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Abstract. Directional Fourier spatial frequency analysis was used on standard histological sections to identify
salient directional bias in the spatial frequencies of stromal and epithelial patterns within tumor tissue. This direc-
tional bias is shown to be correlated to the pathway of reduced fluorescent tracer transport. Optical images of
tumor specimens contain a complex distribution of randomly oriented aperiodic features used for neoplastic
grading that varies with tumor type, size, and morphology. The internal organization of these patterns in fre-
quency space is shown to provide a precise fingerprint of the extracellular matrix complexity, which is well
known to be related to the movement of drugs and nanoparticles into the parenchyma, thereby identifying
the characteristic spatial frequencies of regions that inhibit drug transport. The innovative computational
methodology and tissue validation techniques presented here provide a tool for future investigation of drug and
particle transport in tumor tissues, and could potentially be used a priori to identify barriers to transport, and to
analyze real-time monitoring of transport with respect to therapeutic intervention.© The Authors. Published by SPIE under a
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1 Introduction
The challenge of characterizing the seemingly random geomet-
ric relationships between the visible biological features of
tissues can be simplified by examining the Fourier spatial fre-
quency (FSF) spectrum of the image.1 Drug delivery to tumors is
well known to be chaotic and limited, partly from the perfusion
limitations of dysfunctional neovasculature, but also because of
the microscopic regional variations in composition which
occur.2,3 However, while the phenomenological features of
drug delivery limitations are known, understanding ways to mit-
igate the problem remains an ongoing research challenge. The
characterization of this seemingly random microheterogeneity is
an issue that would benefit significantly from automated meth-
ods to quantify delivery efficacy. With this as a goal, in this
study, the features of tumor sections were analyzed for aniso-
tropic structures and how this relates to flow kinetics, by exam-
ining the FSF spectrum of the image features. This letter
presents the conceptual development of how structure could
be used to automatically classify transport in systems of well-
characterized tracers and tumor types.

The intensity map of any image can be decomposed into the
superposition of a series of sinusoidal frequencies, with units of
cycles per unit length, similarly to the way electrical signals can
be decomposed into individual temporal frequencies. Recently,
Russell et al.4 used FSF analysis to identify the characteristic

spatial frequencies of dispersions of self-assembled biological
macromolecules in different states of aggregation. Pu et al.1

demonstrated the use of FSF to distinguish between histological
images of normal tissue and early-stage cervical cancer. Reufer
et al.5 in a related application developed a method to incorporate
directionality into FSF analysis, for identification of anisotropy
in nanoparticle dynamics. Heterogeneous distribution of exog-
enous agents to solid tumor is thought to be associated with local
tumor stromal heterogeneity: the relationship between nonuni-
form porosity from stromal growth and channel formation and
nonuniform distribution of therapeutic or diagnostic agents has
been observed both by histology,6 and in vivo MRI.7 The ultra-
structure of the tumor stroma has been identified as a regulator
of this phenomenon and is well known to be a major barrier in
certain tumors, such as pancreatic cancer.8 Regions of invasive
cell growth, disordered collagen, or high glocosaminoglycan
content also can create a restricted geometry that defines a tor-
tuous flow environment.9

In this study, we take advantage of the fact that in fluorescent
tracer experiments, a region of poor tracer distribution demon-
strates evidence of a barrier to transport. Using intensity maps of
fluorescent tracers, we identify regions of marked fluorescence
intensity anisotropy and then apply a directional averaging of
the FSF over the intensity map of a conventionally stained his-
tological section of that region. When a standard hematoxylin
and eosin (H&E) stain is used, the eosin component, which
stains protein, forms a pattern in the interstices between cells,
i.e., an image of the protein distribution in the stroma. The char-
acteristic frequency spectrum recovered from the intensity of the
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eosin staining is a quantitative record of how finely or coarsely
spaced the structural features revealed in the image are. In this
letter, we show that the characteristic spatial frequency spectrum
of intratumor protein associated with directional anisotropy of
tracer distribution is a unique identifier of transport barriers and
establishs a systematic method of quantifying the relationship
between tumor structure and drug distribution.

