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Abstract. Development of a block-based restoration (BBR) method that addresses spatially variant (SV) im-
aging in wide-field fluorescence microscopy of thick samples is presented. The BBR method is based on a
block-based imaging model, which approximates SV imaging using an efficient orthonormal basis decomposi-
tion of multiple SV point-spread functions computed at block vertices. The effect of reducing the number of
blocks needed to account for SV imaging on the restoration accuracy was investigated with simulations
using a numerical lung tissue phantom relevant to biological studies. Results show that reducing the number
of blocks by 82% and 98% resulted in a 19% and 27% reduction in restoration accuracy, respectively, thereby
establishing a reasonable tradeoff between computational resources and accuracy. Comparison of the BBR
method to existing methods (deconvolution) that do not account for SV imaging demonstrates a 90% improve-
ment in restoration accuracy. BBR results from synthetic and experimental images of a controlled test sample
with SV refractive index (RI) show consistency, providing a validation of the BBR approach. In this study, infor-
mation from DIC and fluorescence images was combined to identify regions with changing RI within the imaging
volume. The BBR method provides a first step toward computationally tractable reconstruction of images from
thick samples. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this

work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JBO.21.4.046010]
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1 Introduction
Computational processing of images and the methodology
of acquiring them using relevant optics are rarely seen as in-
dependent operations in modern microscopy. Computational
optical sectioning microscopy (COSM)1 refers to the process
that results in three-dimensional (3-D) imaging after simulta-
neous processing of multiple two-dimensional (2-D) images,
acquired while focusing the objective lens at different axial
locations within a sample. Imaging optically thick samples
[>5 μm thick with a spatially variant (SV) refractive index
(RI) distribution within the imaging volume contributing
to an optical path length change] is prone to spherical aberra-
tion (SA)2 in addition to out-of-focus light3 and noise, which
can be addressed by COSM restoration algorithms, thereby
improving resolution, contrast, and signal-to-noise ratio.
Development of model-based COSM restoration algorithms
requires solving two interconnected imaging problems:
(1) modeling the image formation process to produce a forward
imaging model1 and (2) obtaining a solution to the inverse im-
aging problem using the forward imaging model to restore the
true fluorescence intensities in the underlying sample.4 In this
paper, we report new developments that address both these
challenges.

Aberrations in 3-D imaging of optically thick samples occur
due to mismatch between imaging and design conditions. In
this paper, we focus on ameliorating SA caused by changes
in the spherical wave-front of the emitted light5 due to an
RI mismatch between the different layers that make up the im-
aging system, namely the immersion medium of the lens, cov-
erslip, and specimen.6 SA introduces asymmetry, as well
as attenuation and spreading of intensities in the point spread
function (PSF), which characterizes the system’s response.6,7

Biological samples are generally thicker than the depth of field
of high NA lenses (<2 μm) and have a variable RI distribution
consistent with their cellular components. For example, in lung
tissue with alveolar edema,8,9 there are air-filled (RI ¼ 1.00)
and water-filled (RI ¼ 1.33) alveoli surrounded by cellular
matter (RI ≈ 1.33). Images from such samples exhibit an SV
amount of SA depending on the geometry and RI distribution
of the sample. Ideally, in order to have the most accurate
imaging model, a distinct PSF6,7 is needed for every point
in the object space; however, this is not computationally
feasible for COSM algorithms, creating the need for an
approximation.

Existing commercial COSM algorithms, for computational
ease, assume that the microscope can be represented by a single
PSF,1,10 that is, that the system is space-invariant (SI), an
assumption that is valid for thin samples only. This assumption
has been relaxed in the development of depth-variant (DV) algo-
rithms,11–14 which address SA due to thick samples that can be

*Address all correspondence to: Chrysanthe Preza, E-mail: cpreza@memphis
.edu

Journal of Biomedical Optics 046010-1 April 2016 • Vol. 21(4)

Journal of Biomedical Optics 21(4), 046010 (April 2016)

http://dx.doi.org/10.1117/1.JBO.21.4.046010
http://dx.doi.org/10.1117/1.JBO.21.4.046010
http://dx.doi.org/10.1117/1.JBO.21.4.046010
http://dx.doi.org/10.1117/1.JBO.21.4.046010
http://dx.doi.org/10.1117/1.JBO.21.4.046010
http://dx.doi.org/10.1117/1.JBO.21.4.046010
mailto:cpreza@memphis.edu
mailto:cpreza@memphis.edu


modeled by a uniform RI distribution. However, depth variability
alone is not a good approximation for many biological samples,
such as lung tissue that exhibits a variable RI distribution. In this
paper, we develop a 3-D restoration algorithm for COSM that
addresses the need to account for SVaberrations due to thick sam-
ples with nonuniform RI. We present a brief background on SV
imaging followed by a discussion of work accomplished in DV
microscopy.

2-D SV restoration based on superposition was initially
explored in astronomy to account for variance in images
acquired from the Hubble telescope. The mathematical ground-
work for this effort was laid down by Trussell and Hunt,15 who
divided a 2-D image into subsections, which were individually
processed using a SI method. This approach can lead to resto-
ration artifacts16 due to a mosaic-like effect, which have been
addressed using different interpolation techniques.17–19

Nagy and O’Leary20 compiled and categorized the concepts
of SV superposition in 2-D with linear interpolation between
PSFs to prevent restoration artifacts for astronomy. They for-
mally defined two approaches of sub-block convolution, namely
overlap-add and overlap-save. In the overlap-add approach, the
division of blocks occurs in the object space and is accurate due
to preservation of information, while in the overlap-save
approach the block division occurs in the image space and
can exploit parallelism, making it faster. These algorithms
were studied and compared by Rahman et al.,12 establishing
the accuracy of overlap-add and the speed of overlap-save.

DV imaging (i.e., imaging that varies along the axial direc-
tion only) is an acceptable approximation when imaging spec-
imens with almost uniform RI, in which case the depth-induced
SA is introduced due to the thickness of the sample and the RI
mismatch between the immersion medium of the lens and an
average RI for the sample. In the strata-based approximation
model for DV imaging,13 the object space is divided into a num-
ber of layers or strata. Within each stratum, the PSF is the
weighted interpolation of two PSFs, one computed at the top
of the stratum and one at the bottom. Preza and Conchello13

introduced an expectation maximization algorithm based on
their strata model that solves the 3-D DV imaging problem.11

Maalouf21 later introduced a mask-based algorithm (EMMA)
based on an approach that divides the image space, as opposed
to dividing the object space as in the case of the strata
approach.13 Hadj et al.22 introduced a blind restoration technique
to obtain improved DV images in confocal microscopy, which
produces images with significantly reduced intensity spread
compared to wide-field microscopy, allowing the user to obtain
restoration with minimal information about the system param-
eters. The methods discussed so far for DV imaging as well as
our first attempt for an SV imaging model23 are computationally
intensive.

The need for an efficient method (in terms of both accuracy
and speed) practical for use in biological imaging led to the use
of principal component analysis (PCA), a method widely used
for dimensionality reduction24 in COSM. PCA-based represen-
tation of 3-D DV-PSFs and their use in a 3-D DV imaging model
were originally proposed by Arigovindan et al.,25 and Yuan and
Preza26 incorporated the PCA representation of PSFs
into a DV expectation maximization algorithm (PCA-EM).
The computational burden was further reduced by using
fewer PSFs for the generation of the PCA coefficients without
loss of accuracy in 3-D restoration.27 Patwary and Preza28 also
showed that the regularized PCA-EM has better performance

than the strata-based EM restoration.13 Two additional DValgo-
rithms based on an accelerated CG-iteration scheme by Schaefer
et al.29 have been recently developed: (1) the DV-CG algorithm
based on the strata model, which was shown to have fast con-
vergence,12 and (2) the PCA-CG30 algorithm based on the PCA
representation of the DV-PSF, which requires fewer computa-
tional resources than the DV-CG algorithm. The block-based
restoration (BBR) algorithm presented here extends the PCA-
CG algorithm to SV imaging.

