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Abstract. Paired-agent kinetic modeling protocols provide one means of estimating cancer cell-surface recep-
tors with in vivo molecular imaging. The protocols employ the coadministration of a control imaging agent with
one or more targeted imaging agent to account for the nonspecific uptake and retention of the targeted agent.
These methods require the targeted and control agent data be converted to equivalent units of concentration,
typically requiring specialized equipment and calibration, and/or complex algorithms that raise the barrier to
adoption. This work evaluates a kinetic model capable of correcting for targeted and control agent signal
differences. This approach was compared with an existing simplified paired-agent model (SPAM), and modified
SPAM that accounts for signal differences by early time point normalization of targeted and control signals
(SPAMPN). The scaling factor model (SPAMSF) outperformed both SPAM and SPAMPN in terms of accuracy
and precision when the scale differences between targeted and imaging agent signals (α) were not equal to
1, and it matched the performance of SPAM for α ¼ 1. This model could have wide-reaching implications
for quantitative cancer receptor imaging using any imaging modalities, or combinations of imaging modalities,
capable of concurrent detection of at least two distinct imaging agents (e.g., SPECT, optical, and PET/MR).©2018
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1 Introduction
The development of more quantitative methods to noninvasively
measure drug-targetable biomolecules in cancerous tissues could
significantly assist the advancement of precision medicine.1

Overexpressed cancer cell surface receptors serve as strong prog-
nostic biomarkers in a spectrum of solid tumors. Accordingly,
targeting cell surface receptors has become a major focus for
molecular imaging and therapy.2 Targeted imaging agents can
detect the overexpressed receptors on the surface of cancer cells
dynamically through noninvasive imaging techniques at least
qualitatively.3 Applying quantitative analyses to the qualitative
imaging data would potentially establish a standard identification
tool to select the targeted drug for individual patients. For exam-
ple, epidermal growth factor receptor (EGFR), a receptor that is
overexpressed on the surface of many cancerous cell types,
controls cellular proliferation by its tyrosine kinase signalling
pathways.4 As a result, quantifying the concentration of available
EGFR receptors could assist in guiding the use of therapies
capable of targeting these pathways.5 Recently, paired-agent im-
aging techniques have been demonstrated to be able to quantify
cancer cell surface receptors in vivo.6,7 In these methods, an
untargeted “control” imaging agent with chemical characteristics
similar to the targeted agent is coadministered with the targeted
imaging agent. The signal of the control agent can then be
used to account for the effects of hemodynamics and nonspecific
uptake and retention on the targeted imaging agent signal,

allowing the binding kinetics to be isolated.8 To image both
the targeted and control agent signals concurrently in optical
imaging applications, the two agents are typically labeled with
different fluorophores that have distinguishable excitation and
emission peak wavelengths, allowing for signal discrimination
based on relatively straightforward filtering. Therefore, to convert
the fluorescence signal intensities to their respective imaging
agent concentrations in tissue, different correction factors (repre-
sented as ηT and ηC for the targeted and control imaging agents,
respectively) must be considered for each imaging agent.

The correction factor differences are affected by a number of
parameters: including the power of the light source at the respec-
tive excitation wavelengths, the sensitivity of the detector(s) at
the respective emission wavelengths, the quantum efficiencies
of the respective fluorophores used, and the differences in tissue
optical properties at the respective excitation/emission wave-
lengths. Although light source, detection efficiency, and quan-
tum efficiency effects can be accounted for by imaging a
calibration standard/solution of known fluorophore concentra-
tions with the system employed, accounting for optical property
effects is more complicated. Tissue optical properties in the
near-infrared are dominated by blood volume and oxygenation,
and photon scatter, factors that can be spatially heterogeneous,
particularly in cancerous tissues or around cancer margins,
owing to the abnormal effects cancers have on angiogenesis
and vasculogenesis.9 In previous work, a pixel-by-pixel nor-
malization was developed to account for differences in the
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correction factors.10 This method assumed that the control and
the targeted signals should be equal to each other in all locations
at a very early time point after injection (<2 min), as preferential
retention of the targeted agent in regions overexpressing the tar-
geted biomolecule would not be evident until the washout phase.
One of the problems with pixel-by-pixel normalization is that it
is highly dependent on the time of normalization after admin-
istration of the imaging agents, as demonstrated in this work,
and it also assumes that the more dynamic first pass kinetics
of the targeted and control agents are equivalent.