2 Methods and Materials
Images were from cut sections of xenograft tumors grown in
nude mice. All animal procedures were approved by the
Dartmouth Institutional Animal Care and Use Committee
(IACUC). A431 cells (ATCC, Manassas, Virginia) were
implanted subcutaneously into the right flank via an injection
of 1 × 106 cells in 50% Matrigel (BD Biosciences, San Jose,
California) and 50% Dubelco’s modified essential media
(DMEM) [10% fetal bovine serum (FBS), Pen/Strep] media,
and grown for 8 to 14 days until reaching a volume of
∼200 mm3, then an injection of a 1∶1 mixture of 0.1 nmol
of a epidermal growth factor receptor (anti-EGFR) Affibody
(Affibody, Solna, Sweden) labeled with IRDye 800CW and
0.1 nmol of a nontargeted imaging control Affibody labeled
with IRDye 680RD were made. Animals were sacrificed 1-h
postinjection, the tumors removed, imbedded in Tissue Tek®
Optimum Cutting Temperature medium (Sakura Finetek USA
Inc., Torrance, California) and flash frozen. Tissues were stored
at −80°C until sectioning. The frozen tumors were cut into
10 μm sections using a Leica 1850 M cryostat and fluorescence
images of the tissues were immediately obtained on the Odyssey
Scanner at a resolution of 21 μm (LICOR Biosciences, Lincoln,
Nebraska) for both targeted and untargeted tracers. After fluo-
rescent imaging, the tissue sections were stained with H&E by
the Research Pathology Services at Dartmouth. The H&E
stained tissues were imaged at 100×.

A schematic representation of key elements of the method is
shown in Fig. 1. First, the intensity map of the nontargeted fluo-
rescent signal was subtracted from that of the targeted Affibody,
to normalize for regions of nonspecific tracer pooling. Then, the
normalized fluorescent images were segmented into 256 inten-
sity levels [Fig. 1(a)] and then aligned and overlaid upon the
H&E images prepared from the same section [Figs. 1(b) and
1(c)]. Regions of interest were identified by visual inspection
of the fluorescent contour maps [Fig. 1(d)], selecting regions
showing a close spacing of contours. Axes parallel and
perpendicular to the concentration gradient were identified
[Figs. 1(e) and 1(f)] to apply directional Fourier analysis.

These regions of the H&E images were evaluated for direc-
tional anisotropy by azimuthally averaged frequency power
spectrum analysis, using a variation of the method introduced
in Ref. 5. The method of generating directional FSF spectra
is as follows: after identification of the region of anisotropic
tracer concentration, a square patch of the tissue section, cen-
tered on the point at which the two axes of anisotropy intersect
[Fig. 2(a)], is selected and rotated so that the axis of interest was
at −45 deg [Fig. 2(b)]. The three-color image was converted to
an intensity map, as shown in Fig. 2(c), and the intensity of the
cell nuclei was set to zero. This had a dual effect: first, it reduced
high-frequency contributions from nuclear structures that were
unlikely to have an effect on tracer transport; and second, it
ensured that spatial frequencies corresponding to gross spacing
between cell nuclei would be below 5 cycles/cm, allowing elimi-
nation of these with a low-pass filter. The two-dimensional
(2-D) FT of the rotated intensity map was then generated by
the built-in MATLAB function FFT2.

3 Theory
The power spectrum of an intensity map Mðu; vÞ, is written as
jFðu; vÞj2 ¼ R2ðu; vÞ þ I2ðu; vÞ,10 where Rðu; vÞ and Iðu; vÞ

Fig. 1 Schematic illustration of the identification of contours and directional axes. (a) Scans of fluores-
cence from affibody-IRDye800CW were taken from unwashed frozen tumor sections and then seg-
mented into 256 intensity levels for contouring. (b) Sections are then washed and stained with
hematoxylin and eosin (H&E). (c) The segmented fluorescent images (green) were aligned with and
overlaid upon the H&E sections (purple), to form full-section contour maps. (d) Detailed contour map
of white box in C. (e) Focal regions of anisotropy were identified by steep contour gradients. The primary
direction of analysis was perpendicular to the gradient (solid arrows) and was contrasted with the direc-
tion of steepest descent (dotted arrows). Arrows indicate the direction of analysis only, not direction of
tracer flow. (f) Axes were overlaid upon the corresponding H&E image for FSF analysis. Note that the
tumor in these images shows evidence of tissue loss from the presence of a necrotic core, a common
feature of this xenograft. It is significant that since the H&E stain is prepared subsequently to the fluo-
rescent image, from the same tissue, the interior limit of the fluorescent signal is not a result of tissue loss
during the staining process but represents limited tumor penetration.
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are the real and imaginary parts of the FT, respectively.
Following the method established in Ref. 4, we decompose
the power spectrum into three components, so that jFðu; vÞj2 ¼
Tðu; vÞ þ Sðu; vÞ þ Bðu; vÞ, where Tðu; vÞ is the characteristic
frequency that defines similarity between image regions, Sðu; vÞ
is the contribution of the spectrum that is specific to the region,
and Bðu; vÞ is a noise component that comes from instrumen-
tation artifacts and the analytical limitations of the finite Fourier
transform. To extract Tðu; vÞ in the direction of interest, the azi-
muthally averaged power spectrum of a 7-deg arc of a sub-
region R of the 2-D FT centered around the principal axis of
analysis was generated by numerically integrating the signal
at 1 deg steps. The background signal was generated by integrat-
ing over the remaining 352 deg of the 2-D FT, sub-region W, in
Fig. 2(d), again by numerical integration at steps of 1 deg.
Because of the high variability in FT traces over the large
range of W, the expected contribution of TW and SW is zero,
and by definition BR ¼ BW , giving

jFR½qðu; vÞ�j2 − jFW ½qðu; vÞ�j2
¼ TR½qðu; vÞ� þ SR½qðu; vÞ� þ BR½qðu; vÞ� − BW ½qðu; vÞ�
¼ TR½qðu; vÞ� þ SR½qðu; vÞ�: (1)