Our first forward model for SV imaging23 is based on a
block-based (BB) approximation, which is a direct extension
of the strata approach.13 Specifically, the entire object space
was divided into a collection of small 3-D blocks with PSFs
computed at the faces of the blocks. An optimized combination
of the overlap-save and overlap-add methods of interpolation
was used to compute the final SV image of the object. The meth-
odology was validated using the experimental and simulated
data.23 The primary drawback of the method is its computational
inefficiency, which is ameliorated by the PCA BB model devel-
oped in this paper.

The development of the BBR method is motivated by studies
of alveolar mechanics,8,9,31 which use fluorescence microscopy
to image the expansion and deflation of air-sacs (alveoli) in thick
lung tissue (∼200 μm) with variability of alveolar contents.
There are four integrated goals that need to be achieved in
order to obtain the solution of this challenging imaging problem.
These goals are the successful development of (1) a methodol-
ogy to derive the sample RI distribution; (2) an accurate but
practical PSF model that accounts for specimen RI variability,
which we reported elsewhere;32 (3) a computationally tractable
SV forward imaging model;23,33 and (4) a practical restoration
algorithm based on the SV model. The determination of the
sample RI map is a challenging problem that has been tackled
by several groups34–38 including ours,39,40 and it is beyond the
scope of this paper. In this paper, we focus on the mathematical
formulation, simulation, and experimental validation in the
development of the third and fourth goals, in which we integrate
our new PSF model from the second goal.

This paper is organized as follows: Sec. 2 discusses the
mathematical formulation of the PCA BB forward imaging
model and its use in the BBR method. Methodology and results
from simulations with optically thick specimens and SV RI
distribution, used to establish the usefulness of the BBR
method, are discussed in Sec. 3. Fundamental experimental
validation of the BBR method with images from test samples
is presented in Sec. 4. Section 5 presents BBR simulation
results obtained from images of a lung tissue phantom that
approximate our motivating application and provide a con-
trolled environment for testing the algorithm. A summary of
the findings from this study and further developments are dis-
cussed in Sec. 6. Part of the research presented here was also
presented elsewhere.30,33

2 Block-Based Restoration Method
In this section, the mathematical development of the BBR
method is presented. We first describe the mathematical formu-
lation of the BB approximation for the SV forward imaging
model. A solution to the SV imaging problem is developed by
incorporating a computationally efficient BB forward model as
the kernel of a fast converging iterative algorithm.
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2.1 Block-Based Forward Imaging Model

The 3-D image, gð̱xiÞ, formed by the microscope can be repre-
sented using a SV kernel, K, defined below as the integral of the
product of the specimen function, fð̱xoÞ, and the SV-PSF
hð̱xo; ̱xiÞ,

EQ-TARGET;temp:intralink-;e001;63;690gð̱xiÞ ¼ Kfð̱xoÞ ¼
Z
R3

fð̱xoÞhð̱xo; ̱xiÞḏxo; (1)

where ̱xo ¼ ðxo; yo; zoÞ is a point in the object space and ̱xi ¼
ðxi; yi; ziÞ is a point in the image space. In SV imaging, the
image of every point in the specimen function is associated with
a unique SV-PSF [Fig. 1(a)], rendering evaluation of Eq. (1)
computationally impractical.

In the BB approximation, the object space is conceptually
sectioned into M sections along X;N sections along Y, and
K sections along Z based on the object’s RI distribution
map, which results in the formation of blocks [Fig. 1(b)] that can
be associated with a single RI value (a local average of the RI
distribution over the block volume). A block is not necessarily
cubic, and the number of blocks needed is adjusted based on the
variability of the specimen’s RI; that is, a sample with a rapidly

varying RI is approximated by more blocks than a sample with a
slowly varying RI.

The minimum size of a block is defined by the smallest vol-
ume of uniform RI distribution determined based on the 3-D RI
map of the sample. A block is mathematically defined as

EQ-TARGET;temp:intralink-;e002;326;697

Bm;n;k ¼ f̱xo∶Xm ≤ xo < Xmþ1;Yn ≤ yo

< Ynþ1;Zk ≤ zo < Zkþ1g m ¼ 1;2; 3; : : : ;M;

n ¼ 1;2; 3; : : : ; N; k ¼ 1;2; 3; : : : ; K: (2)

The intensity in the sample can be expressed by the sum of all
the nonoverlapping blocks as

EQ-TARGET;temp:intralink-;e003;326;608fð̱xoÞ ¼
XM
m¼1

XN
n¼1

XK
k¼1

fm;n;kð̱xoÞ; (3)

where

EQ-TARGET;temp:intralink-;sec2.1;326;548fm;n;kð̱xoÞ ¼
�
fð̱xoÞ for ̱xo ∈ Bm;n;k

0 otherwise

Eight SV-PSFs associated with each block (one for each
block vertex location) are computed using the N-interface

Fig. 1 BB approximation for SV imaging. (a) Impact of imaging depth and RI variability on the 3-D SV-
PSF. The solid-line box encloses a set of DV-PSFs. System parameters: 63 × 1.4 NA, oil lens
(RI ¼ 1.515); grid size: 256 × 256 × 256 with axial and lateral spacing equal to 0.1 μm; emission wave-
length at 540 nm. (b) Sectioning of the object enables computation of SV-PSFs at the eight vertices of
each block (only 1 to 7 shown) within the 3-D volume, used by the SV model and the BBR method.
(c) Schematic diagram of the BBR method.
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PSF model,32 which models light propagation through N strati-
fied layers within a block. SV-PSFs are calculated at discrete
locations, ðxo; yo; zoÞ ¼ ðXm; Yn; ZkÞ, marking block vertices,
using imaging conditions including thickness and RI of the sam-
ple at these unique locations. These SV-PSFs can be represented
using a few principal components (PCs), thereby reducing not
only the memory required but also the number of convolutions
in the forward SV imaging model.33 The PCA formulation used
in the SV imaging model is an extension of the PCA approach
developed previously to represent DV-PSFs,25 in that it uses SV
weighting coefficients, cjð̱xoÞ, instead of the DV ones, cjðzoÞ.
Each SV-PSF can be written in terms of the PCA as follows:

EQ-TARGET;temp:intralink-;e004;63;620hð̱xo; ̱xiÞ ¼
XR
j¼0

Pjð̱xiÞcjð̱xoÞ ≈
XJ
j¼0

Pjð̱xiÞcjð̱xoÞ; (4)

where P0ð̱xiÞ is the mean of the SV-PSFs, Pjð̱xiÞ is the j’th
PC, and cjð̱xoÞ are the corresponding SV coefficients, with
c0ðxoÞ ¼ 1 for all xo. The SV weighting coefficient is computed
by the following inner product: cjð̱xoÞ ¼ hPjð̱xiÞ; ½hð̱xo; ̱xiÞ −
P0ð̱xiÞ�i. Each location ðxo; yo; zoÞ ¼ ðXm; Yn; ZkÞ is associated
with a unique cjð̱xoÞ for each PC. As j increases the value of

cjð̱xoÞ becomes close to zero [see Fig. 2(h)], allowing the use of
fewer components (J < R) in the approximation of Eq. (4).

