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Preface 
 

This book reviews the state of the art of the field of electroactive polymers 
(EAPs), which are also known as artificial muscles for their functional similarity 
to natural muscles. This book covers EAP from all its key aspects, i.e., its full 
infrastructure, including the available materials, analytical models, processing 
techniques, and characterization methods. This book is intended to serve as 
reference tool, a technology users’ guide, and a tutorial resource, and to create a 
vision for the field’s future direction. In preparing this second edition, efforts 
were made to update the chapters with topics that have sustained major advances 
since the first edition was prepared three years ago. Following the reported 
progress and milestones that were reached in this field has been quite 
heartwarming. These advances are bringing the field significantly closer to the 
point where engineers consider EAPs to be actuators of choice. In December 
2002, the Japanese company Eamex produced a robot fish that swims in a water 
tank without batteries or a motor. For power, the robot fish uses an inductive coil 
that is energized from the top and bottom of the tank. Making a floating robot 
fish may not be an exciting event, but this is the first commercial product to use 
an EAP actuator.  

EAPs are plastic materials that change shape and size when given some 
voltage or current. They always had enormous potential, but only now is this 
potential starting to materialize. Advances reported in this second edition include 
an improved understanding of these materials’ behavior, better analytical 
modeling, as well as more effective characterization, processing, and fabrication 
techniques. The advances were not only marked with the first commercial 
product; there has also been the announcement by the SRI International scientists 
who are confident they have reached the point that they can now meet the 
challenge posed by this book’s editor of building a robot arm with artificial 
muscles that could win an arm wrestling match against a human. This match may 
occur in the coming years, and the success of a robot against a human opponent 
will lead to a new era in both making realistic biomimetic robots and 
implementing engineering designs that are currently considered science fiction. 

For many years the field of EAP has received relatively little attention 
because the number of available materials and their actuation capability were 
limited. The change in this view occurred in the early 1990s, as a result of the 
development of new EAP materials that exhibit a large displacement in response 
to electrical stimulation. This characteristic is a valuable attribute, which enabled 
myriad potential applications, and it has evolved to offer operational similarity to 
biological muscles. The similarity includes resilient, damage tolerant, and large 
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actuation strains (stretching, contracting, or bending). Therefore, it is natural to 
consider EAP materials for applications that require actuators to drive 
biologically inspired mechanisms of manipulation, and mobility. However, 
before these materials can be applied as actuators of practical devices their 
actuation force and robustness will need to be increased significantly from the 
levels that are currently exhibited by the available materials. On the positive side, 
there has already been a series of reported successes in demonstrating miniature 
manipulation devices, including a catheter steering element, robotic arm, gripper, 
loudspeaker, active diaphragm, dust-wiper, and many others. The editor is hoping 
that the information documented in this book will continue to stimulate the 
development of niche applications for EAP and the emergence of related 
commercial devices. Such applications are anticipated to promote EAP materials 
to become actuators of choice in spite of the technology challenges and 
limitations they present.  

Chapter 1 of this book provides an overview and background to the various 
EAP materials and their potential. Since biological muscles are used as a model 
for the development of EAP actuators, Chapter 2 describes the mechanism of 
muscles operation and their behavior as actuators. Chapter 3 covers the leading 
EAP materials and the principles that are responsible for their electroactivity. 
Chapter 4 covers such fundamental topics as computational chemistry and 
nonlinear electromechanical analysis to predict their behavior, as well as a design 
guide for the application of an example EAP material. Modeling the behavior of 
EAP materials requires the use of complex analytical tools, which is one of the 
major challenges to the design and control of related mechanisms and devices. 
The efforts currently underway to model their nonlinear electromechanical 
behavior and develop novel experimental techniques to measure and characterize 
EAP material properties are discussed in Chapter 6. Such efforts are leading to a 
better understanding of the origin of the electroactivity of various EAP materials, 
which, in turn, can help improve and possibly optimize their performance. 
Chapter 5 examines the processing methods of fabricating, shaping, electroding, 
and integrating techniques for the production of fibers, films, and other shapes of 
EAP actuators. Generally, EAP actuators are highly agile, lightweight, low 
power, mass producible, inexpensive, and possess an inherent capability to host 
embedded sensors and microelectromechanical systems (MEMS). Their many 
unique characteristics can make them a valuable alternative to current actuators 
such as electroactive ceramics and shape memory alloys. The making of 
miniature insectlike robots that can crawl, swim and/or fly may become a reality 
as this technology evolves as discussed in Chapters 7 and 8. Processing 
techniques, such as ink-jet printing, may potentially be employed to make 
complete devices that are driven by EAP actuators. A device may be fully 
produced in 3D detail, thereby allowing rapid prototyping and subsequent mass 
production possibilities. Thus, polymer-based EAP-actuated devices may be fully 
produced by an ink-jet printing process enabling the rapid implementation of 
science-fiction ideas (e.g., insectlike robots that become remotely operational as 
soon as they emerge from the production line) into engineering models and 
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commercial products. Potential beneficiaries of EAP capabilities include 
commercial, medical, space, and military that can impact our life greatly.  

In order to exploit the greatest benefit that EAP materials can offer, 
researchers worldwide are now exploring the various aspects of this field. The 
effort is multidisciplinary and cooperation among scientists, engineers, and other 
experts (e.g., medical doctors) are underway. Experts in chemistry, materials 
science, electro-mechanics, robotics, computer science, electronics, and others 
are working together to develop improved EAP materials, processing techniques, 
and applications. Methods of effective control are addressing the unique and 
challenging aspects of EAP actuators. EAP materials have a significant potential 
to improving our lives. If EAP materials can be developed to the level that they 
can compete with natural muscles, drive prosthetics, serve as artificial muscle 
implants into a human body, and become actuators of various commercial 
products, the developers of EAP would make tremendously positive impact in 
many aspects of human life. 

 
Yoseph Bar-Cohen 

February 2, 2004 
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