Introduction to Complex Mediums for Optics and Electromagnetics

Introduction to Complex Mediums for Optics and Electromagnetics

Editors: Werner S. Wieglhofer · Akhlesh Lakhtakia

Bellingham, Washington USA

Library of Congress Cataloging-in-Publication Data

Introduction to complex mediums for optics and electromagnetics / [edited] by Werner S.
Weiglhofer, Akhlesh Lakhtakia.
p. cm. – (SPIE Press monograph ; PM123)
Includes bibliographical references and index.
ISBN 0-8194-4947-4 (hardcover)
1. Optical materials. 2. Electromagnetism—Materials. 3. Nanostructure materials. 4.
Composite materials. I. Weiglhofer, Werner S. II. Lakhtakia, A. (Akhlesh), 1957- III. Series.

QC374.I63 2003 620.1'1295—dc21

2003042373

Published by

SPIE—The International Society for Optical Engineering P.O. Box 10 Bellingham, Washington 98227-0010 USA Phone: (1) 360.676.3290 Fax: (1) 360.647.1445 Email: spie@spie.org Web: www.spie.org

Copyright © 2003 The Society of Photo-Optical Instrumentation Engineers

All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means without written permission of the publisher.

Printed in the United States of America.

About the cover: The advances made in the last 150 years in the field of electromagnetics are connected to the ideas seeded by the 24 people depicted. These stalwart scientists are A.M. Ampere, J.C. Bose, C.A. Coulomb, A. Einstein, B. Franklin, A.J. Fresnel (top row); K.F. Gauss, O. Heaviside, H. von Helmholtz, H. Hertz, J. Larmor, M. von Laue (second row); H.A. Lorentz, G. Marconi, J.C. Maxwell, A.A. Michelson, H.C. Oersted, C.V. Raman (third row); W.H. Bragg, W.L. Bragg, J.W. Strutt (Rayleigh), J.J. Thomson, A. Volta, L. Onsager (bottom row).

Dedicated to pristine mountains and cheerful childhoods

Contents

Foreword	xxi
Preface	XXV
List of Contributors	xxxi

Part I: General

Separating Field and Constitutive Equations in Electromagnetic Theory	3
Evert J. Post	
The beginnings	4
Georgi's rationalization	5
Georgi version of Minkowski electrodynamics	7
SR(3)'s suffocating hold on field theories	11
Mathematical specifics	14
Transformation of tensors	14
Differential forms and de Rham cohomology	18
Constitutive specifics	19
Conclusion	22
Acknowledgments	23
References	24
Constitutive Characterization of Simple and Complex Mediums Werner S. Weiglhofer	27
Introduction: the curtain rises	28
Basics: the Maxwell equations	30
Space and time	30
Space and frequency	31
Setting the stage: constitutive relations	32
Exploring the stage: simple mediums	34
The classical vacuum as reference medium	34
Homogeneous isotropic dielectric-magnetic mediums	35
A plethora of complex mediums	37
Beyond isotropy	37
Constitutive relations: generalities	41
Linear mediums: bianisotropy	43
Beyond homogeneity	46
Nonlinear mediums	47

Regulating the stage: symmetries and constraints	49
General remarks	49
Reciprocity	50
Losslessness	50
A structural constraint	50
Symmetries: biaxial bianisotropic mediums	51
Preparing the stage: homogenization	53
Faraday chiral mediums	53
Concluding remarks	55
References	55
Isotropic Chiral Materials	63
Craig F. Bohren	
Introduction	64
Polarization: the simple truth	65
Circular birefringence and circular dichroism	67
A digression on vectors	70
Electromagnetic fields in a chiral material	72
Essential reading	76
References	76
Point Group Symmetries	79
Daniel B. Litvin	
Point groups	80
Physical property tensors	82
Tensor distinction of domains in ferroic crystals	83
Global tensor distinction	85
Domain pair tensor distinction	86
Domain pair symmetry and twinning groups	88
Completely transposable twinning groups	90
Domain tensors and tensor invariants	92
Domain average engineering of ferroics	94
Conclusions	96
Appendix A: Point group symbols	96
Appendix B: Form of tensors	97
References	98

Part II: Nonlinear Optical Materials

Nonlinear Optics Using Semiconductor Quantum Wells	105
John M. Arnold	
Introduction	106
Theoretical nonlinear optics	108
Quantum wells	110