Moving across the image, along the path traced by the arrows in
Fig. 1(f), up to six to eight FSF spectra were generated per
region. Similarity between these noise-reduced traces was
established by taking their inner product. Noting that, by defi-
nition, region-specific spectra are orthogonal to both characteris-
tic spectra and other region-specific spectra, so that jSR1ðu;vÞj ·
jSR2ðu;vÞj¼jSðu;vÞj ·jTðu;vÞj¼0, and jTR1ðu;vÞj¼jTR2ðu;vÞj
gives:

FR1½qðu; vÞ�j2 · jFR2½qðu; vÞ�j2 ¼ jTR1ðu; vÞj þ jSR1ðu; vÞj�
· ½jTR2ðu; vÞj þ jSR2ðu; vÞj� ¼ jTR1ðu; vÞj2: ð2Þ

Fig. 2 Schematic illustration of the method of generating directional Fourier spectra. (a) A square patch
of the H&E image was selected centered at the point of intersection of axes of anisotropy. (b) The patch
was rotated so that the principal axis of analysis is at −45 deg. (c) The H&E image was converted to an
intensity map, and cell nuclei were assigned an intensity of zero. (d) The 2-D FT of the rotated intensity
map is generated. The resulting function was numerically integrated at steps of 1 deg over an arc of 7 deg
centered on the principal axis of analysis, as shown by the short solid arrow, and shaded region R. Spatial
frequencies characteristic to the image in the region of analysis were identified by numerically integrating
the remaining 352-deg arc of the full circle, again at 1 deg steps, as shown by the long solid arrow, and
shaded region W. The frequency power spectrum of the secondary axis of analysis was generated by a
similar numerical integration, as shown by the short dashed arrow and shaded region, and the image-
specific spatial frequencies found by numerical integration of the remainder, as shown by the long
dashed arrow.

(a)

(b)

(c)

Fig. 3 Representative directional frequency spectra generated from
intensity maps as described in the text and shown in Fig. 2. (a) The
spectra in the direction parallel to the fluorescent tracer flow taken
from eight points along the path shown in Fig. 1(f) are plotted on
the same axis in gray. The geometric mean of the traces, defined
as

Q
F i (1∕i), where i ¼ 8 in this case), is shown by the solid line

with open circles. (b) The same presentation as A, but in the direction
perpendicular to the local fluorescence gradient/flow, and the geomet-
ric mean shown by the solid line with solid circles. The geometric
mean is plotted against a second y -axis. (c) The averaged power
spectrum, being the inner product of all traces, and in the same
markers as the geometric mean in (a) and (b). The directional FSF
in the direction of steepest descent shows very poor correlation at
frequencies below 2 cycles∕μm, whereas the directional FSF parallel
to the intensity contour shows low amplitude at frequencies above
2 cycles∕μm.
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4 Results
In Figs. 3(a) and 3(b), individual FSF spectra from the principal
and secondary axes of analysis of a representative image are
plotted on the same axis, and the geometric mean of the sample
is overlaid on them. The natural variation expected from a bio-
logical sample can be seen, as well as a striking correlation
between the individual traces and the mean. In Fig. 3(c), the
power spectrum of the two directional spectra is plotted on
the same axis, showing spatial frequencies unique to each direc-
tion, with very little overlap. The method was applied to several
regions of interest derived from contour maps, without regard
to any apparent similarity of the underlying H&E staining.
Figure 4 shows representative images with similar structures
of tracer distribution anisotropy, which overlie regions of
tumor stroma that have a markedly different visual appearance.
The specific frequencies that identify stromal structural ele-
ments are not identical between different regions, but the char-
acteristic directional spectra in the direction of flow can be seen
to be distinct from those in the direction perpendicular to flow in
each case.

5 Discussion
We show here that the direction of free tracer transport can be
differentiated from that of impeded tracer transport by compari-
son of the different characteristic spatial frequencies of the
underlying eosin stain pattern. The system we use, H&E histo-
pathology, is one that is well established in evaluation of cancer

in the clinic. The pink stain of eosin, typically associated with
protein, provides the signal from which we extract the charac-
teristic directional FSF spectrum. The evaluative potential of
this method can be extended by developing a staining design
strategy that minimizes extraneous information, for example,
by eliminating the hematoxylin stain, or that adds information,
such as by locating microvessels by staining for vascular
components.

