrm{~m}, F_{0}=500 \mathrm{~m}, \lambda=0.633 \mu \mathrm{~m}$, determine W, F and the on-axis intensity $I(0, L)$ at distance $L=1200 \mathrm{~m}$ from the transmitter. Assume unit amplitude at the transmitter.

$$
\begin{aligned}
& \text { Ans. } W=0.043 \mathrm{~m}, F=-710.5 \mathrm{~m}, \\
& I(0, L)=0.492 \mathrm{~W} / \mathrm{m}^{2}
\end{aligned}
$$

18. If the beam described in Problem 17 passes through a lens/aperture stop of radius 0.01 m and focal length 0.05 m at distance 1200 m from the transmitter, what is the spot radius, phase front radius of curvature, and mean (on-axis) intensity of the beam at distance 0.1 m behind the lens?

> Ans. $W=9.5 \mathrm{~mm}, F=-5 \mathrm{~cm}$, $I(0, L)=0.993 \mathrm{~W} / \mathrm{m}^{2}$
19. By expressing the radial polynomials (166) of the Zernike set in terms of Pochhammer symbols,
(a) show that

$$
\begin{aligned}
& R_{n}^{m}(r)=n!\left(\frac{n-m}{2}\right)!\left(\frac{n+m}{2}\right)! \\
& \times{ }_{2} F_{1}\left(-\frac{n-m}{2},-\frac{n+m}{2} ;-n ; \frac{1}{r^{2}}\right) .
\end{aligned}
$$

(b) From part (a), verify that

$$
R_{n}^{m}(1)=1 .
$$

20. Follow the technique in Section 15.8.3, used for evaluating $G_{2, \text { even }}(\kappa, \varphi)$ (corresponding to $Z_{2}[1,1]$), to deduce that (corresponding to $Z_{3}[1,1]$)
(a) $G_{3, \mathrm{odd}}(\kappa, \varphi)=4 i \frac{2 J_{2}(\kappa)}{\kappa} \sin \varphi$.
(b) Corresponding to the Zernike function $Z_{4}[0,2]$, calculate the filter function $G_{4, \text { even }}(\kappa, \varphi)$.