The SV image, gð̱xiÞ, of an object,fðxoÞ, can be written using
the PCA-represented SV-PSFs, by the kernel KSV-PCA,

EQ-TARGET;temp:intralink-;e005;326;708gð̱xiÞ ¼ KSV-PCAfð̱xoÞ ¼
XJ
j¼0

½fð̱xoÞcjð̱xoÞ� ⊗ Pjð̱xiÞ; (5)

where⊗ is the 3-D convolution operator. Since multiple PCs are
used to represent the SV image of the object, multiple (J) con-
volutions are required to generate the forward model. As evident
in Eq. (5), every point ̱xo in the object space is associated with its
own unique PCAweighting coefficient cjð̱xoÞ. Obtaining a SV-
PSF at every voxel presents a challenge; hence, fewer PSFs than
the number of voxels in the object space are used, resulting in
PCA coefficients at discrete locations within the object space.
However, to compute the forward image, coefficients are
required for all the points in the object space [Eq. (5)]. This has
been addressed by taking advantage of the regular pattern of the
coefficients as proposed by Patwary and Preza,27 where a spline-
based interpolation was used to predict the missing weighting
coefficients, extending the weighting matrix ½cjðxm; yn; zkÞ�

Fig. 2 BB SV imaging of a simulated sample. XZ section images taken through the center of 3-D vol-
umes are shown in all cases. (a) Numerical object with five identical 2-μm in diameter spherical shells
embedded in a medium with RI variance. (b) RI map of the object space showing 12 out of 36 blocks.
Blocks with different intensity contrast levels denote RI values of 1.47, 1.52, and 1.56, from left to right.
Image of the numerical object computed using (c) the BB SV imaging model23 and superposition of 160
convolutions (not based on PCA); (d) the space-invariant model and a single nonaberrant PSF; (e) the
DV strata-based model with five strata and superposition of 10 convolutions, for uniform sample
(RI ¼ 1.52); and (f) the BB-PCA SV model [Eq. (5)] computed from the superposition of 15 convolutions.
(g) Lateral and axial intensity profiles taken through the center of the object [along the dashed lines in (a)]
and its SV images (c) and (f), denoted in the legend by “BB Img.” and “BB-PCA Img.,” respectively. (h)
Graphical representation of the first 15 PCA coefficients used in (f) to represent PSF #1 (top) and PSF
#66 (bottom). Imaging parameters: 63 × 1.4 NA oil lens (RI ¼ 1.515); wavelength at 540 nm. Scale bar:
6.4 μm.
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available at discrete locations in the object space to a new
weighting matrix ½cjðxoÞ� for the entire object space.

The BB forward model based on the PCA representation
[Eq. (5)] requires (J) convolutions to compute the forward
image while our first BB SV model,23 which relied on the over-
lap-add and the overlap-save methods, requires (2Rþ 1) convo-
lutions,41 where R > J as shown in Eq. (5) (in practice R ≫ J).
Thus, the BB-PCA model, which forms the basis of the BBR
method [summarized in Fig. 1(c) and discussed in what follows]
is computationally more efficient than the BB model.

2.2 Block-Based Restoration Method

Iterative, statistical restoration algorithms are well suited for solv-
ing the ill-posed inverse imaging problem for 3-D fluorescence
microscopy,42 since they have the potential to restore missing
frequencies, thereby achieving optical sectioning while avoiding
direct inversion of the image formation kernel. The computation
of the forward image [Eq. (5)] requires many resources (memory,
processing time); hence a fast converging algorithm is a require-
ment for practical SV restoration. Therefore, for our BBR
method, we chose an accelerated conjugate gradient (CG)-based
iteration method,29 which has been shown to provide (1) a two-
fold increase in processing speed while providing accurate resto-
ration results in the solution of the SI inverse imaging problem for
fluorescence microscopy,29 and (2) faster convergence over the
expectation maximization algorithm in the solution of the DV
inverse imaging problem.13

For the BBR method, the algorithm by Schaefer et al.29 was
adapted to include the PCA-based SV kernel [Eq. (5)] redefined
on a finite discrete domain, KSV-PSF∶Rd → Rd, where d is the
number of voxels in the acquired data. Schaefer et al.29 devel-
oped a regularized CG-based method that minimizes the gener-
alized restoration functional

EQ-TARGET;temp:intralink-;e006;63;381ΦðsÞ ¼ LPðs2Þ þ βRðs2Þ; (6)

where LPðs2Þ is the log-likelihood function for a Poisson dis-
tribution in terms of the vector s2 ¼ f that contains samples
from the object function, fð̱xoÞ, and ensures positivity of the
estimated intensities; β ≥ 0 is the regularization parameter
that determines the tradeoff between the regularization and
the data fit; and Rðs2Þ is a regularization functional that mea-
sures the smoothness of the object, f, by its distance to the
SV image, which is represented by the vector g in a finite dis-
crete domain. For a system with Poisson noise, the negative log-
likelihood functional with the SV forward imaging kernel is
given as29

EQ-TARGET;temp:intralink-;e007;63;224LPðs2Þ ¼
X
n

ðKSV-PSF s2Þn −
X
n

gn ln ðKSV-PSF s2Þn; (7)

where ðKSV-PSF s2Þn indicates the n’th component of the vector
KSV-PSF s2. The gradient of the restoration functional [Eq. (6)] is
given as29

EQ-TARGET;temp:intralink-;e008;63;149½∇φðsÞ�T ¼ 2s �KT
SV-PSF

�
̱1 −

g

KSV-PSF s2

�
þ β½∇Rðs2Þ�T;

(8)

where the sign “*” indicates pointwise multiplication of two
vectors; ̱1 is a vector with all its components equal to 1; and

KT
SV-PSF is the transpose of the matrix. Equations used in the

implementation of the accelerated CG iteration, and the step
size computation can be found within Ref. 29.

A schematic diagram summarizing the steps in the BBR
approach is shown in Fig. 1(c). Computation of the SV forward
image [Eq. (5)] does not rely on sectioning the object or image
space, but rather it uses interpolated PCAweighting coefficients
to effectively and efficiently model the variance in SV-PSFs
computed at the vertices of a small number of blocks defined
in the object space (Sec. 2.1). Thus the BBR approach avoids
edge artifacts due to sectioning, which have to be accounted for
in other BBR techniques,20 while reducing computational
resources. These advantages make the BBR method a suitable
approach for SV restoration. In the next section, the application
of the BBR method to simulated and experimental data is
discussed.

3 Evaluation of the Block-Based Restoration
Method with Simulated Images

In this section, we use the BBR method to restore images from a
simulated test sample. In what follows, we discuss the genera-
tion of the simulated phantom, computation of its SV image, and
its restoration. We further compare the performance of the new
BBR method with the performance of DV and SI algorithms
applied to the same data.

3.1 Spatially Variant Imaging Using the
Block-Based Forward Model

In this study, imaging a specimen with only laterally variant RI
was investigated. This was done to ensure that the change along
the axial direction in the final image could be attributed exclu-
sively to the change in the sample thickness; on the other hand,
the lateral change could be attributed to RI variability. This
study was performed to investigate the impact of specimen
RI variability on the 3-D fluorescence microscopy image of
the specimen.

