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Abstract. Phenotype analysis of yeast cell requires high-throughput imaging and automatic analysis of abun-
dant image data. At first, each cell needs to be segmented and labeled in the bright-field images. However,
the ambiguous boundary of bright-field yeast cell images leads to the failure of traditional segmentation algo-
rithms. We propose a segmentation algorithm based on the morphological characteristics of yeast cells. Seed
points are first identified along the cell contour and then connected by an edge tracing approach. In this way,
“ill-detected” noise points are removed so that edges of yeast cells can be successfully extracted in bright-field
images with sparsely distributed cells. In densely packed images, yeast cells with normal morphology can
also be correctly segmented and labeled. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported
License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10
.1117/1.JBO.23.11.116503]
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1 Introduction
Yeast is a commonly used model organism in biology due to
its simple growth requirements and genetic tractability.1–5 In
a genetic study, phenotype study of yeast with the genetic muta-
tions related to human genetic diseases has been a great help to
improve the human disease diagnosis and treatment.6–10 During
the studies, massive images of yeast cells are generally captured
with microscopes to observe the different cell structures and
behaviors under mutation or different drug treatments. However,
in general, the morphological analysis of yeast cells, which
mainly depends on manual measurements by researchers, is
time-consuming and has personal formula. Thus an automatic
and efficient segmentation algorithm of yeast cell images is
required for the analysis of the yeast cell’s morphology and
detailed structures.

In most studies, both bright-field imaging and fluorescent
imaging of yeast cells are recorded to reflect the morphology
and structural changes.11 For example, Fig. 1 shows images
of yeast cells with bright-field images indicating morphology,
and fluorescent images indicating its corresponding microtu-
bules and mitochondria, respectively. Before analyzing the char-
acteristics of mitochondria and microtubules, each cell needs to
be accurately segmented and labeled from bright-field image.
However, the bright-field images are much harder to segment
than fluorescent images due to its low contrast between back-
ground and cell, the discontinuous boundary and the halo arti-
fact around the cell wall.12

Traditional segmentation methods, including edge-based
methods and threshold-based methods, fail to correctly segment
bright-field cell images. Canny edge detector13 is too sensitive
to local noise and halo artifact, which leads to low-quality edge
maps with messy background and discontinuous edge

segments.14 The complex feature of bright-field cell images
also leads to tremendous segmentation errors with Otsu’s
method,15 which generally requires high contrast and apparent
intensity difference between background and target. The active
contour model16 was more successful in cell image segmentation
by providing an iterative energy-minimizing method controlled by
external constraint forces and image forces. Recently, various
improved algorithms based on active contour model have been
developed to solve the cell image segmentation problem,17,18

but the location of the approximate cell contour was still required
to be set by hand. Moreover, these methods are more suitable for
fluorescent images due to its clear edges and intensity informa-
tion while it locates in the halo artifact when applied to bright-
field cell image.

In recent years, several segmentation algorithms specialized
for bright-field cell image have been developed to address
the difficult issues mentioned above. Weber and Albrecht19

developed an algorithm that includes background subtraction
and binarization based on texture discrimination by means of
a rank operator but requires double-view imaging, combining
bright field, and reflection interference contrast video micros-
copy. Bradbury and Wan12 proposed a bright-field cell image
segmentation method with the spectral and k-means clustering
techniques, but for cells closer to the background intensity it can
only find a portion of the cell wall. Zhang et al.20 reported
a method for detecting and segmenting yeast cells in bright-
field images, which can only detect circular yeast cells. In addi-
tion, Kang and Wan21 described a method based on the multi-
scale framework to segment bright-field cell images using the
Bhattacharyya measure. Chen and Wan22 presented two math-
ematical models based on principal components pursuit. Yang
et al.23 developed an image processing algorithm that can auto-
matically extract geometrical features of yeast cells. However,
these methods are mostly aimed at images containing only
one single cell and can be hard to identify individual cells that
adhere to another one. Furthermore, due to multiple parameter*Address all correspondence to: Hui Li, E-mail: hui.li@sibet.ac.cn
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settings, over-segmentation or under-segmentation could be
produced, if the parameters were not set correctly.

In this paper, we present an automatic segmentation method
with an efficient edge-tracing algorithm for bright-field images
of yeast cells. The algorithms first detect accurate cell contour
points called seed points automatically and then connect them
by a fast and robust edge tracing algorithm. In images with
sparsely distributed yeast cells, 100% cells can be segmented
properly. In densely packed images, cells with normal morphol-
ogy can also be correctly segmented while largely distorted cells
were ruled out. The bright-field segmentation results can be
further used to labeling the fluorescent images.

2 Image Acquisition
Fission yeast cells expressing GFP-cox4 (mitochondria marker)
and mCherry-atb2 (tubulin marker) were grown in Edinburgh
minimal medium supplemented with adenine, leucine, uracil,
histidine, and lysine (0.225 g∕L each) at 30°C, and the exponen-
tial phase cells were then collected and sandwiched between an
EMM agarose pad and a coverslip for imaging. Bright field and
fluorescent images were recorded with DeltaVision Microscope
(GE Healthcare). An Olympus PlanApo N 60× 1.4 NA oil
objective and a Photometrics CoolSnap HQ2 camera were used.