Contents

Second-order quasi-phase-matching	113
Third-order nonlinearity	116
Conclusions	118
Acknowledgments	118
References	118
Organic Thin-Film Photorefractive Materials	121
Partha P. Banerjee	
Introduction	122
Photorefractive polymers	123
Engineering photorefractive polymers	124
Nonlinear optical polymer hosts	124
Charge-transporting polymer hosts	125
Fully functionalized polymers	126
Wave mixing in photorefractive polymers	127
Real-time edge enhancement	131
Edge-enhanced correlation	133
Conclusion	136
Acknowledgments	137
References	137
Optical Energy Harvesting Materials	141
David L. Andrews	
Introduction	142
Precepts from photobiology	143
Resonance energy transfer	145
Dendrimers	149
Rare-earth materials for energy pooling	151
Energy pooling in multichromophore arrays	155
The future of energy pooling	157
Acknowledgments	158
References	158
Part III: Magnetic Materials	
Magnetoelectric Effects in Insulating Magnetic Materials	167
Hans Schmid	
Introduction	168
Thermodynamic potential	169
Linear and bilinear magnetoelectric effects	172

hermodynamic potential
near and bilinear magnetoelectric effects
ME _H effects
ME _E effects

Tensor form of the linear magnetoelectric effect172Tensor form of the bilinear (quadratic) magnetoelectric effects173

ix

172

172

Contents

Measuring units	173
Examples of materials with a linear magnetoelectric effect	174
Spontaneous ferroelectric versus magnetic-field-induced polarization	176
The bilinear magnetoelectric EHH effect	176
The bilinear magnetoelectric HEE effect	177
ME_H and ME_E effect measurements	177
Optical magnetoelectric measurements	177
The piezomagnetoelectric effect $EH\sigma$	178
Spontaneous magnetoelectric effects and related phenomenons	178
Selected applications	181
Optical effects	182
Poling (spin reversal) of antiferromagnetic domains	183
Magnetic point group determination	183
Determination of magnetic field versus temperature phase diagrams	184
Determination of Néel temperatures and critical exponents	184
Magnetoelectric butterfly hysteresis loops	184
Disclosure of problems relating to symmetry property relationships	185
Magnetoelectric control of a screw spin structure	185
Determination of toroidal contributions to the magnetoelectric signal	185
Conclusions	187
Acknowledgments	188
References	188
Magneto-optics: A Critical Review	197
Allan D. Boardman and Ming Xie	
Introduction	198
Linear magneto-optics of bulk material	201
Fundamentals of planewave behavior	201
The Faraday configuration	204
The Voigt configuration	205
Envelopes in a waveguide	207
Complex planar waveguide	213
Vector solitons	216
Concluding remarks	217
Acknowledgments	219
References	219
Static and Dynamic Magnetoelasticity	223
Graeme Dewar	
Introduction	224
Magnetoelastic interaction	225
Elastic energy	225
Magnetic energy	228

Magnetoelastic energy	230
Total magnetoelastic interaction energy density	235
Static and dynamic measurements	236
Villari and ΔE effects	239
Wiedemann effect	240
Conclusion	241
References	242
Frequency Shifts Induced by a Time-Varying Magnetoplasma Medium Dikshitulu K. Kalluri	245
Introduction	246
Frequency change due to a temporal discontinuity in the medium properties	246
Time-varying plasma medium	248
Sudden creation of an unbounded plasma medium	251
Switched plasma slab	253
Applications	254
Time-varying magnetoplasma medium	255
Basic field equations	255
Characteristic waves	256
R-wave propagation	256
Sudden creation	258
Frequency-shifting characteristics of various R waves	259
Frequency upshifting with power intensification	261
Generation of a controllable helical wiggler magnetic field	262
Conclusion	262
Acknowledgment	263
References	264
Magnetoimpedance in Multilayered Films for Miniature Magnetic Sensors Larissa V. Panina and Dmitriv P. Makhnovskiv	267
Introduction	268
Analysis of MI in multilayer structures	269
Impedance of symmetrical three-layer film	270
Surface impedance tensor	271
Exact solution for the surface impedance tensor	272
MI in a narrow sandwich (width effect)	274
Asymmetric magnetoimpedance (AMI)	275
Dynamical AMI	276
Static AMI in a film with cross-anisotropy	277
Experimental methods	278
Film preparation and experimental results	280
MI in CoFeSiB/Cu/CoFeSiB multilayers	280
MI in NiFe/M/NiFe multilayers	281
Asymmetric MI (AMI)	282

Contents

Practical MI sensor design	286
Conclusions	288
References	289

Part IV: Composite Materials

Metamaterials: An Introduction	295
Rodger M. Walser	
Introduction	296
Conventional macroscopic composites	297
Motivation for metamaterials	298
Definitions of metamaterials and metaparticles	301
Examples of metamaterials	303
Thermoelectric metamaterials	304
High-frequency magnetic metamaterials	304
Electromagnetic metamaterials	306
Conventional electromagnetic composites	306
The need for electromagnetic metamaterials	308
Metamaterial electromagnetic composites	310
Conclusions	313
Acknowledgments	314
References	314
Homogenization of Linear and Nonlinear Complex Composite Materials <i>Tom G. Mackay</i>	317
Introduction	318
Preliminaries	319
Component phases	319
Depolarization and polarizability dyadics	321
Conventional approaches to homogenization	322
Maxwell Garnett formalism	322
Bruggeman formalism	322
Recent developments: incremental and differential Maxwell Garnett formalisms	323
A numerical example	324
SPFT homogenization	325
Generalities	325
Degenerate cases	326
Bilocal approximation	326
Trilocal approximation	327
Numerical results	328
Weakly nonlinear regime	330
Generalities	330
Degenerate cases	332
Bilocal approximation	333