It should be noted that the individual frequencies contained
in a power spectrum do not have a straightforward correlation to
features in an image, except in the case of an image with a regu-
larly repeating sinusoidal pattern. For instance, the presence of
a cluster of many high spatial frequencies is not necessarily an
indicator of a large number of small features. It would be a fun-
damental misapplication of the method to expect that the pres-
ence of specific frequencies is an indicator of high or low
transport. The correlation between spatial frequencies and visual
patterns forms a distinct field of optical research and is beyond
the scope of this letter. An excellent introduction to the topic can
be found in Ref. 11.

Although there is an intuitive sense of what “the same”
means from a pathologist perspective, the question of how to
define similarity and difference, is not specific to spectral analy-
sis or even to the natural sciences and can be found underlying
arguments as diverse as biological taxonomy and the literary
theory of deconstruction.12 For the purpose of FSF analysis,
the key to identifying a characteristic spectrum in a particular

(a)

(d) (e) (f)

(b) (c)

Fig. 4 Sample contour map images, and directional fourier spatial frequency analysis. (a) Contour map
of fluorescent tracer distribution overlayed on an H&E image prepared from the same tissue section
(A431). Principal direction of analysis is indicated by the white arrows (arrows indicate direction of analy-
sis only, not direction of flow). (b) Fourier spatial frequency spectra in the principal direction of interest
(open triangles) and the perpendicular direction (solid circles). (c) A cumulative sum of the frequencies in
(b). The separation of the curves shows the predominance of high frequencies in the direction of interest,
relative to the perpendicular. (d) Another contour map of the same tumor, with the principal direction
shown by the white arrows. (e) Markers as in (b). The spectra are distinct from those in b but still
show distinct characteristic spectra by direction. (f) Cumulative sum shows separation at low frequencies.
Spatial frequencies have units of cycles per μm.
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direction is to differentiate the signal from a suitable background
signal. The orthogonal spectrum, because it uses the same back-
ground, can always be distinguished from the principal direction
if it has a distinct spectrum.

Because the fluorescent overlays show tracer distribution to
be anisotropic, and there is some indication of this anisotropy in
the H&E images even before analysis, the results presented here
are a quantitative confirmation of what can be surmised. There
are two principal experimental extensions of this method. First,
as shown here, it provides a robust quantitative characterization
of spatial anisotropy in systems where it can already be quali-
tatively detected. Directional FSF analysis can also be applied to
imaging systems where a spatial anisotropy is expected but dif-
ficult to detect. Such would be the case in two-photon (2P) im-
aging of biological tissue, in which a second harmonic of the
emission frequency is generated by collagen fibrils, and a varia-
tion in signal can be expected depending on the ordered state of
the collagen [reviewed in Ref. (13)]. One distinct advantage of
this application of 2P imaging is that it allows for real-time mon-
itoring of drug distribution, while allowing for simultaneous
capture of the signal used for FSF analysis. Likewise, it may
be possible to monitor real-time destruction of transport barriers
by activable nanoparticles14 designed for that purpose. A further
extension of the method can be made to a 3-D case by stacking
2-D image slices.

In principal, the method of directional FSF analysis can be
applied to any signal or imaging system. But there are two pre-
requisites for such a system. First, the signal to be analyzed must
be available as a spatially distributed intensity map in which the
intensity signal has some (known or unknown) relationship to
the question at hand. Without this format, an informationally
relevant FSF spectrum cannot be generated. Second, a suitable
method must be identified for generating a background signal
against which to isolate the signal of interest. This is especially
important for biological applications, in which background
noise can be on the same order of magnitude as the information.

In many tissues, structural anisotropy is strongly correlated
with functional parameters. Diffusion tensor MRI can identify
tracts of bundled neurons15 and muscle fibers,16 by the prefer-
ential diffusion of water along them, and automated methods
have been explored.17 MRI tractography is possible because
of the physics of the detection system, which allows for a
large number of measurement directions (typically around
20) and the acquisition of a large number of data sets (typically
thousands). An optical analogue of MRI tractography would be
of significant benefit in the detection of anisotropic drug deliv-
ery in tumor. A key component will be an automated quantita-
tive method of identifying similarities and differences between
adjacent flow regions in optical maps, which we have demon-
strated here. In future work, we hope to apply this method to
images stained for microvasculature, to allow a discussion of
fluid flow as it pertains to barriers to drug distribution. In addi-
tion, we will generate an automated scanning protocol that will
examine steps along the track of the direction of interest to
detect paths that have similar spectral characteristics that branch
from or extend the initial path.
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