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Abstract. Fluorescence imaging has been shown to be a potential
complement to visual inspection for demarcation of basal cell carci-
noma (BCC), which is the most common type of skin cancer. Earlier
studies have shown promising results when combining autofluores-
cence with protoporphyrin 1X (Pp 1X) fluorescence, induced by appli-
cation of &5-aminolaevulinic acid (ALA). In this work, we have tried
to further improve the ability of this technique to discriminate be-
tween areas of tumor and normal skin by implementing texture analy-
sis and Fisher linear discrimination (FLD) on bispectral fluorescence
data of BCCs located on the face. Classification maps of the lesions
have been obtained from histopathologic mapping of the excised tu-
mors. The contrast feature obtained from co-occurrence matrices was
found to provide useful information, particularly for the ALA-induced
Pp IX fluorescence data. Moreover, the neighborhood average features
of both autofluorescence and Pp IX fluorescence were preferentially
included in the analysis. The algorithm was trained by using a training

set of images with good agreement with histopathology, which im-
proved the discriminability of the validation set. In addition, cross
validation of the training set showed good discriminability. Our results
imply that FLD and texture analysis are preferential for correlation
between bispectral fluorescence images and the histopathologic ex-
tension of the tumors. © 2005 Society of Photo-Optical Instrumentation Engineers.
[DOI: 10.1117/1.1925650]
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barrier of tumorg? the formation of endogenous Pp 1X, after
application of ALA, has been found to be higher in tumor
compared to normal tissfé! Hence, ALA-induced Pp IX
advantage of the technique is that it is noninvasive and rela- can serve as a fluorescence marker for tumors. The elevated
red Pp IX fluorescence seems to correlate with the tumor ex-

tively fast, Whlch 'S clearly f.avorabl.e for chmgal use. The tension of BCC3; 2 although there have been studies present-
occurrence of skin cancer is increasing worldwide, and it has .

: . ing a lack of fluorescence selectivity.
bee_n reported _that_the most common ma"9”a$cy in the Cau- Tissue fluorescence without the application of an external
casian population is basal cell carcinofCC).” Early de-

tecti d delineai fthe t bord ften difficult fluorophore is called autofluorescertiéelncreased metabo-
ection and delineation of the tumor border are often AitCult, g iy the tumor region seems to be the key factor for caus-
since the tumors may be irregular or invisible to the naked

. . ) ! ing decreased green fluorescence in the tumor region when
eye, leading to incomplete removal and high recurrence risks. oy cited in the UV regiont? It has been shown advantageous to

Therefore, fast and effective tools for diagnosis of BCC are in ¢ompine the ALA-induced fluorescence with the autofluores-
great demand, and the fluorescence imaging technique hagence. For example, Svanberg et al. were able to visualize
become an interesting complement to visual demarcation.  BcCs by taking the ratio between the Pp IX fluorescence and
By applying &-5-aminolaevulinic acidALA) to the skin,  the autofluorescence sigidlBy this procedure, enhanced
the feedback control mechanism of the heme synthesis is by-contrast between tumor tissue and normal skin was obtained.
passed, leading to accumulation of protoporphyrin (Fp When developing new diagnostic tools, the real challenge
1X).? Due to enzymatic alteratiohsand reduced penetration s to test the ability of the techniques to demarcate tumors by
comparing with the actual histopathologic extent of the le-
sions. In an earlier study from our group, the ALA-induced

1 Introduction

Fluorescence imaging has been of increasing interest for its
application in cancer detection in recent yeafsThe main
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fluorescence of BCCs was compared with the histopathologic Table 1 Filter combinations and spectral distribution for bispectral

extent obtained from Mohs micrographic surgeifore re- imaging.
cently, we have extended the technique to include a multi-
spectral imaging system assisted by image warping for align- Autofluorescence Pp IX fluorescence
ment of the acquired imagé$!’ The results obtained were
promising although further analysis and improvement are Excitation BG23, UG BG23 [365=5 nm (95%),
needed. (365+5 nm) 405+3 nm (5%)]