The image of a 3-D numerical object [Fig. 2(a)] with five
spherical shell structures dispersed in a medium with variable
RI over a grid size of 256 × 256 × 256 voxels was generated
using the BB-PCA forward imaging model [Eq. (5)]. The
spherical shells have an outer diameter of 2 μm and an inner
diameter of 1 μm. The chosen structures are identical in
shape to highlight the changes introduced due to SV imaging.
Three of the spherical shells were aligned along the Z-axis to
exhibit image variability introduced due to depth, and three
were aligned along the X-axis to exhibit changes in the
image due to the RI variability at the same axial location (i.
e., at a constant Z). The specimen was assumed to have
three distinct RIs, changing between the values of 1.47, 1.52,
and 1.56 shown by the three shaded columns, representing
the change in RI, in Fig. 2(b).

For this simulation, PSFs for a 63 × ∕1.4 NA oil lens
(RI ¼ 1.515) at a 540-nm wavelength were calculated at differ-
ent depths within the specimen (in the range of 20 to 40 μm
below the coverslip and in depth steps of 5 μm). Due to the sam-
ple RI variability, the system experiences both negative (when
the RI of immersion medium >RI of the sample) and positive
(when the RI of immersion medium <RI of the sample) SA. For
this example, the specimen was divided into three sections along
the X and Y axes based on the RI change, and to four sections
along the Z-axis to account for the change in the sample thick-
ness; hence, the specimen was approximated by (3 × 3 × 4 ¼)
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36 nonoverlapping blocks. All PSFs have a 0.1 μm × 0.1 μm ×
0.1 μm cubic voxel. MATLAB® code developed for the N-inter-
face PSF model was used to compute the [ð3þ 1Þ ×
ð3þ 1Þ × ð4þ 1Þ ¼] 80 SV-PSFs at the block vertices.

PCAwas applied to the 80 SV-PSFs to obtain 25 PCs and the
weighting coefficient at 80 discrete locations in the object space.
The choice to generate 24 PCs was arbitrary, but we kept the
number of PCs ∼30% of the total number of PSFs used in
the computation. The PCA method sorts the PCs based on sig-
nificance; that is, the first PC has the most information about the
PSFs, while information content in subsequent PCs tapers off as
the PC number increases. Comparing the values of the weighting
coefficients for the 25 PCs generated, the value of the coefficient
stabilized at 0 around the 15th PC for all 80 PSFs [Fig. 2(h)];
that is,

EQ-TARGET;temp:intralink-;sec3.1;63;587c1;: : : ;14ðxm; yn; zkÞ > c15ðxm; yn; zkÞ ≈ 0

form ¼ 1;2; 3; : : :M; n ¼ 1;2; 3; : : : ; N; k ¼ 1;2; 3; : : : ; K, indi-
cating that the effect of the PCs beyond the 15th PC is negligible.
This allowed us to eliminate PCs with negligible contribution,
thereby reducing the number of convolutions required in the
BBR approach [Eqs. (5) and (8)] in this study.

To investigate the accuracy of the PCA BB model, using the
imaging conditions described previously, two SV images were
generated:

1. One image using our first SV model (based on the
overlap-save and overlap-add methods) described in
Ref. 23. This method required 160 convolutions to
generate the SV image [Fig. 2(c)] using 80 PSFs;

2. Another image using Eq. (5) and the PCA-represented
PSFs [Fig. 2(f)]. This method required only 15 convo-
lutions (using 14 PCs and the base component in the
restoration) in addition to the PCA, which is precom-
puted once.

For comparison, we also generated an SI image [Fig. 2(d)]
using a single nonaberrant PSF and a DV image [Fig. 2(e)] using
a series of DV-PSFs extracted from the larger set of SV-PSFs (i.
e., PSFs only affected by the change in the 20 to 40 μm depth
range) assuming that the sample has a uniform RI ¼ 1.52. This
particular RI value was chosen since it is approximately equal to
the average of all the RIs used in this study.

3.2 Comparison of Simulated Images Using
Different Forward Imaging Models

In the SV image [Fig. 2(c)], the rightmost shell experiences neg-
ative SA, while on the other hand, the leftmost shell experiences
positive SA [Fig. 2(c)], indicated by the direction of the light
spread. The SI image [Fig. 2(d)] and DV image [Fig. 2(e)] com-
puted using earlier imaging approximations are qualitatively dif-
ferent from the SV images of this test object [Figs. 2(c) and 2(f)].
This comparison shows the effect of progressively incorporating
more physics-based assumptions for the specimen and image
formation in order to improve accuracy in approximation mod-
els used in COSM. To quantify the observable change in the SV
images [Figs. 2(c) and 2(f)], intensity profiles are plotted and
compared to the object intensities in Fig. 2(g). Axial intensity
profiles taken through the center of the XZ cross-section show
that the intensity peaks in the object appear attenuated, spatially
shifted, and blurred in the SV images computed with the two

different models [Fig. 2(g)]. Since the spread of intensities is
anisotropic in wide-field microscopy, the axial intensity profiles
show attenuation of intensity values and loss of structural integ-
rity, while the lateral profiles preserve some of the structural
details even though attenuation is still present.

As evident from the profiles, there is a difference in the inten-
sity of the two SV images [Figs. 2(c) and 2(f)] based on the BB
and BB-PCA approximations; although overall the profiles
demonstrate the same trend in intensity change. To further
quantify this difference, we used the structural similarity index
measure (SSIM),43 which was found to be equal to 0.0349 and
0.0217 computed between the true object and the BB and BB-
PCA SV images, respectively. In addition, the total integrated
intensity (TI) of the numerical object (TI ¼ 1.8270 × 107)
was found to be better preserved by the 3-D SV image predicted
by the BB-PCA model (in which TI ¼ 1.7726 × 107) than the 3-
D image predicted by the BB model (in which TI ¼ 2.4468 ×
106). Thus, the BB-PCA model improves computational effi-
ciency (the number of convolutions was reduced by 91% in
the simulated study when the BB-PCA model was used over
the BB model) without degrading achieved accuracy in the
SV image compared to our previously developed approximate
BB model.

3.3 Restoration of Simulated Spatially Variant
Images

The BBR method described in Sec. 2 was applied to the SV
image generated using the PCA-based model [Fig. 2(b)], and
restoration results are shown in Fig. 3. Restorations obtained
with the space-invariant conjugate gradient (SI-CG)29 [Fig. 3(c)]
and the DV-CG12 [Fig. 3(d)] algorithms, computed from the
same SV image [Fig. 3(b)], are compared to the BBR result
[Fig. 3(e)] to highlight the errors in restoring an SV image
using an algorithm based on an inaccurate model assumption.
All algorithms were run for 50 iterations because the CG
algorithm ensures fast convergence. The DV-CG and SI-CG
algorithms use the same CG type iteration scheme as the BBR
algorithm.

For the DV-CG restoration [Fig. 3(d)], 4 strata and 5 DV-
PSFs were used as two DV-PSFs are computed for each stratum,
as opposed to eight SV-PSFs for each block in the case of the
BBR approach. The 5 DV-PSFs used for the DV-CG restoration
were exactly the same as those used to generate the DV image
[Fig. 2(e)]. With the SI-CG algorithm (aka deconvolution), a
single nonaberrant PSF was used to restore the same SV
image. Figure 3(e) qualitatively resembles the true object
[Fig. 3(a)] with significant structural details restored. The shells
qualitatively appear identical in the restored image, highlighting
the efficiency of the BBR algorithm to account for spatial vari-
ance. Figures 3(c) and 3(d) both show artifacts, although the
DV-CG algorithm yields a slightly improved restoration

Table 1 The advantage of using BBR over DV and SI approaches,
quantified using NMSE, SSIM, and I-div.