3 Segmentation Algorithm

3.1 Flowchart of the Algorithm

Figure 2 shows the flowchart of our segmentation method of
bright-field yeast cell images. Histogram equalization and
Gauss filtering are successively applied to enhance images con-
trast and weaken the noise. The edge detection step is conducted
with two threshold values to produce a “cleaner” and an “intact”
edge map, respectively, both of which are processed to single
pixel width by a series of morphology operation. Then the initial
seed points can be detected from the latter edge map according
to the approximate localization of cells determined by the
Hough transformation of the former edge map. After screening
of the seed points to eliminate nonedge ones, a smart edge trac-
ing algorithm is applied to connect the remaining seed points to
extract an accurate, closed, and smooth cell contour.

3.2 Seed Points Detection

As a preprocessing step, histogram equalization and 5 × 5
Gaussian kernel with σ ¼ 0.8 were first applied to original
bright-field yeast cell images in order to get full gray level

Fig. 1 Examples of bright-field and fluorescent yeast cell image: (a) the bright-field image of yeast cells,
(b) the fluorescent image of mitochondria labeled with GFP, and (c) the fluorescent image of microtubules
labeled with mCherry.

Fig. 2 Flowchart of segmentation algorithm of bright-field yeast cell images.
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ranges (0 to 255) and reduce the sharp noises. As an
example, preprocessing results of the raw image are shown in
Fig. 3(b).

Different from classical edge detection operators, which
define the first or second derivative as its gradient and
makes the halo and cell boundaries have the same gradient
response, a line detection mask [Fig. 4(a)] is used to compute
the gradients of four directions, Gx (horizontal), Gxy (45 deg),
Gy (vertical), and Gyx (−45 deg), respectively. The gradient
magnitude G of one pixel is then obtained by the formula

G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

x þG2
xy þ G2

y þ G2
yx

q
. The gradient magnitude map is

shown in Fig. 3(c).
Considering the different requirements for edge-preserving

degree of subsequent steps of this method, we applied two
threshold values to the gradient map, the selection of which
is based on the histogram of the gradient magnitude map. As
shown in Fig. 4(b), the distribution of gradients is a sectional
type. Here we generally take the intermediate value between
the second and third sections as the low threshold, the third

and fourth sections as the high one. The high threshold
produces a “clean” edge map [Fig. 3(d1)] used for later cell
identification by Hough transformation, whereas the low one
produces cell borders map used later to extract the seed points
[Fig. 3(d2)].

However, we can see in Figs. 3(d1) and 3(d2) that there are
still some clustered noise edge points in the edge map, espe-
cially inside the cells and the remaining cell edges are multi-
pixel-wide. Thus the next procedure is to eliminate most of
the noise edge blob and obtain single-pixel-wide and smooth
edges by means of a series of morphological operations includ-
ing open operation with four-direction linear structural ele-
ments, filling small holes, and thinning the remaining edges.
In our experiment, the morphological feature of the yeast is
mostly sausage-shaped with both ends showing up as a circular
arc. The yeast cells distorted and damaged due to the extrusion
force from other cells should be discarded.11 So the arc centers
of normal yeast cells can be detected by Hough transformation
as is shown in Fig. 3(e1). By this way, we successfully locate
inside each cell instead of losing at noise edges.

Fig. 3 Illustration of initial contour points detection: (a) raw image, (b) preprocessing results, (c) gradient
map, (d1) high-threshold edge map, (e1) single-pixel edge map of (d1), and the red circle indicates the
Hough transform results of (e1), (d2) low-threshold edge map, (e2) single-pixel edge map of (d2), and
(f) initial seed points.

Fig. 4 (a) Line detection mask and (b) selection of two threshold values based on the histogram of the
gradient magnitude map.
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To detect the initial contour points of every yeast cell, the arc
centers and low threshold images were combined by emitting
rays with equal angle-interval from the arc centers, and then
recording the first intersection point of every direction with
the detected edges. Here, we take two types of yeast cells,
e.g., individual and clustered cells, as shown in Fig. 5. The yel-
low arrows and red points in Fig. 5(a) represent the rays and arc
centers, respectively. In Fig. 5(b), the initial seed points are high-
lighted in blue and connected to closed boundary marked in red
using linear interpolation. The distances between these intersec-
tion points and the center are plotted and fitted by a nonlinear-
least-squares fitting procedure based on a higher order sine
model (here four orders are enough) in Fig. 5(c). Note that if
there are no discontinuous edges, the fitting curve of distance
sequence is supposed to be smooth continuous and has only
one peak point standing for the other end of the cell. But the
actual distance sequence always shows a complex and discon-
tinuous curve with more than one peak, which stands for the
noise points. Therefore, we first assume the point with maxi-
mum peak value to be on the other end of cell boundary and
the long axis of the cell is naturally obtained. Then when the
offset value between the distance value and fitting value is big-
ger than a given threshold, this point would be taken away from
the seed points sequence. Algorithm 1 shows our method to
detect the seed points by fitting a higher order sine curve.