To our knowledge, the report_s of fluorescence .demarcation Emission BG23, GG420 RG610 (610-700 nm)
of BCC so far have been restricted to investigating only the (47050 nm)

basic intensity feature of the data. By performing texture

analysis, additional data can be extracted from the images.
This has been shown, for example, by Zhang et al. who per- 5. )
formed a feasibility study of multispectral reflectance images Whereoy is the variance of grouf; . For larger sets of data,

for classification of skin lesion$. By calculating co- it is suitable to write Eq(2) in matrix form as
occurrence matrice'S,second-order image statistics were ob-
tained. a'Ba

)

Since texture analysis in combination with bispectral im- =T
o ; a'Wa

ages will increase the number of parameters, reduction of the
dimensionality of data is needed. A classical technique for The group scatter matriXB, is defined as
linear transformation of multidimensional data is the Fisher
linear discriminantFLD).?° The principle of FLD is to find B=(m1— m2) (1~ o) ", (4
the linear combination of variables which maximizes the ratio
of its between-group variance to its within-group variance
hence optimizing the discriminability.

In this work we have implemented texture analysis and
FLD on image data from bispectral fluorescence imaging of W= > (xj—;ui)(xj—/ui)T. (5
aggressive infiltrating BCCs located in the face. The lesions Xj € G
were imaged before and after ALA application, in two differ- Taking the derivative of), Eq. (3), with respect toa and

ent wavelength regions, recording both autofluorescence andsetting it to zero gives the generalized eigenvector problem
Pp IX fluorescence. The tumors were excised with Mohs mi- Ba=)\Wa(a"Wa#0), with the solution

crographic surgery to give a histopathologic map of each le-

sion. The images as well as the histopathologic maps were a=W 1 —my), (6)
aligned by using image warping. The ability of the technique L - L

to discriminate between pixels corresponding to tumor and Which is the resulting linear discriminant.

normal pixels has been evaluated by comparing receiver op-

eration characteristicéROC) curves. Both cross-validation 3 Methodology

and validation based on supervised training have been carried:,,.1
out.

andW is the total inner scatter matri/== W; , whereW, is
' the inner scatter matrix for each group:

Patients

Fifteen patientdsix men, nine women, mean age 67 years
(range 41-84 with BCC on the face were included at the

o L. . . e .. Department of Dermatology, Sahlgrenska University Hospi-
2 I?escrlptlon ?f Flsher. Linear Dlsc.rlmm.ant tal,pG'deborg, Sweden. Thgeystudy gvas approved by%he Io?:al
The idea of FLD is to project th®Xn dimensional data  ethics committee and conducted in compliance with the pro-
matrix X onto a vector,a, so that the projected daty,  tocol and according to Good Clinical Practice. All patients
=a'X, are easier to classify. This is achieved by choosing the gave their informed consent before enroliment in the study.
transformation vectora so that the ratio of the between-  Three patients were excluded from the analysis. In one patient
groups variance and the within-groups variance is maximized. no tumor tissue was found during Mohs surgery. Additionally,
The data matrix has number of observations arial dimen- o lesions located on the ear were excluded due to failure of

sions so thaX e R°*". Each observation; is a column ofX image warping and problems in acquiring a complete histo-
and can be assigned to a certain gr@jp The mean value of  pathologic mapping.

each group expressed with the transformed data develops to
3.2 Bispectral Fluorescence Imaging

1 _ To T The bispectral imaging set up consisted of two mercury lamps
Mi_”_ingi i = n_ixge_ axi=am, @ for fluorescence excitation and a thermoelectrically cooled
! e charged coupled devid€CD) cameraPhotometrics SenSys,
wherey; is the mean vector of the untransformed data. In the Roper Scientific Inc., Tucson, AZ, USAThe two filter com-
case of two groups, the FLD is found by maximizing the ratio binations used for imaging the autofluorescence and the Pp IX
fluorescence are presented in Table 1. The filter combinations
_ 2(1)| 5T _ 2 were chosen to match the absorption and emission peaks of
|M12 'u22| = 2 (le lz2)| , 2 the autofluorescenteand Pp IX fluorescenceThe total in-
o1t o3 o1t o3 tensity of the excitation light was:0.5 mW/cnt and the ex-