Restoration NMSE SSIM I-div

BBR 0.1180 0.8796 3.83 × 104

DV 0.4322 0.7264 2.90 × 106

SI 1.8410 0.0870 6.17 × 106
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compared to the SI-CG result (quantified by metrics in Table 1)
because the DV-PSFs used by the DV-CG account for the DV
SA. Quantitative comparison between the restored images
and the object is demonstrated by axial [Fig. 3(f)] and lateral
[Fig. 3(g)] intensity profiles taken through the center of the
images. The intensity profile through Fig. 3(e) shows that the
reconstruction of the shell structure has two distinct peaks
per shell, while intensity profiles through the other two recon-
structions [Figs. 3(c) and 3(d)] fail to do so. To further quantify
the advantage of using BBR to restore SV images, the
error between the true object and the restorations shown in
Figs. 3(c)–3(e) is investigated using three discrepancy measures
summarized in Table 1: the normalized mean square error
(NMSE),26 the SSIM, and the I-divergence (I-div).44

The BBR is the closest to the true object as judged by the
lowest NMSE and I-div values, and the highest SSIM value
compared to the DV and SI restoration results (Table 1).
Table 1 reinforces the improvement achieved with the BBR
method over existing methods currently used for COSM.

This simulation study demonstrated the differences in SV im-
aging, approximated by the BB forward model and existing DV
and SI imaging models. The ability of the BBR method to
restore an object from its simulated SV image was also shown
to be superior to results from existing restoration methods based
on DVand SI assumptions, which suffer from artifacts due to the
effective mismatch between the forward imaging model and the
actual imaging process.

4 Application of the Block-Based Restoration
Method to Experimentally Acquired
SV-Images

In this section, results from a controlled experimental test sam-
ple that highlights the effect of RI variance on COSM are

discussed. Information derived from differential interference
contrast (DIC) microscopy images was used to guide the appli-
cation of the BBR approach to the experimental data and to gen-
erate simulated images that predict the data. Both experimental
and simulated images were restored using the BBR method to
further validate its usage. Details about data acquisition, com-
parison of experimental and simulated images, and their resto-
ration are presented in what follows.

4.1 Experimental Acquisition of Space-Variant
Images

Experimental images of 6 μm beads were acquired from a sam-
ple with SV RI using a Zeiss AxioImager (Carl Zeiss, GmbH,
Germany) with an AxioCam MRm camera and different imag-
ing modes: wide-field fluorescence, DIC, and bright-field
microscopy. FocalCheck™ microspheres, 6 μm in diameter
and stained throughout with DAPI with a 1-μm fluorescent
(Alexa Fluor®) outer shell, were imaged with a 20 × ∕0.5 NA
air lens. The microspheres were air dried on a glass slide, on
which guides had been etched with a diamond-head drill in
order to facilitate determination of imaging depth from the
slide, hence acting as guides. Half of the slide was sealed
with UV cured optical cement (NOA 60) with RI ¼ 1.52,
and the other half was sealed with ProLong® Diamond antifade
reagent with RI ¼ 1.42 (after being cured for 24 h). A layer of
FluoSpheres® dyed with DAPI was air dried on a coverslip to
facilitate locating the exact location of the coverslip. When the
coverslip was placed on the sample, a large air vacuole was
introduced in the sample. This made the sample comprise of
media with three different RIs. The sample was further cured
to obtain a well-sealed arrangement. A photograph of the
slide (acquired with a Samsung Galaxy S4) shows the bounda-
ries between the different media with varying RI, and

Fig. 3 Evaluation of the BBR method in simulation. XZ section images taken through the 3-D volumes
are shown in all cases. (a) Numerical object as in Fig. 2(a). (b) BB-PCA SV image as in Fig. 2(f). The
restoration obtained from (b) using (c) the SI-CG algorithm and a single nonaberrant PSF, (d) the DV-CG
algorithm and five DV-PSFs in the depth range of 20 to 40 μm (for uniform sample RI ¼ 1.52), and (e) the
BBR method with 14 PCs and coefficients computed from 80 SV-PSFs. Intensity profiles taken through
the object at the red-dashed lines in (a) and the restored images (c, d, and e) along (f) the optical axis z,
and (g) the lateral axis x . Imaging parameters are 63 × 1.4 NA oil lens (RI ¼ 1.515); emission wavelength
is 540 nm. Scale bar: 6.4 μm.
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the approximate area imaged with the microscope indicated by
the red oval [Fig. 4(a)]. The location of the microscope stage
recorded at the best focus of the various beads in the sample
was used to compute the thickness of each layer in the sample.

The DIC microscopy mode was used to bring into focus the
etched guide on the slide. The location of the guide in the sample
was identified by acquiring a wider field of view, encompassing
the guide as well as the fluorescent shells, using the 3-D
Panorama mode in the Zeiss ZEN software available on our
microscope. A region-of-interest (ROI) [enclosed by the blue
box Fig. 4(b)] was identified, and 3-D data were acquired
from this region to evaluate the BB forward model while keep-
ing the computations tractable. In the DIC image [Fig. 4(b)], the
guide is seen going out of focus within the field of view with
a change in contrast, which indicates the change in RI. The ROI
was imaged using the DIC [Fig. 4(c)] and bright-field [Fig. 4(d)]
imaging modes, to determine the boundary where the RI tran-
sition occurs. The change in contrast at the boundary indicates
the presence of a possible gradient of RIs between the two dif-
ferent RIs used in the sample preparation. The location of the
boundary and information about the RI of the specimen were

used to infer an approximate 3-D RI map by associating regions
in the 3-D image with a unique RI. Images were acquired at the
boundary between the air vacuole (RI ¼ 1.00) and the mountant
(RI ¼ 1.42) to image the effect of a large RI difference similar to
that encountered in alveolar imaging. A schematic of the imag-
ing system, shown enclosed by the red circle in Fig. 4(a), is
shown [Fig. 4(e)].

A 3-D image (grid size of 340 × 340 × 300) comprising
seven shells, with a voxel size of 0.32 × 0.32 × 0.32 μm in
the X; Y, and Z directions was acquired from the sample
described above [Fig. 4(g)]. The image was gathered using
the AlexFluor illumination (emission wavelength at 535 nm).
The thickness of the specimen layer was determined to be
143 μm from the imaging distance between the 6-μm beads
and the subresolved marker beads (located on the coverslip).
The imaging distance was first calibrated to account for the
shift introduced due to SA.2 In the next section, the experimental
image described here is compared to a model prediction in order
to validate the SV model proposed in this paper. Details about
the simulation, comparison of simulated and measured images
and restoration from these images are discussed in what follows.

Fig. 4 Experimental evaluation of the BB-PCA SV imaging model. (a) Photo of glass slide showing the
location of the different media in the experimental test sample. The red oval designates the location
imaged. (b) Experimental DIC image (single focal plane of grid size: 2616 × 2375 pixels) showing
the etched guide, the two regions with distinct RI (equal to 1.00 and 1.42), and the ROI (enclosed
by the blue rectangle) imaged using different modes. Zoomed version of the ROI from (c) DIC,
(d) bright-field, and (h) fluorescence modes. (e) Schematic of imaging layers. XY section image
from (f) the center of the numerical object (used in simulation that approximates the experimental
data), (g) the BB-PCA SV simulated image [Eq. (5)], and (h) the experimental fluorescence image.
(i) Plot of lateral normalized intensity profiles taken through shells 1 and 2 of the numerical object (f),
along the red-dashed lines in the simulated image (g), and the experimental image (h). Scale bar:
6.4 μm (c, d, f–h). Imaging parameters: 20 × ∕0.5 NA air lens (RI ¼ 1.00); emission wavelength is
540 nm. All images are normalized and displayed on the same intensity scale.
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4.2 Comparison Between Block-Based Model
Predictions and Experimental Images

The information available from the experimental conditions
including information about the spatial variability of RI derived
from DIC images, described in Sec. 4.1, was used in the com-
putation of the BB forward imaging model to generate the simu-
lated images. A set of theoretical SV-PSFs were computed using
the experimental parameters and the N-interface PSF generation
model32 and were used to generate a model prediction of the
experimental data.