Contents	xiii
Trilocal approximation	334
Numerical results	335
Concluding remarks	337
Appendix 1	338
Appendix 2	341
References	342
Negative Phase-Velocity Mediums	347
Akhlesh Lakhtakia, Martin W. McCall and Werner S. Weiglhofer	
Introduction	348
Phenomenology	350
Basic equations	350
Negative phase-velocity	351
Dispersion	352
Reflection and refraction	353
Experimental evidence	354
Ring-wire composite material	354
The crucial observation	355
Terminology	357
Research trends	357
Perfect lenses	357
Unusual composite materials	358
Planar technology	358
Complex materials	358
Concluding remarks	358
Acknowledgments	359
References	359
Scattering Theory of Photonic Crystals	365
Didier Felbacq and Frédéric Zolla	
Introduction	366
Scattering theory of photonic crystals	367
One-dimensional photonic crystals	367
Numerical examples	370
Defect in infinitely extended periodic medium	372
Scattering photonic crystal of finite thickness	374
Two-dimensional photonic crystals	378
Optical characterization of photonic crystals	380
Construction of the scattering matrix	380
Gamow vectors and quasi-normal modes	384
Resonant modes	385
Isolated defect	385
Photonic waveguides	386

Contents

Current problems and future directions	388
Concluding remarks	390
Acknowledgment	390
References	390

Part V: Nanostructured Materials

Optical Properties of Metal-Dielectric Films	397
Andrey K. Sarychev and Vladimir M. Shalaev	
Introduction	398
Generalized Ohm's law approximation and giant fluctuations of local	
electromagnetic fields	399
Surface plasmon polaritons	403
Resonant transmission	404
Light-induced resonant transmission	408
Extraordinary optical transmittance through nanoholes	409
Electric and magnetic resonances	411
Light circuiting in nanoholes	413
Concluding remarks	414
Acknowledgment	415
References	415
Nanostructured Thin Films	421
Geoff B. Smith	
Introduction	422
History and scope	422
Effective-medium models	423
Nanostructured films containing conductors: an overview	426
Thin films containing nanoparticles	429
General issues	429
Polarization eigenmodes in arrays	431
Isolated nanoparticles	432
Increasing density and clustering effects	435
Metal thin films on dielectric nanoparticles and nanostructures	438
Dense arrays, clusters touching particles	440
Conclusions	442
References	443
The Past, the Present, and the Future of Sculptured Thin Films	447
Akhlesh Lakhtakia and Russell Messier	
Introduction	448
From columnar to sculptured thin films	449
Columnar thin films	449
Primitive STFs with nematic morphology	455

Chiral STFs	456
Sculptured thin films	456
Electromagnetic field equations	458
Linear constitutive equations	458
Electromagnetic wave propagation	459
Structure-property relationships	460
Applications of STFs	461
Accomplishments	461
Emerging applications	465
Future research directions	467
Acknowledgments	468
References	468
Towards Optoelectronic Applications of Chiral Sculptured Thin Films Martin W. McCall	479
Introduction	480
Preliminaries	481
Projected Helmholtz equation	481
Bragg grating physics	483
Chiral sculptured thin films	484
Full electromagnetic analysis	486
The optical response of a CSTF to axial excitation	488
Coupled-wave techniques	491
The multireflectivity model of CSTFs	493
Applications	495
Narrow-band polarization filter	496
Multipass narrow-band filters	497
Tailored polarization-specific filters	498
Polarization routing	499
Issues for optical communications	501
Conclusion	502
References	504
Electromagnetics of Carbon Nanotubes	507
Sergey A. Maksimenko and Gregory Ya. Slepyan	
Introduction	508
Electron transport in carbon nanotubes	509
Dispersion properties of π -electrons	509
Bloch equation for π -electrons in carbon nanotubes	513
Linear electrodynamics of carbon nanotubes	515
Dynamic conductivity of carbon nanotubes	515
Effective boundary conditions for CNs	517
Surface electromagnetic waves in nanotubes	518
Edge effects in nanotubes	520