3.3 Edge Tracing by Connecting the Seed Points

The goal of our algorithm is to find a closed, smooth, and accu-
rate boundary for yeast cells in bright-field images. The seed
points detected above cannot stand for the complete cell boun-
dary, but they indicate the extension direction of cell contours.
We build on ideas from Ref. 14, which imitates children’s dot-
to-dot boundary completion games and proposes an efficient
edge tracing method to connect these seed points along the
real edge contour. To ensure the right direction of cell edge

growing and skip the wrong edge points, we utilize the principle
that the growing direction of one edge point is collectively con-
trolled by the gradient values of its neighborhood and tangent
orientation of defined cell boundary.

The routing procedure starts from the edge points detected by
Hough transformation and regards this edge as initial cell boun-
dary. At the very beginning, the distance between the current
edge point and the next seed points is calculated. If the value

Algorithm 1 Algorithm to detect seed points.

Input: Intersection points sequence H, distance sequence D,
threshold Thresh

Output: Seed points sequence P

function SeedpointsDetect ðH;D; ThreshÞ

Fit a higher order since curve S with D

n←1

for i ¼ 1 to lengthðHÞ

if absðS½i � − D½i �Þ ≤ Thresh

P½n�←H ½i �

n←n þ 1

end if

end for

return P

end function

Fig. 5 Results of the seed points detection including the initial seed points detection and screening of
them by a fitting curve to get the final seed points. Here we show two types of cells with different complex-
ities: (a) cell edges, (b) initial seed points, (c) fitting curve of distances, and (d) final seed points.
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is too small, these two points will be connected directly in
straight line and the points on this line will be marked as cell
contour points. Otherwise, the tangent direction of the current
edge point is estimated to select the candidates. As seen in
Fig. 6, the tangent orientation is classified as four directions
and the red arrows indicate the edge points being considered,
among which the one with the maximum gradient would be
chosen to be the next edge point. Since the tracing strategy
of each tangent direction is the same, here we show our method

to proceed left of an edge point when its tangent direction is
0 deg as an example in Algorithm 2.

4 Results
We apply the proposed segmentation algorithm to yeast cells’
bright-field images with different densities. The original image
size of our bright-field images of yeast cells is 512 × 512 pixels.
All tests and results are obtained and computed on a PC using
MATLAB.

Figure 7(a) shows the segmentation results of the proposed
algorithm in Fig. 1(a), in which the yeast cells are sparsely
distributed. Results show that the new method is able to auto-
matically find all the recognizable yeast cells and accurately
locate both single cells [Figs. 7(a1)–7(a4)] and clustered cells
[Fig. 7(a5)] at their actual boundaries. When comparing
Fig. 7(a5) with Fig. 5(b), we find that the seed points give a good
guide to the last step of the proposed segmentation algorithm
and even can successfully separate the adherent cells. Then
the corresponding mitochondria and microtubules [Figs. 7(b)
and 7(c)] in fluorescent images are located according to the
cell location and can be used to a statistical analysis of the
characteristic we need.

The algorithm was also applied to the bright-field images
with densely crowded yeast cells, some of which are even
extruded with deformation. As seen in Fig. 8(a), most of the
cells can be recognized and located accurately in a crowded
environment. Only very few cells with extremely complex
intensity information and deformation fail to be detected for
lack of arc feature. Note that among the recognizable cells in
Fig. 8(a), there is still some trouble just as A and B as indicated
in Fig. 8(a), largely caused by the abnormal fluctuation of the
image gradient. We will discuss and address this problem in our
future work.

5 Conclusions
This paper presents an automatic and robust segmentation algo-
rithm of yeast cell bright-field images. A series of basic image
processing methods are used to detect the one-pixel-wide edges
of cells and the seed points of cell borders without complex
mathematics theory and parameters setting. Then an edge trac-
ing method is proposed to connect the seed points along the true
cell boundary. The method overcomes the three complex issues
of bright-field cell images and successfully located all normal
shape cells in the image. In addition, our method can handle
other bright-field cell images, in which the boundary of the
cell has a circular arc.

Algorithm 2 Algorithm to proceed left of an edge point when its
tangent direction is 0 deg.

Input: Current edge point ½x; y �, next seed point S, gradient map
G, edge map E , threshold Thresh

Output: Next edge point P

function EdgeTracing ð½x; y �; S;G; E; ThreshÞ

E ½x; y �←EDGE

Compute the distance d between ½x; y � and S

if d ≤ Thresh

½x; y �←S

PS←EDGE

else if G½x − 1; y − 1� > G½x − 1; y � and
G½x − 1; y − 1� > G½x − 1; y þ 1�

x←x − 1; y←y − 1;

else if G½x − 1; y � > G½x − 1; y − 1� and
G½x − 1; y � > G½x − 1; y þ 1�

x←x − 1; y←y ;

else

x←x − 1; y←y þ 1;

end if

P←½x; y �

return P

end function

Fig. 6 Illustration of the routing procedure of four directions. (a), 0 deg, (b) 45 deg, (c) 90 deg, and
(d) −45 deg.
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