—aly.
yj—ax]l

J(a)=
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posure time of the camera w& s for b_oth recordingg. The | Image S — { Histopathological
output raw data images were 54212 pixels and 16-bit for- | rawdata excision map i map

_hi e —— — ey
mat, but_were converted to 8-bit format after gray level Ter—— rm—
thresholding. (4 landmarks) (excision border)

The area to be investigated included the BCC lesion and
approximately 2 cm of the surrounding normal skin. An ALA Select ROI
cream(Crawford Pharma_ceutlcals Ltd, Engla)rub_nsstmg of e Date: Classification |
20% (w/w) ALA was applied f@ 3 h toobtain optimal Pp 1X i P P A map :
contrast between tumor and normal skirthe lesion of in- ' == =
terest was marked with four spots in ink used as landmarks ‘ Decrease resolution ‘
for image analysis. A background Pp IX image was obtained Sk : 5
before application of ALA. After the imaging procedure, the st I
area was covered with an occlusive dressing for 48 h, to mini- 1
mize the risk of undesired phototoxic reactions. Texture analysis:
Arzvg’ Ezvg’ CP

3.3 Histopathologic Map FLD
All BCCs were excised by Mohs micrographic surgery with- pommmee- A
out prior knowledge of the fluorescence results. The mean r;;:‘ge:m"

delay between the time of fluorescence investigation and sur- oo
gical excision of tumor was 46 day28 (mean-SD). Since Fig. 1 Schematic drawing of image analysis procedure.
BCCs are slow growing tumors, the changes in the tumors
occurring during this time period can be neglecte@ihe ex-

cision site was inscribed wit_h a b_Iack line in a reference im- 5 5 Image Preprocessing
age before surgery. The excised tissue blocks were frozen and L . . . .

re-embedded in paraffin. From these blocksym sections To minimize computatlonal_tlme a region of interg&Ol)
were cut from the surface into the block at 3—4 levels. All V@S sel_ected_. When choosing a RO, care was taken to ex-
microscopically verified tumor tissue was mapped to a sepa- clude dlstgrblng edges, such as the b_order_betvvgen ALA-
rate chart for each section. By adding the tumor areas for eachtréated skin and untreated skin. The pixel dimensions of a
section a final map of the lateral extent of the tumor was RO! varied between 78107 and 22%232 depending on the
obtained, without prior knowledge of the fluorescence images. '€S1oN- The Pp IX images?, were corrected by subtracting
The acquired histopathologic map was matched with the fluo- the Packground Pp IXimageBy, giving the corrected Pp IX
rescence images by using image warping, as will be describedMa9€:Peor-

in the following. The precision of matching was estimated to

be =3 mm. 3.6 Texture Analysis
) The average neighborhood featurég,y and P4, were ob-
3.4 Image Warping tained by convolving the autofluorescence ima§jeand the

In order to match the different fluorescence images acquired Pcor image with an averaging filter of size ¥0.0 pixels. The
at different times, image warping was applied. The applied averaging works as a low-pass filter suppressing noise in the

algorithm was the affine transformatfSrdescribed as image.
Texture description by using co-occurrence matrices is
U= a X+ agy + ago, based on the repeated gray-level configuration in an image
7) window!® The matrix is constructed by calculating the rela-
v=B1%+ Boy + Boo tive frequenciesP , 4(a,b), which describe how frequently

pixel pairs with separation in direction ¢ and gray levels
(a,b), occur in a specified window centered around pixel
(i,j). For each image pixel, the contra&, 4(i,j), can be
calculated from the corresponding co-occurrence matrix as

wherex andy are the landmark coordinates of the input im-
age, which are transformed to the positiarv in the output
image. The parameteks;; and g8;; describe the transforma-

tion.
For aligning the fluorescence images, four landmarks in
each image were used. When aligning the histopathologic Cy aih=> |a—b|2P¢ d(a,b). (8)
: < :