Contents

Nonlinear processes in nanotubes	524
Current density spectrum in an isolated nanotube	525
Negative differential conductivity in an isolated nanotube	528
Quantum electrodynamics of carbon nanotubes	532
The Maxwell equations for electromagnetic field operators	532
Spontaneous decay of an excited atom in the carbon nanotube	534
Conclusion	539
Acknowledgments	540
References	540

Part VI: Patterns and Statistics

Randomness in Complex Materials	549
H. John Caulfield, Donald O. Henderson, and Mikhail A. Noginov	,
Introduction	550
Raw material for self-organization	551
Random lasing in scattering solid-state materials	552
History and the state of the art	552
Formation of a coherent mode	556
Ease of manufacturing	559
Uniformization of optical roperties	563
Conclusion	564
Acknowledgments	564
References	566
Nonlinear Spatial Structures	571
William J. Firth and John M. McSloy	
General introduction	572
Basic models	573
Basics of pattern formation	575
Pattern formation in nonlinear optics	576
Solitonlike self-localized structures	580
Conclusions	585
Acknowledgments	585
References	585
Additional references not directly cited	588
Statistical Approaches to Scattering	591
Walid Tabbara, Véronique Rannou, and Stefano Salio	
Introduction	592
Elements of the statistical vocabulary	592
The statistical approach	594
Application I: Crosstalk	595

Contents

Geometrical representation of the cable	595
Electrical parameters of the cable	596
Observables and factors	598
Experiment design	598
A brief presentation of kriging	599
Transmission-line coupling	600
Results	601
Coupling to a cable	601
Coupling to a transmission line	604
Conclusion	606
Acknowledgments	606
References	606
Elastic Orthonormal Beams and Localized Fields	609
George N. Borzdov	
Introduction	610
Basic relations	612
Elastic eigenwaves in an anisotropic medium	612
Elastic eigenwaves in an isotropic medium	615
Sound eigenwaves in an ideal liquid	615
Superpositions of eigenwaves	616
Fields defined by spherical harmonics	618
Photoelasticity in an isotropic medium	620
Superpositions of longitudinal eigenwaves	621
Orthonormal beams of Type I	621
Orthonormal beams of Type II	623
Localized fields	624
Superpositions of transverse eigenwaves	627
Orthonormal beams of Type I	628
Orthonormal beams of Type II	629
Localized fields	632
Complex field structures	634
Conclusion	637
References	638

Part VII: Measurements

Polarimeter for Anisotropic Optically Active Materials	645
Toru Asahi and Jinzo Kobayashi	
Introduction	646
Optical activity	649
Principle of high-accuracy universal polarimeter (HAUP)	651
Original HAUP method	651
General HAUP method	656

xvii

Examples of experimental results	660
BaMnF ₄	660
Poly-L-lactic acids	661
Lysozyme crystal	663
Silver thiogallate	669
Chiral physics	669
Acknowledgment	669
References	671
Generalized Ellipsometry	677
Mathias Schubert	
Introduction	678
Experimental	679
Birefringence in stratified mediums	679
Generalized ellipsometry	680
Jones matrix presentation	681
Mueller matrix presentation	683
Light propagation in layered anisotropic mediums	684
Coherent treatment	684
Incoherent treatment	686
Generalized ellipsometry data analysis	688
A survey of birefringent material applications	690
Orthorhombic bulk minerals	690
Phonons in wurtzite-type films on sapphire substrates	692
Partially CuPt-type ordered (Al,Ga)InP2	695
Anisotropic refractive indexes and geometry of chiral liquid crystals	696
Sculptured thin films	699
Far-infrared magneto-optic birefringence in <i>n</i> -type GaAs	700
Conclusions	703
Acknowledgments	704
References	704

In memoriam: Werner S. Weiglhofer

Professor Werner S. Weiglhofer (1962–2003) David R. Fearn	713
Personal Memories of Werner S. Weiglhofer Tom G. Mackay	719
Werner S. Weiglhofer—A Personal Tribute Edward Spence	721

Contents	xix
Memories of Werner S. Weiglhofer Martin W. McCall	723
My Friend Werner Akhlesh Lakhtakia	725
Published Scientific Works of Werner S. Weiglhofer Tom G. Mackay	731
Index	749

Foreword

Richard P. McNitt

Engineers/scientists are oft exposed to the concept that the half-life of one's useful scientific knowledge is of the order of a decade, that those not keeping up will quickly be left behind. The contents of this book are proof, to me, thatif anything—a decade may well overstate the length of scientific half-life in the realm of electromagnetic/material interactions. I vividly recall a graduate course in physics (taught by a well-known physicist) four decades ago where we were exposed, more or less in passing, to some second-order effects: Peltier, Seebeck, and Thompson. As most of the students were engineers with strong interest in devices, some suggestions for utilization were quickly put forward—for instance, a possible direct-current refrigerator-but the professor noted that the effects were "small" for extant materials and thus unsatisfactory for such use. Similarly, we were given some rudimentary information about liquid crystals (possible thermometers), and birefringence of some strained materials, the latter an area of active research at that time for photoelasticians. As to electromagnetic waves, the "Maxwell equations of the time" were considered adequate, providing solutions in free space, isotropic homogenous materials, and waveguides. Most mathematical requirements were satisfied by the utilization of linear partial differential equations with constant coefficients.