Based on the knowledge about the slide preparation, the
right side of the slide is comprised of mountant while the
left side is comprised of air vacuole [Fig. 4(a)]. The boundary
between the air vacuole and the mountant is highlighted using
the white dashed line in Figs. 4(b) and 4(c). The transition in
contrast can be attributed to the optical path difference (OPD),
which can be imaged by DIC but not by bright-field micros-
copy [Fig. 4(d)]. The lack of contrast change in Fig. 4(d) con-
firms that the contrast change in Fig. 4(c) can be attributed
exclusively to OPD and not to the presence of a feature of inter-
est, allowing us to conclude that the visible change in contrast
[Fig. 4(c)] is due to the change in RI. The boundary (dashed
white line) is visible in the bright-field image [Fig. 4(d)]
because of scattering, even though there is no change in the
background intensity.

The simulated image [Fig. 4(g)] captures the main features in
the experimental fluorescence image [Fig. 4(h)]. A cluster of
three shells comes into focus ∼6.4 μm away from the best
focus of the other four shells in the field of view. This shift
in best focus can be attributed to the different amounts of SA
due to the different RIs in distinct volumes of the slide. The
cluster of three shells comes into focus at a shallower depth
than the other four; this indicates the presence of positive SA.
Comparison of intensity profiles, from both the experimental
and simulated images, taken through the center of two shells
located in different media [Fig. 4(i)], shows agreement with
respect to the shape of the intensity distribution. BBR results
from a measured 3-D image of a smaller ROI from this test sam-
ple, acquired using the same experimental conditions discussed
here, are presented in the next section. Our current implemen-
tation of the BBR algorithm is not optimized, and thus the use of
a smaller 3-D image allowed us to keep the computation time for
the restoration tractable.

4.3 Restoration of Space Variant Images Using the
Block-Based Restoration Method

Results from applying the BBR method to a 3-D experimental
image of the test sample (Sec. 4.1) and a corresponding simu-
lated image are summarized in Fig. 5, where XY section images
through the volume are shown. The ROI [red square in Fig. 5(a)]
shows two 6-μm spherical shells known to be physically located
at the same depth by construction of the sample as described in
Sec. 4.1. The experimental image from this ROI [Fig. 5(e)] was
predicted using our SV imaging model [Fig. 5(f)] from a numeri-
cal object [Fig. 5(c)] constructed based on an RI map inferred
from the DIC image [Fig. 5(b)]. Shell 2 [Fig. 5(c)] is in a
medium with RI ¼ 1.42 and thus appears to be out of focus
[Fig. 5(e)] due to the presence of SA caused by the RI mismatch.
On the other hand, Shell 1 [Fig. 5(c)] is in an air vacuole (i.e., in
a medium with RI ¼ 1.00), which matches the immersion

medium of the dry lens used, and thus it appears well focused
in Fig. 5(e).

A simulated numerical object [Fig. 5(c)], composed of two
identical shells, was generated using the manufacturer’s infor-
mation about the fluorescent shells. To generate a simulated
image, the 3-D volume in the object space was divided into 2 ×
2 × 10 sections along X; Y, and Z, resulting in 40 blocks and the
generation of 99 SV-PSFs. The BB forward model [Eq. (5)]
was computed using 12 PCs (most significant) derived from
the 99 PSFs and the numerical object to generate the SV
image [Fig. 5(f)]. The simulated image [Fig. 5(f)] captures
the main features in the experimental image [Fig. 5(e)], although
some difference in intensity is evident. The agreement between
the experimental and simulated images [Figs. 5(e) and 5(f),
respectively] validates the SV forward imaging model used
by the BBR method.

In the simulation study, the BBR method was found to con-
verge after 25 iterations based on the I-div value computed
between the restored image and the numerical object at
each iteration. Thus, results reported here from both experi-
mental and simulated images are after 25 BBR iterations.
Regularization [β ¼ 0.0001 in Eq. (6)] was used during the
restoration of the experimental image to address instability
in the solution due to the presence of noise introduced during
data acquisition. The XY cross-section of the restoration
obtained from applying the BBR method to the 3-D experi-
mental image is shown in Fig. 5(g), while the corresponding
section of the restoration obtained from the 3-D simulated
image is shown in Fig. 5(h). Both restored images show
that the spherical shell structures are restored well as evident
by the sharp high intensity ring. The BBR method was effec-
tive in eliminating the SA-induced axial shift, which caused the
image of Shell 2 to appear blurred in Figs. 5(e) and 5(f),
thereby bringing both spherical shells into focus at the same
axial plane [Figs. 5(g) and 5(h)], as expected (because both
spherical shells are located at the same depth within the sample
by construction). The lateral intensity profiles through the
center of the experimental image and the restoration
[Figs. 5(e) and 5(f)] are compared in Fig. 5(i) to the true inten-
sity of the numerical spherical shells [Fig. 5(c)]. As shown by
the profiles, the intensity in both restored shells has two peaks
and follows the intensity of the true object.

To quantify the ability of the BBR to restore the experimental
and simulated image, the SSIM over a ROI around bead 1 and 2
was calculated and averaged. The SSIM between the numerical
object and the restored simulated image is 0.6083, while the
restored experimental image yielded an SSIM of 0.5755. The
SSIM values are comparable, indicating consistency between
the experimental and simulated restoration results.

In this section, the experimental images acquired from a
controlled test sample show SV imaging due to change in
RI of the media. This section highlights the ability of the BB
forward model to predict SV images from the test sample,
using a simple 3-D RI map inferred from a DIC image. The
BBR results obtained from the experimental and simulated
SV images of a test sample were found to be consistent, validat-
ing the implementation of the approach for the conditions tested.
In the next section, results obtained from applying the BBR
method to a lung tissue phantom are presented to demonstrate
the effect of SV imaging and BBR in a biological application of
interest.
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5 Application of Block-Based Restoration to
Space-Variant Imaging of a Simulated Lung
Tissue Phantom

In this section, we present results from applying the BBR
method to simulated data relevant to biological studies that moti-
vate our work. Toward this end, we combined available infor-
mation from physiological and mechanical studies of lung
alveoli to generate a simulated lung tissue phantom. In what fol-
lows, we discuss how the phantom and its RI map were used
with the BB forward model to simulate its SV image, and

we report results from processing the SV image using the
BBR approach. A study of the effect of the block size
used in the BBR approach on the restoration accuracy is also
presented.