map with the macroscopic excision, up to ten landmarks were

used, manually selected along the excision border. The algo-By constructing the co-occurrence matrices for various direc-
rithm was implemented in Matlab®The MathWorks, Inc.,  tions, ¢, but fixed distanced, the total contrast can be ob-
Natick, MA, USA). The selected landmarks were inserted in tajned by summing:

two landmark matricesY and X, resulting in an overdeter-

mined linear systenY =XP. The unknown parameter matrix

P was determined by finding the least-square solution, giving Ca(i,j)=2 Cyali.j). 9

the transformation parametes; andg;; . The desired trans- ¢

formation was thereafter carried out using Matlab® Image The contrast parameter gives a measure for the variability of
Processing Toolbox. A schematic picture of the image- the fluorescence, where areas with high contrast signal have
processing procedure is presented in Fig. 1. varying intensity.
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Co-occurrence matrices were calculated for each pixel by a (13)
window of 21x21. The number of gray-scale levels were re- B=(GM)'GM = nVA?VT, (14
duced from 256 to 51 to decrease computational time. The
distance vectord, was set to 3 pixels, and the angles were 0°,
45°, and 90°. Subsequently the contrast im&geas derived (14)
by calculating the contrast for all pixels. W=X[X,s—B =nV[I-AZ]VT, (15)

The Fisher functiofEq. (2)] can now be expressed as

and the inner scatter matrix becomes

3.7 Choice of Training Set

T TA2 3 2p2
The fluorescence images were initially evaluated by calculat- J(a)= a Ba(l4):'(l5) b’A%D — ZiAbi ,
ing Z images, obtained as a'Wa_\r, b 1=A%]b  ={(1-\f)bf
(16)
= P—kPol (10) which will be maximized if onlyb; is nonzero. Sincea
A =Vb, the best choice o will be in the direction of the first

A similar procedure has been described earlier by Andersson-column ofV, i.e.,v. So for the rescaled variableX,qv, will
Engels et af The parametek was introduced to account for ~MaximizeJ(a). Subsequently, the maximum d¢a) is found

intensity differences betwee? and P, . for XSv;. The resulting linear discriminant will be
The Z images were compared with the histopathologic
mapping and the degree of correlation was rated. The ratings 8r p=9SVy, 17

revealed good correlation in four patients, and seven patientswhereSis obtained from the first SVD according to E41)

showed partial agreement. One patient showed deviating au-andV is from the second SVD; see E(L.2). By using other
tofluorescence behaViOf, i.e., increased autofluorescence in tth]umns ofV, more discriminants with decreasing order of

tumor region. Hence this patient was excluded from analysis. discriminability can be obtained.
The fluorescence images with good correlation betw&en-

age and histopathology were used as traininglaeeled t1— 3.9 \alidation

t4) for the FLD algorithm, and the seven with partial agree-

ment were used as validation stbeled v1-vY. Cross validation(leave one oytwas performed by using the

training set. Thereafter the complete training set was applied
to train the algorithm and validate it with respect to the vali-
dation set. The discriminability was evaluated by ROC. ROC
) o curves are obtained by plotting the number of true positives
The data matrixX was constructed by vectorization of the (TP) against the number of false positivégP). For a given
image data. For convenience the dimensionX wfere shifted  giscriminability the shape of the ROC curve will vary. The

compared to earlier description of FLD so that R™°. The  gteeper the slope for low values of FPs, the better the discrim-
ROI from each image was rescaled so that 10 000 pixels from jnapijity of the method.

each image set were incorporatedXn The solution of the

Fisher function(6) was implemented according to a method

described by Riple§# The technique is based on singular 4 Results

value decompositioiSVD) of the data. First, SVD was car-  In this paper we have used FLD for discrimination of tumor
ried out on the data matrix, giVing:UlAlVI- The data pixels and pixels corresponding to normal skin in bispectral

3.8 Implementation of Fisher Linear Discriminant

were rescaledX,=XS. Choosing fluorescence images of BCCs located in the face. Texture
analysis has been implemented to increase the level of infor-
S=VnViA;t (11) mation extracted from the images. It was found that the best

parameters to include in the algorithm were the neighborhood
simplifies the within-group covariance matrix for the rescaled average of the autofluorescenée,q, and of the Pp IX fluo-

variables so that it equals the identity matrix, i.e(T,sx,s rescence,P,,4, as well as the contrast feature of the
=nl. background-corrected Pp IX imag€p .