This book presents many aspects of what is essentially a brave new engineering/scientist world, presenting major findings of the last decade, current research activity, speculations, and suggestions for future attack. There are powerful and general (we certainly had not been exposed to "Diffeo(4)", or to Monte Carlo simulations) mathematical methods presented, *generalized* Maxwell's equations are suggested and then utilized to resolve complex situations, a plethora of new *effects* are described and explained, and rather exotic materials and materials systems are presented. Instead of being confined to existing materials and materials systems, engineers are now able to work with materials scientists to design systems (composites, thin films, etc.) they need even to the nanolevel. One author points out that the cause-and-effect orientation of the past is now integrated into a systems approach that has a goal-and-means orientation. Further, in the new realm of nanomaterials, quantum effects also come to the fore.

It is illuminating to list just some of the named *effects* (some of which are *third*and *fourth-order*, but of increasing engineering significance) listed in this tome, effects that are available for exploitation by the informed and contemporary engineer: Faraday (rotation), Fresnel-Fizeau, Kerr, Matteuci, Mockels, Sagnac, Villari, Voigt (Cotton-Mouton), and Wiedemann. Topics such as natural optical rotation, electro-magnetic- and piezo-toroidics, magnetoelectric, magnetoimpedance, paramagnetoelectric, piezomagnetoelectric, whistler waves, and others are examined. Concepts such as excitons, light-assisted tunneling, photonic crystals, spatial solitons, semiconductor quantum wells, superlattices (metamaterials), and negative phase-velocity materials are considered, particularly as to how they will be effective in new materials with names such as Permalloy, Terfenol-D, and Yablonovite. Faced with such evidence of so many things that were not generally known four decades ago, it is tempting to validate a decade half-life, and to acknowledge that many engineers who thought they were well trained, had only mastered $(1/2)^4 =$ one sixteenth of the information presented in this book!

The broad and exceptionally well-explained contents should be of significant value to three very different populations:

- (i) The engineering scientist whose formal education occurred some decades ago and who wishes to be brought *up-to-date*.... The chapters are comprehensive, well written, and informative. Although not condescending, each chapter starts with fundamentals and completely develops the appropriate theory.
- (ii) Those currently active in the very broad arena, who wish a compact yet comprehensive overview of the field as well as of those works that would be complementary to their own. ... This book should prove to be of real value in expanding the scope of their individual researches.
- (iii) Graduate students. ... The authors should be commended for expressing their visions as to what remains to *be done*, what is important, and the possible modes of attack. This book should prove to be an excellent source of thesis problems as well as a *map* to achieve the desired solution.

As one who has been in all three of these groups (in reverse order), I found this book to be a treasure trove. ... I trust you will too.

In an old Pennsylvania Dutch saying, I sign myself as one who is

Old too soon, smart too late.

Preface

"So, what is a complex medium?" Had you asked me this question in 1990, I would not have been able to give you a coherent answer. Although by then I had studied electromagnetic fields in materials with complicated response properties for about seven years, my understanding of electromagnetics lacked the necessary breadth. Furthermore, electromagnetics researchers studying diverse types of response properties were just beginning to interact with each other.

A decade later, the subdiscipline of complex-mediums electromagnetics (CME) has taken shape. At least two series of conferences on CME are held regularly, and many scientific and technical meetings have special sessions devoted to CME. Among other complex mediums, carbon nanotubes, metamaterials, materials in which light bends "differently," and materials in which light "rotates" are commonly written about in science magazines (such as *Nature*, *Science* and *Materials Today*), as well as in monthly organs of learned societies (such as *OE Magazine*, *Optics and Photonics News* and *IEEE Antennas and Propagation Magazine*).

In 2003, I can give two answers to your question: a short answer, and a long one. The short answer is that a *positive* definition of complex mediums still remains elusive. The consensus among CME researchers is that a complex medium is not a simple medium; and that the response properties of any complex medium must be different from linear, isotropic dielectric. The long answer? Well, read on

Giant strides were made during much of the 20th century in understanding and commercially exploiting the electromagnetic properties of our atmosphere and virtually matter-free space. Yet materials research for the most part remained confined to simplified (preferably dielectric) response properties. The situation began to change during the 1980s. Scientific and technological progress came to be dominated by the conceptualization, characterization, fabrication, and application of many different classes of materials. Although some of these materials are found in nature, laboratory processing is often needed for efficient use. Others are entirely synthetic, created by chemical and physical processes. Certain materials are multiphase composites designed for certain desirable response properties otherwise unavailable. Multifunctional materials as well as functional gradient materials are needed for special purposes. Nanoengineering is often used to make material samples with the same chemical composition but different response characteristics. Thus, novel fabrication techniques and a multifarious understanding of the relationship between the macroscopic properties and the microstructural morphology of materials led to rapid progress in research on the interaction of the electromagnetic field and matter.