5.1 Modeling the Lung Tissue Phantom

The BBR method as elucidated before has been developed for
imaging specimens with SV RI, such as lung tissue, which
exhibits RI values in the range of 1.00 to 1.342. The lung is

Fig. 5 Comparison of BBR results from the experimental and simulated images of a test sample. In all
cases, only XY images taken through the center of the acquired volumes are shown. (a) DIC image of
test sample shows the boundary between two media with RI equal to 1.00 and 1.42. (b) A magnified
region identified by the red square in (a) shows two spherical shells, each located in one of the two
media in the sample. (c) Numerical object constructed based on (b and e) used in simulation.
(d) Fluorescent image of the same field of view as in (a). (e) Magnified subimage extracted from (d).
(f) Simulated SV image of (c) computed with Eq. (5). BBR result from (g) the experimental image
and (h) the simulated image. (i) Lateral intensity profiles through the center of the shells in (c), the exper-
imental image (Img: Shell 1 and Img: Shell 2) before (e) and after BBR (g) (Rstrd: Shell 1 and Rstrd: Shell
2). Results shown after 25 iterations of the BBR algorithm. Grid size: 226 × 226 × 300 for (b, c, e–h).
Scale bar (white) for (b, c, e–h): 3.2 μm. Scale bar (red) for (a and d): 6.4 μm. Pixel size:
0.32 × 0.32 × 0.32 μm. Imaging parameters: 20 × ∕0.5 NA air lens (RI ¼ 1.00); emission wavelength
is 540 nm. All images are normalized and displayed on the same intensity scale.
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composed of clusters of small air-sacs (alveoli) divided by thin,
elastic walls, that is, membranes. Alveoli normally have a thin
wall that allows for air exchange to occur, and fluids are usually
kept out of the alveoli unless these walls lose their integrity.
Pulmonary edema occurs when the alveoli fill up with excess
fluid seeping out of the blood vessels in the lung instead of
air.45 For this study, a single alveolus with edema surrounded
by air-filled alveoli was modeled.

Reported information about alveoli depends on parameters
specific to the animal tissue, sample preparation, and the imag-
ing tool used. To guide the generation of our numerical phan-
tom, results from Perlman and Bhattacharya8 were used because
they studied alveoli with and without edema using fluorescence
microscopy. In their study, 3-D images were acquired using a
confocal microscope at a subplueral depth of 80 to 100 μm
in lung tissue from male Sprague–Dawley rats weighing 300
to 600 g. The alveolar walls were stained with calcein
red-orange AM for visibility in fluorescence. To establish
edema a single alveolus was filled with an albumin solution
(RI ¼ 1.336).

A cluster of alveoli mechanically modeled as a 3-D arrange-
ment of dodecahedrons by Kitaoka et al.46 forms the basis of our
phantom. Because a slice from a dodecahedral structure appears
as a honeycomb, we modeled an 80-μm thick slice of rat alveoli
by stacking 2-D honeycomb arrangements to represent air-filled
and fluid-filled alveoli surrounded by alveolar epithelial cells.
The 3-D RI map of the phantom was generated using existing
information from the literature about different media. The value

used for the RI of the rat alveoli was obtained from Ref. 37. In
the phantom, a 30-μm layer of a mountant, such as the ProLong®

Diamond antifade reagent (RI ¼ 1.46) often used in samples to
prevent fluorescence bleaching, was also introduced, thereby
introducing an additional layer of a medium with different
RI. To mimic images from real samples and present restoration
challenges, small nodular structures similar to cancerous nod-
ules were added in alveoli with edema and without edema.
The sample was imaged with a 20 × 0.5 NA air lens with a sam-
pling of 0.32 × 0.32 × 0.32 μm3.

5.2 Application of the Block-Based Restoration
Method to the Lung Phantom

XY and XZ cross-sections from the numerical lung tissue
phantom developed and used in our simulation are shown in
Figs. 6(d) and 6(i), respectively. To generate the forward
image, the object was divided into 7 × 7 × 7 sections along
X; Y, and Z, respectively; hence, the object space consists of 343
nonoverlapping blocks. An XY view of the arrangement of the
343 blocks is shown by the grid in Fig. 6(a). Because the phan-
tom has regions filled with air, edema fluid, and cellular
material, the RI map for this sample has values between
1.00, 1.33, and 1.336. 512 SV-PSFs were computed for a 20 ×
0.5 NA air lens and were represented using 10 PCs based on the
PCA methodology [Eq. (4)] described in Sec. 2.1.

The BB forward model [Eq. (5)] was used to generate the SV
image [Figs. 6(e) and 6(j)]. In the SV image [Figs. 6(e) and 6(j)],

Fig. 6 Application of BBR to lung tissue phantom image. RI map of lung tissue sectioned into different
number of blocks: (a) 7 × 7 × 7 blocks (grid A); (b) 4 × 4 × 4 blocks (grid B); and (c) 2 × 2 × 2 blocks (grid
C). (d–h) XY and (i–m) XZ cross-section images taken through the center of 3-D volumes: (d and i)
numerical lung tissue phantom with nodule 1 immersed in air and nodule 2 immersed in fluid; (e and
j) the SV image produced with grid (A), that is, with 512 PSFs; BBR result computed from the grid
(A) SV image using (f and k) grid (A), (g and l) grid (B), and (h and m) grid (C). Results shown after
100 iterations of the BBR algorithm. Axial profiles through the center of each nodule, its SV-image
and restoration obtained with grid (A): (n) nodule 1 and (o) nodule 2. Scale bar: 10 μm. Imaging param-
eters: 20 × ∕0.5 NA air lens (RI ¼ 1.00); emission wavelength is 635 nm. All images are normalized and
displayed on the same intensity scale.
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the alveoli suffering from edema are affected by a larger amount
of SA (characterized by loss of structure due to spreading of
intensities and axial focal shift) than the other two alveoli.
Two nodules [labeled in Figs. 6(d) and 6(i)] were selected to
assess the effect of SV imaging and BBR on their images. The
two selected nodules, although initially located at the same axial
location, appear at different imaging depths (6.4 μm apart) in the
SV image [Fig. 6(j)] due to SV SA. This phenomenon is quan-
tified by the axial intensity profiles taken through the center of
nodules 1 and 2, shown in Figs. 6(n) and 6(o), respectively.

The application of the BBR algorithm to the SV image of the
lung tissue phantom was investigated using three different block
sizes used in the restoration, in order to study the effect of this
choice on the restoration accuracy. For a fixed image size, using
a smaller number of blocks (or larger block size) reduces the
number of SV-PSFs that need to be computed, and it also
reduces the computation time of the PCs used in the PCA rep-
resentation of the PSFs. The number of blocks and PSFs used in
applying the BBR algorithm to the SV image of the lung tissue
phantom in this study is as follows:

1. 343 (¼7 × 7 × 7) blocks and 512 PSFs [grid A, Fig. 6
(a)]. Grid (A) contains all the blocks used to compute
the SV image of the lung tissue phantom.

2. 64 (¼4 × 4 × 4) blocks and 125 PSFs [grid B, Fig. 6
(b)]. Grid (B) contains 18% of the number of blocks
used to compute the SV image of the phantom.

3. 8 (¼2 × 2 × 2) blocks and 27 PSFs [grid C, Fig. 6(c)].
Grid (C) contains only 2% of the number of blocks
used to compute the SV image of the phantom.

XY and XZ cross-sections of the restored images after 100
iterations of the BBR algorithm using the three different block
sizes are shown in Figs. 6(f)–6(h) and 6(k)–6(m). A minimal
change in the I-div computed between the true object and the
restored object at every iteration suggested that the algorithm
converged after 100 iterations. Restorations obtained with
grid (A) provide a reasonable approximation of the true object
with the nodules clearly separated from the alveolar walls
[Figs. 6(f) and 6(k)]. The overlap of the normalized axial inten-
sity profiles plotted in Figs. 6(n) and 6(o) from the center of
nodules 1 and 2, respectively, quantifies the accuracy achieved
by the BBR method.