The elements of the group matri®, indicate which group Figure 2 shows the scatter pla&—0 of the in-going fea-
each data point belongs tG;;=d([i],j), where[i] is the tures of the training set and the projection on first and second
group of the data poirit By this definition,G'G is diagonal.  Fisher vectorsag ; andag,p,, obtained from the training

The group means for the rescaled variables was calculated byset. The histograms foA,g, Pavg, and the projection on
M=(G'G) 'GX;. The diagonal matrixT was constructed  a,,,, are also included in Figs.(@—2(f). As can be seen
by defining its elements a$;;=n/n;, so that TG'GT from the scatter plots, the separation between the two differ-

=nl. By performing a second SVD on ent data groups is improved after projection on the FLD. This
is especially true for the projection on the first discriminant.
T IM=UAVT, (12 As expected, the tumor pixels tend to be located towards
one obtains Iower_Aa\,g values|[Fig. 2(0!)] and hlgherl_Da\,g [Fig. 2(e)]. Irl
the histogram for the projected data, Figf)2the separation
_ T between the tumor and normal groups is improved.
M=TUAV". (13 Figure 3 shows the resulting FLDs during cross validation.
Hence, the group scatter matrix takes the form As expected, th@,,,images have a positive correlation with
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Fig. 2 (a)-(c) Scatterplots of data from the training set. P,,, and A,,, are the neighborhood averages of Pp IX fluorescence and autofluorescence,
respectively. Cp is the Pp IX fluorescence contrast. app; and app, are the first and second linear discriminants. Pixels corresponding to normal
skin are denoted by A, and tumor pixels are denoted by *. Histograms for the data projected on A, , Py, and agp; are shown in (d)-(f). Black
bars belong to tumor class and gray bars represent the normal class.

tumor, whereas the correlation wifly,, images are negative. ~ feature, calculated as the ratio betwéeandA, is presented.

In addition, the contrast imag€p, shows positive correla- ~ As shown in Fig. 5, the ROC curves fBrare actually below
tion. The ROC curves for the cross validation are shown in LoC. TheZ feature shows some discriminability up to 20% of
Fig. 4. As can be seen, the discriminability is particularly TP, which thereafter drops off. Th& curve is the only curve
good for t2, and t3, reaching a high degree of TP and low Of the simple features that shows some discriminability in the
values of FP. The deviation from the line of chariceC) was ~ Whole range. By performing FLD transformation in combina-
large for all cases. tion with texture analysis, the ROC curve is improved for the

As a second evaluation, the algorithm was trained by using validation set.

the complete training sétl—t4) and validated using the vali- Figure 6 shows photographs of two morpheiform BCCs,
dation set(v1—v7). The overall result including the complete (2 t3 included in the training set an@) v5 from the valida-
validation set is shown in Fig. 5. Included in the figure are the tion set. The fluorescence, texture and projection images for

ROC curves for the basic featurBsandA. In addition, thez each lesion are presented in Figs. 7 and 8, respectively. As
shown, there is an elevated Pp IX fluorescef@eand de-

1F T : ‘ .
0.8} ] . . , : . —
06} ,
04f ] |

0 |
0.2} ] ¥

04f : 2 ]
0.4} | /i -
06 C#t| /1 7

' B #t2 ool ki . — #t1
-0.8 B #t3 | : 1 25 #2

’ - #t4 ; // R #13

-1 ] [ -—- #t4

I or ¥ --- LoC
A P c ; i ; i . .
e e P 0 02 0.4 06 038 1

Fig. 3 Resulting linear discriminant, app, when performing cross

FP

validation of training set. A,,, and P,,, are the neighborhood averages
of autofluorescence and Pp IX fluorescence respectively. Cp is the
texture contrast of Pp IX fluorescence.