Electromagnetics is a science of the microscopic, though, perhaps reasonably, undergraduate textbooks rarely mention that subtlety. Many graduate textbooks also do not sufficiently emphasize that foundation. Since the 1890s, however, the Lorentz–Heaviside visualization has prevailed over earlier, even Maxwell's, understanding of electromagnetism. All matter is an ensemble of discrete charges dispersed in free space or vacuum; but an exact treatment of that kind is virtually impossible, even today, when the charge-bearing entities exceed a few million in number. Fortunately, when electromagnetic wavelengths considerably exceed molecular dimensions, matter can be treated as a continuum for a host of technological purposes.

A simple medium—most easily exemplified by a linear, isotropic dielectric material—affects the progress of electromagnetic signals in two ways:

- a delay is created with respect to propagation in vacuum, and
- absorption of electromagnetic energy takes place.

Both effects evince dependencies on frequency, but not on spatial direction. Calculations can be made and measurements can be interpreted on the per unit amplitude/intensity basis. An isotropic dielectric medium is thus equivalent to an isotropic contraction of space with absorption overlaid.

In complex mediums, the progress of electromagnetic signals is additionally affected in one or more of several ways:

- anisotropy: the direction-dependent contraction of space and absorption;
- *chirality*: the twisting of space;
- *nonhomogeneity*: the dispersal of energy into different directions by either interfaces between uniform mediums or continuous gradients in material dispersal; and
- *nonlinearity*: the emission of absorbed energy at (generally) some other frequency.

In consequence, CME research has several characteristics different from research on simple mediums.

First, CME formulations are best couched in terms of the fundamental entity in modern electromagnetics: the *electromagnetic field*. It happens to have two parts, named the electric field \mathbf{E} and the magnetic field \mathbf{B} , and identified separately for historical reasons as well as convenience. The two parts cannot be separated from the other, except after making some approximation or the other. Take a piece of a material that you think is linear, isotropic and dielectric; and make it move at a constant velocity with respect to you. You will find that it displays bianisotropic properties upon motion. A Lorentz-covariant description is therefore the only proper description of electromagnetic response properties.

Second, causality must be incorporated in CME research. Every material responds after a delay. The instantaneous part of its response properties cannot be different from that of free space; otherwise, the material would possess foreknowledge, a prospect best left for sci-fi authors to exploit. The development of femtosecond-pulse optics and the generation of attosecond pulses suggest that it is better not to cast time aside by the artifice of the Fourier transform. Even in the frequency domain, causality takes the form of dissipation and dispersion, which are the two sides of the same coin.

Third, although matter is nonhomogeneous at microscopic length scales, piecewise homogeneity is commonplace at macroscopic length scales. Statistical techniques provide a bridge between the two length scales. Complicated macroscopic response properties should not be assumed casually. For instance, if a homogeneous piece of a medium with a certain set of response properties cannot be found, the existence of continuously nonhomogeneous analogs of that set at macroscopic length scales is a dubious proposition. The development of homogenization techniques for complex mediums is a major challenge today, despite very recent successes for linear bianisotropic materials.

Fourth, nonlinearity is an essential attribute of wave-material interaction. Nonlinearity introduces dependency on amplitude or strength, and is responsible for the occurrence of multiwavelength processes. It also accounts for the electromagnetic exposure histories of materials. We all know from high-school textbooks that matter modifies electromagnetic waves; but waves also modify matter. Observe how a newspaper yellows after lying in the sun for a few days. Electromagnetic waves emitted by the sun (i.e., sunlight) effect that change.

The complexity of actual materials cannot yet be handled in its entirety. Complexity is like Gulliver, while CME researchers are like the Lilliputians. Although an individual CME researcher takes only one or two meaningful steps towards the taming of complexity, different steps are taken by different CME researchers. CME commands the attentions of scientists from a wide spectrum of disciplines: from physics and optics to electrical and electronic engineering, from chemistry to materials science, to applied mathematics and even biophysics. Thus, CME is presently a multidisciplinary research area spanning basic theoretical and experimental research at universities to the industrial production of a diverse array of electrical, microwave, infrared and optical materials and devices. A recent impetus for multidisciplinarity is the unrelenting progress of nanotechnology, which is now beginning to engender mesoscopic approaches in CME.