Some deterioration in the restoration obtained using grid (B)
is evident in Figs. 6(g) and 6(l). In this case, there is some loss in
structural integrity of the alveolar walls, but the nodules are
restored with separation from the walls as they appear in the
true object. In Fig. 6(g), the nodules are clearly restored to
their circular shape. However, nodule 1 is restored better quali-
tatively than nodule 2, particularly when viewed in the XZ
images [Fig. 6(l)]. Increasing the restoration block size further,
as in grid (C), results in more restoration artifacts, particularly
in the region of the alveolar walls in the presence of edema
[Figs. 6(h) and 6(m)]. In this case, the intensity of nodule 2
is not restored to the true object intensity. As evident in the
XZ section image, nodules immersed in fluid are not restored
to a spherical shape [Fig. 6(m)].

To highlight the ability of the BBR to reconstruct the SV
image using different block sizes, three error measures com-
puted between the restorations and the true object are reported
in Table 2. The change in the block size was introduced to evalu-
ate the ability of the BBR to restore intensity using an

approximate model based on a reduced number of PSFs. Results
show that the BBR method is able to reconstruct the shape of the
nodules and their distance from the alveolar wall with a SSIM ¼
0.7688 when grid (B) is used, which contains only 18% of the
original number of blocks used to compute the simulated image.
In the case of grid (C), even though the BBR method uses only
5% of the original number of blocks, it is still able to reconstruct
the object with a SSIM ¼ 0.6840, which represents a 27% drop
in the restoration accuracy [as quantified by comparing it to the
SSIM obtained in the grid (A) restoration]. As evidenced in
Fig. 6, nodules in fluid experiencing larger amount of SA are
harder to restore when the block size is increased because
SV SA is not adequately accounted for. Overall, the achieved
restoration of the primary structures of the lung tissue phantom,
in the three grid cases tested, is promising, and it highlights the
ability of the BBR method and the effect of the block size (or
number of blocks) used on the restoration.

In this section, we proposed a lung tissue phantom generated
based on available information in the literature in order to study
and address imaging challenges of such a sample with fluores-
cence microscopy. Noiseless simulation results shown in this
section suggest that application of the BBR method to SV
images from lung tissue can provide successful restoration if
an adequate block size (or number of blocks) is used. The
numerical phantom developed for this study can be used in
future simulation studies to investigate further the sensitivity
of the BBR method to the block grid size as well as to the pres-
ence of noise.

6 Summary and Conclusions
The goal of the work presented in this paper is the development
of a computationally tractable algorithm for efficient restoration
of 3D images suffering from SV aberration from optically thick
samples, such as lung tissue. The paper details the development
and evaluation of an iterative BBR method that uses an accel-
erated conjugate gradient type minimization scheme to solve the
SV inverse imaging problem. The BBR method is based on a
PCA BB forward imaging model, which approximates SV im-
aging of thick specimens with spatially varying RI. In this BB
approach, the object space is divided into blocks, thereby pro-
viding a grid of points where SV-PSFs are computed using our
previously developed N-layered PSF model. Therefore, the BB
approach models SV imaging more accurately than previously
developed models based on a SI or DV assumption, which can
only account for imaging of thin specimens or thick specimens
with uniform RI, respectively. The use of PCA for the SV-PSF
representation efficiently reduces the information (and computa-
tional resources) needed to compute the BB model and restora-
tion while preserving accuracy. Simulated images computed
using the BB-PCA approximation required only 11% of the
total number of convolutions required by the BB approximation

Table 2 The effect of change in the information available to the BBR
algorithm, quantified using NMSE, SSIM, and I-div.

Restoration % of blocks used NMSE SSIM I-div

Grid A 100 0.0130 0.9588 1.47 × 107

Grid B 18 0.1747 0.7688 2.22 × 1013

Grid C 2 0.3245 0.6840 6.72 × 1019
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without the PCA representation for the same imaging condi-
tions, without appreciable disagreement between the simulated
images, quantified using the total intensity of the 3-D images
and the SSIM.

The effect of SV imaging was modeled using different im-
aging conditions, and the ability of the BBR algorithm to restore
SV images in these cases was investigated. Simulated images of
a simple 3-D object (with uniform structures and nonuniform
RI) were effectively restored using the BBR with a 90%
improvement in accuracy over using SI restoration (aka decon-
volution) and 57% improvement over using DV restoration
(quantified using the NMSE measure). In this study, the RI val-
ues were intentionally chosen to exaggerate the space variability
for testing purposes.

The ability of the BBR method to restore intensity values in
the experimental images of microspheres was evaluated quanti-
tatively and qualitatively using a controlled test sample created
with an RI space-variance due to an air–mountant interface,
which mimics the air–water interface in lung tissue in the pres-
ence of edema. An approximate 3-D RI map of the sample was
created using available information about the RI of the sample
media as well as images of the same field of view of the sample
obtained with fluorescence and DIC microscopy. A simulated
image, generated based on the experimental condition during
data acquisition, was shown to capture the main features in
the experimentally acquired image, thereby validating the BB
SV imaging model. SSIM values of 0.5755 and 0.6083, com-
puted between the numerical object and the restorations from
the experimentally acquired image and the synthetic image,
respectively, were found to be comparable, demonstrating the
ability of the BBR to account for SV SA in the experimental
data consistent with the simulated study.

Finally, application of the BBR method to a simulated SV
image of a numerical phantom for lung tissue (generated
using parameters acquired from the literature and the proposed
BB approach) provided promising results with respect to future
application of the BBR method to a biological application of
interest. This study was also used to study the effect of the block
size (a user defined parameter), critical in the BB approach, on
the accuracy of the restoration. Results from this study showed
that as the block size was increased (thereby reducing the num-
ber of blocks in a fixed volume size) the restoration accuracy
dropped by 19% and 27% when the number of blocks was
reduced to only 18% and 2% of the original number of blocks
used to approximate the SV image of the phantom (synthetic
data), respectively. Restored images demonstrated the ability
of the BBR to effectively restore the primary features of the
lung tissue phantom with reduced computational resources
(quantified by the reduced number of SV-PSFs needed for
the BBR).

Based on our current investigations, the BBR algorithm
demonstrates a similar tradeoff between speed and accuracy
observed in DV restoration with our previously developed
PCA-CG30 algorithm. In the future, we plan to use the BB for-
ward model in other types of iterative restoration algorithms to
investigate possible improvements in accuracy. The BBR
method is computationally efficient in terms of the number
of convolutions it computes per iteration. In the future, we
plan to optimize and parallelize the method to provide further
improvements in the processing speed.

The BBR method uses SV-PSFs that capture the SA due to
the sample. In the approach presented here, the specimen RI and

depth within the sample were used directly to compute the SV-
PSFs. However, the quantitative phase image of the sample
(which is proportional to the integral of RI over sample thick-
ness) could be used instead in the PSF computation. In future
work, we plan to investigate methods for sample segmentation
based on its phase image, thereby eliminating the need to com-
pute the RI distribution first from the phase image and the
manual determination of the block size. Additionally, noisy sim-
ulation studies will be used to evaluate the performance of the
BBR method at different noise and regularization levels in order
to facilitate its application to biological data.

This study presents a computationally efficient SV forward
imaging model and restoration method and provides a first step
toward accurate reconstruction of 3-D images from thick bio-
logical samples with varying RI. This study contributes to
the larger goal of 3-D imaging using COSM.
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