Fig. 4 Cross-validation ROC analysis, i.e., true positives (TP) against
false positives (FP). The different image series are labeled t1-t4. In-
cluded is also the line of chance (LoC).
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1l ] It was shown that the discriminability based on the ROC
curves from the cross validation of the training set was good.
sl | In addition, the training of the implemented algorithm was
) found to significantly improve the discriminability of the vali-
dation set compared to the simple features. Interestingly, the
0.6r 1 autofluorescence alone was found to be the best basic feature
e to discriminate the pixels from the ROC analysis. Surpris-
0.4l ] ingly, the P feature displayed a lack of discriminability. This
shows that the Pp IX fluorescence alone is insufficient for
tumor demarcation of some lesions. Despite this, the Pp IX
0.2 | fluorescence provides useful information when performing
texture analysis, since the contrast feature increases the dis-
of ! . . . ‘ & criminability significantly.
0 0.2 04 06 08 1 In texture analysis, there is a huge variety of parameters
FP which can be calculated; however, depending on the task,
Fig. 5 ROC analysis of validation set, i.e., true positives (TP) against only a few of these will contain useful information. In this
false positives (FP). The different lines represent different methods. study we have tested parameters calculated from co-
Linear discrimination combined with texture analysis (FLD), Pp IX im- occurrence matricéd extracted from the different fluores-
age only (P), autofluorescence only (A), and Z analysis (Z). Included is cence images, in addition to neighborhood averaging. It was
also the line of chance (LoC). found that the contrast parameter and the neighborhood aver-

age contained useful data to discriminate between tumor and
normal pixels. Hence, only these parameters were imple-
mented in the discrimination algorithm.

It is important to try to understand the physical meanings

creased autofluorescen@® in the tumor area. In the neigh-
borhood average imageg,d), this behavior is more pro-

nounced suppressing noise. However, in Fig) 8here is an of the actual texture parameters in order to eliminate the risk

area outside the tumor which shows rather high Pp IX fluo- of implementing unrealistic parameters. For this purpose, the
rescence. Interestingly, this area is not detected in the contrast b g P ' purpose,

image (@), implying that the fluorescence texture is homoge- heighborhood average is possibly correlated with the fact that
neous in, this area. In the tumor. however. the fluorescenceplxels classified as tumor are most likely to be surrounded by

: . : . other tumor pixels. Sporadic fluorescence changes will be
seems to be highly varying, which generally gives a strong .
. . . > SO suppressed. The contrast parameter, on the other hand, gives a
signal in contrast image. In the resulting projection imadgs

the agreement with the tumor border is shown measure for t_he vari_abil_ity of _th‘? fluores_cenc_e ir_1 a ce_rtain
' area. Areas with varying intensity information will give a high
. . contrast signal, whereas areas with homogeneous fluorescence
5 Discussion are extinguished. This is of great importance in the case of
The demand for effective tools for diagnosis and demarcation ALA-induced fluorescence. It seems that the ALA-induced
of skin cancer is increasing, particularly for BCC which is the fluorescence is rather inhomogeneous in the tumor area, giv-
most common skin malignanéyEluorescence imaging using ing a high contrast signal. Moreover, artifacts due to uneven
ALA-induced Pp IX as fluorescent marker, has shown a po- ALA distribution, causing elevated Pp IX levels without cor-
tential use for demarcation and delineating these types of respondence to tumor, will be suppressed since these areas
tumors:—3 However, there are studies reporting on lack of show a different pattern compared to tumor areas. It was
selectivity of the Pp IX fluorescenc?.lt has proved to be  found that only the contrast parameter for the Pp IX fluores-
preferential to combine the ALA-induced fluorescence with cence contained useful information. Hence, only the Pp IX
the autofluorescencé.By taking the ratio between the two  contrast feature was included in the discriminant analysis.
different fluorescence signals, increased contrast has been ob- When implementing FLD analysis, the choice of training
tained. Still, the question remains of how to demarcate be- set is of great importance. In this study we used image data
tween tumor tissue and normal skin. whose fluorescence ratio earlier showed good agreement with
In order to investigate the correlation between bispectral the histopathologic map, as the training set. By doing so, we
fluorescence images and the histopathologic extent of the tu-forced the algorithm to find a linear discriminant representa-
mor, some sort of matching technique is needed to be able totive for these data. Still, the derived discriminant was able to
align the fluorescence data with the histology map. This can improve the discriminability of the validation set, which
be obtained by performing image warpifigWe have earlier showed only partial agreement using the fluorescence ratio
presented a comparison betwegimages, i.e., the ratio be- alone. It is possible that even better discrimination can be
tween Pp IX fluorescence and autofluorescence, and the his-obtained by being able to subdivide the lesions into different
tologic extent of BCCS! In the present study we have inves- groups, using different discriminants. For example, we have
tigated the possibility of using FLD in combination with observed a lesion with increased autofluorescence in the tu-
texture analysis for improving and evaluating the discrim- mor area which was excluded here because of its deviant be-
inability of the technique. A training set of four cases with havior. This type of analysis requires a much larger corpus of
good agreement in the earlier study was implemented, andpatient material, and is therefore subject to future work.
seven image series with partial agreement were used as the As shown by this study, the contrast parameter obtained
validation set. Both cross validation and evaluation using the from co-occurrence matrices of the Pp IX images provided
validation set were carried out. useful information for discrimination between tumor and nor-
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Fig. 6 Photography of two lesions. Morpheiform BCC located (a) under right eye, included in training set, t3 and (b) at forehead, included in
validation set, v5. The black rectangle indicates the ROI, for which fluorescence data have been obtained (see Figs. 7 and 8).