This book is a collection of essays to explain complex mediums for optical and electromagnetic applications. The genesis of this book lies in a series of conferences organized at the successive Annual Meetings of SPIE from 1999 to 2002. The scope of Conference 3790, *Engineered Nanostructural Thin Films and Materials*, was not fully explained by its title. Subsequently, Conference 4097 was entitled *Complex Mediums*. Further explication being needed, Conference 4467 was named *Complex Mediums II: Beyond Linear Isotropic Dielectrics* and was followed by Conference 4806 *Complex Mediums III: Beyond Linear Isotropic Dielectrics*. All

four were organized by me, very ably assisted by Werner S. Weiglhofer, Russell F. Messier, Ian J. Hodgkinson, Martin W. McCall, and Graeme Dewar. A multitude of CME researchers participated wholeheartedly.

Werner S. Weiglhofer, my co-editor, was involved in all four conferences. He and I felt that the optics community at large should benefit from a relatively broad introduction to complex mediums. Many speakers who had delivered *Key Lectures* and *Critical Review Lectures* at the conferences agreed, as also did Rick Hermann and Sharon Streams of SPIE Press. We therefore invited the presenters to update and expand their initial lectures. Other prominent researchers were invited to contribute essays on CME topics that were deemed important but had not been covered in the four conferences. The essays were edited, reviewed, revised and compiled into this book.

All contributors were requested to write with two aims: first, to educate on phenomenology and terminology; second, to provide a state-of-the-art review of a particular topic. The vast scope of CME exemplified by the actual materials covered in the essays should provide a plethora of opportunities to the novice and the initiated alike. Graduate students in the broad disciplines of electrical engineering, materials science, and physics are likely to find inspiration from one essay or another to pursue CME research; and our fondest hope is that this book would serve the next decade or so as a goldmine for dissertation topics. Experienced researchers desirous of either switching research areas or synthesizing new types of material responses may profit from this book as well. R&D engineers in industry may be able to conceptualize and actualize new types of devices, after reading certain parts of this book.

I must add here that, although Werner and I had agreed to divide editorial responsibilities equally, he was the Managing Editor. To this position, he brought his considerable organizational acumen. He interacted with all contributors and reviewers, as well as with Sharon Streams at SPIE. All contributors were supplied progress reports at suitable intervals; e-mails were promptly answered by him with unfailing courtesy; and so on. When on January 5, 2003, he asked me to initiate the writing of a preface, I replied that the end of March was far away. A week later, he was killed by an avalanche on the slopes of Bispen, a Norwegian mountain that he had ascended 29 times. I had to assume his mantle; I had to write this preface solo. This book is now a memorial to my friend Werner S. Weiglhofer, as you will notice from the inclusion of a section entitled *In Memoriam*.

A linguistic note: You will notice the absence in this book of Latin and Greek plurals of words from those languages commonly used in English. This was a deliberate editorial decision. During some 14 years of collaboration, both Werner and I were appalled at the widespread misuse of plurals—such as *criteria*, *media* and *spectra*—as singulars in scientific literature. Such pluralization is artificial to the native robustness of English. At best, it is an affectation. No wonder so many native and non-native speakers of this language make those mistakes! Taking a leaf from George Bernard Shaw's introductions to his plays that English spelling needs reform, in 1996 we decided in favor of the normal English pluralization of Latin

xxix

and Greek singulars. Although uncommon, this practice is not new. Most journals accept it. So do the Royal Society (of London), John Wiley & Sons, and SPIE.

The cooperation that Werner and I received from all contributors and reviewers was nothing short of splendid. Ms. Sharon Streams and others at SPIE have provided unstinted support. Professors David R. Fearn and Edward Spence graciously contributed their memories of Werner; and they also assisted in the transfer of editorial correspondence from Werner's computer to me. In the latter task, they were joined by Mr. David Thom (University of Glasgow) and Professor Joseph P. Cusumano (Pennsylvania State University). I am grateful to everyone involved in this project.

Complex Mediums IV: Beyond Linear Isotropic Dielectrics was convened in early August 2003, by Graeme Dewar and Martin W. McCall. I shall be delighted if a companion volume were published after another two or three editions of this conference. So would Werner, I am sure.

Akhlesh Lakhtakia August 2003

List of Contributors

David L. Andrews

School of Chemical Sciences University of East Anglia Norwich NR4 7TJ United Kingdom

John M. Arnold Department of Electronics and Electrical Engineering University of Glasgow Glasgow G12 8LT United Kingdom

Toru Asahi

Research Institute for Science and Engineering Waseda University 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan

Partha P. Banerjee

Department of Electrical and Computer Engineering University of Dayton Dayton, Ohio 45469-0226 USA

Allan D. Boardman Joule Physics Laboratory Institute of Materials Research University of Salford Salford M5 4WT United Kingdom

Craig F. Bohren

Department of Meteorology (ret.) The Pennsylvania State University University Park, PA 16802 USA

George N. Borzdov

Department of Theoretical Physics Belarus State University Fr. Skaryny avenue 4 Minsk, 220050 Belarus

H. John Caulfield

Center for Photonic Materials and Devices Fisk University 1000 17th Avenue N Nashville, TN 37208 USA

Graeme Dewar

Department of Physics University of North Dakota Grand Forks, ND 58202 USA

Didier Felbacq

GES UMR-CNRS 5650 Université Montpellier II CC074 Place Eugène Bataillon Montpellier Cedex 05 F-34095 France

William J. Firth Department of Physics University of Strathclyde John Anderson Building 107 Rottenrow Glasgow G4 0NG United Kingdom

Don O. Henderson

Center for Photonic Materials and Devices Fisk University 1000 17th Avenue N Nashville, TN 37208 USA

Dikshitulu K. Kalluri

Electrical and Computer Engineering Department University of Massachusetts/Lowell 1 University Avenue Lowell, MA 01854 USA

Jinzo Kobayashi

Research Institute for Science and Engineering Waseda University 3-4-1 Okubo, Shinjuku-ku Tokyo 169-8555 Japan

Akhlesh Lakhtakia

CATMAS, Department of Engineering Science and Mechanics The Pennsylvania State University University Park, PA 16802 USA

Daniel B. Litvin

Department of Physics The Eberly College of Science The Pennsylvania State University P.O. Box 7009 Reading, PA 19610-6009 USA

Tom G. Mackay Department of Mathematics and Statistics University of Edinburgh The King's Buildings Edinburgh EH9 3JZ United Kingdom

Dmitriy P. Makhnovsky Department of Communication and Electrical Engineering University of Plymouth Drake Circus Plymouth PL4 8AA United Kingdom

Sergey A. Maksimenko

Institute for Nuclear Problems Belarus State University Bobruiskaya 11 Minsk, 220050 Belarus

Martin W. McCall

Department of Physics The Blackett Laboratory Imperial College London Prince Consort Road London SW7 2BW United Kingdom

Richard P. McNitt

Department Head & Professor Emeritus Department of Engineering Science and Mechanics The Pennsylvania State University University Park, PA 16802-6812 USA

John M. McSloy

Department of Physics University of Strathclyde John Anderson Building 107 Rottenrow Glasgow G4 0NG United Kingdom

Russell Messier

CATMAS, Department of Engineering Science and Mechanics The Pennsylvania State University University Park, PA 16802 USA

Mikhail A. Noginov

Center for Materials Research Norfolk State University 700 Park Avenue Norfolk, VA 23504 USA

Larissa Panina

Department of Communication and Electrical Engineering University of Plymouth Drake Circus Plymouth PL4 8AA United Kingdom

Evert J. Post 7933 Breen Avenue Westchester, CA 90045-3357 USA

xxxii

List of Contributors

Veronique Rannou

Département de Recherche en Électromagnétisme/L.2 S. Supélec Plateau de Moulon Gif sur Yvette Cedex F-91192 France

Stefano Salio

Politecnico di Torino Electronics Department Torino, Italy

Andrey K. Sarychev

School of Electrical and Computer Engineering Purdue University West Lafayette, IN 47907 USA

Mathias Schubert

Institute for Experimental Physics II University of Leipzig Linnéstrasse 5 Leipzig D-04103 Germany

Vladimir M. Shalaev

School of Electrical and Computer Engineering Purdue University West Lafayette, IN 47907 USA

Gregory Ya. Slepyan

Institute for Nuclear Problems Belarus State University Bobruiskaya 11 Minsk, 220050 Belarus

Hans Schmid

Department of Inorganic Analytical and Applied Chemistry (ret.) University of Geneva 30 quai Ernest-Ansermet Geneva 4, CH-1211 Switzerland

Geoffrey B. Smith

Department of Applied Physics University of Technology Sydney PO Box 123 Broadway NSW 2007 Australia

Walid Tabbara Département de Recherche en

Électromagnétisme/L.2 S. Supélec Plateau de Moulon Gif sur Yvette Cedex 91192 France

Rodger M. Walser

Department of Electrical and Computer Engineering Engineering Science Building 143 University of Texas at Austin Austin,TX 78712-1084 USA

Werner S. Weiglhofer

Department of Mathematics University of Glasgow Glasgow G12 8QW United Kingdom

Ming Xie

Joule Physics Laboratory Institute of Materials Research University of Salford Salford M5 4WT United Kingdom

Frédéric Zolla

Institut Fresnel UMR-CNRS 6133 Faculté des Science de Saint-Jérôme Case 161-162 Av. Escadrille Normandie Nieman Marseille Cedex 20 F-13397 France