-]

Fig. 7 Fluorescence images of ROI of lesion t3 [Fig. 6(a)l. (a) The
corrected Pp IX fluorescence, P, (b) the autofluorescence image, A,
(c) the average image of Pcoy, Py, (d) shows the average image of A,
Auvg, (€) is the calculated contrast image from P, Cp, and (f)
shows the final projection image, ag p. Delay between fluorescence
investigation and surgery was 33 days.

Journal of Biomedical Optics

034009-7

Fig. 8 Fluorescence images of ROI of lesion v5 [Fig. 6(b)]. (a) The
corrected Pp IX fluorescence, P, (b) the autofluorescence image, A,
(c) the average image of Pcorr, Payg i (d) shows the average image of A,
Auvg, (€) is the calculated contrast image from Py, Cp, and (f)
shows the final projection image, app. Delay between fluorescence
investigation and surgery was 53 days.
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mal areas. A major drawback associated with this parameter, 5.
however, is that of edge effects. Since the contrast is high in
areas with a high degree of fluorescence variation, edges will
give a strong signal. For example, the border between the
ALA-treated area and the non-ALA-treated surrounding skin 6,
may cause a false signal. This can be observed in k&), in

the lower left-hand corner. For this reason, it is of great im-
portance to be able to obtain a ROI without edges in order to
be able to use this texture feature.

Another problem noted in this study is the disturbing effect g
of hair in the autofluorescence images. It is likely that the
keratin in hair causes the disturbance. This problem occurs if
the lesion is located on the scalp or in the close vicinity of the 9
hairline. It appears that shaving is not sufficient to eliminate
the unwanted fluorescence completely. Since many tumors

have this location, it is desirable to find techniques minimiz- 1q.

ing this problem.

In conclusion, we have investigated the possibility of im-
proving the ability to discriminate tumor areas from normal
skin in fluorescence images of BCCs, by implementing tex-
ture analysis in combination with FLD. Classification maps of

the lesions have been obtained from histopathologic mapping12.

of the excised tumors. Even though the study was based on a
limited data set, it was found that the contrast parameter ob-
tained from co-occurrence matrices of the ALA-induced Pp

IX fluorescence, together with the neighborhood average of |,
autofluorescence and Pp IX fluorescence, provides useful in-
formation for the discrimination task. By training the algo-
rithm, using a training set of images with good agreement
with histopathology, the discriminability of images with only
partial agreement was improved. These results imply that
when applying bispectral fluorescence imaging for demarca- 15
tion of skin lesions, FLD and texture analysis are preferential
for obtaining correlation between images and the histopatho-
logic extent of the tumors. Nonetheless, further studies are
needed to make the technigue robust as a diagnostic tool.
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