In this study, we present a kinetic model we have named the
“linearized scaling factor simplified paired-agent model”
(SPAMSF) in reference to its similarity to the simplified refer-
ence tissue model, SRTM,11 and specifically the linearized
version of the model,12 widely used in positron emission tomog-
raphy (PET) studies. One key difference of all paired-agent
applications is the replacements of the reference tissue input
with the colocalized reference (control) imaging agent signal
input. This is typically employed predominantly for cancer
imaging owing to the difficulty in selecting suitable reference
tissues for cancer.13 Existing paired-agent kinetic modeling
methods based on SRTM require the targeted and control imag-
ing agent signals as a function of time to estimate three param-
eters: R1, the ratio of extravasation rate constants for the targeted
and control agents (K1;T∕K1;C); k2;T , the tissue-to-blood efflux
rate constant of the targeted agent; and BP, the “nondisplace-
able” binding potential, a parameter that is proportional to
the product of the targeted imaging agent affinity and the con-
centration of the targeted biomolecule.14 However, in SPAMSF,
it is assumed that R1 ¼ 1, and instead the ratio of α ¼ ηT∕ηC is
incorporated as a fitting parameter. Computer simulations and
mouse models of human cancer were employed to establish
the validity of BP estimation with SPAMSF, and its precision
and accuracy were compared with linearized SRTM directly
applied to paired-agent data (SPAM) and the pixel-by-pixel
normalization SPAM method (SPAMPN).

Here, we present a pure blind identification method termed
the “multiple reference tissue method” (MRTM). As in other
approaches, the MRTM utilizes two or more reference tissues
to estimate the AIF, but in this case assumes only that the
AIFs in the reference tissues have the same shape, with a pos-
sible difference in bolus arrival time. Importantly, the MRTM is

a mathematical framework equipped with efficient algorithms
that can be applied to any kinetic model, including nonlinear
models, and to any CE imaging modality. The constructed
AIF is smooth and has high temporal resolution. Because
there is no limitation on the kinetic models that can be utilized,
the tumors themselves can be used as a source of reference
tissues. In fact, the inherent heterogeneity of tumors can be
exploited by utilizing individual subregions with different prop-
erties as “reference tissues.” This ability avoids the necessity of
including multiple normal reference tissues in the FOV.

2 Theory
Paired-agent kinetic modeling is designed to estimate binding
potential (BP)—a parameter directly proportional to the targeted
receptor concentration—in molecular imaging studies, and in
particular, cancer molecular imaging studies.7 To accurately
extract quantitative parameters, the dynamic behavior of a tar-
geted and control imaging agent pair can be represented by
a system of equations, assuming “trace” concentrations of the
targeted imaging agent and instantaneous spatial mixing of im-
aging agent concentrations in each “compartment” as defined by
the model in Fig. 115

EQ-TARGET;temp:intralink-;e001;326;509

dCf;TðtÞ
dt

¼K1;TCp;TðtÞ− ðk2;T þ k3;TÞCf;TðtÞþ k4;TCb;TðtÞ;
(1)

EQ-TARGET;temp:intralink-;e002;326;450

dCb;TðtÞ
dt

¼ k3;TCf;TðtÞ − k4;TCb;TðtÞ; (2)

EQ-TARGET;temp:intralink-;e003;326;414

dCf;CðtÞ
dt

¼ K1;CCp;CðtÞ − k2;CCf;CðtÞ; (3)

EQ-TARGET;temp:intralink-;e004;326;377ROITðtÞ ¼ ηT ½vpCp;TðtÞ þ Cf;TðtÞ þ Cb;TðtÞ�; (4)

EQ-TARGET;temp:intralink-;e005;326;351ROICðtÞ ¼ ηC½vpCp;CðtÞ þ Cf;CðtÞ�; (5)

where Cp;TðtÞ and Cp;CðtÞ represent the blood plasma concen-
trations of the targeted and control imaging agents as a function
of time, t; Cf;TðtÞ and Cb;TðtÞ represent the concentrations of

Fig. 1 A schematic of subcutaneous mouse tumor model is shown. The targeted and control imaging
agent compartmental models are shown on the left and right, respectively. Cp;T ðtÞ and Cp;CðtÞ represent
the blood plasma concentrations of targeted and control imaging agents, respectively, as a function of
time, t ; Cf ;T and Cf ;C represent the free (unbound) concentrations of the two imaging agents, Cb;T rep-
resents the bound concentration of the targeted agent; K 1;T and K 1;C represent rate constants governing
targeted and control imaging agent extravasation (transport from blood to extravascular extracellular
space); k2;T and k2;C represent rate constants governing targeted and control agent tissue efflux (trans-
port from extravascular extracellular space to blood); and k3;T and k4;T represent rate constants
governing targeted agent binding and dissociation from the targeted biomolecule.
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the targeted agent in free and bound spaces/compartments,
respectively; Cf;CðtÞ represents the concentration of the control
imaging agent in the free space; K1;T and K1;C are the rate con-
stants governing extravasation of targeted and control imaging
agents, respectively, from blood plasma to the free space; k2;T
and k2;C are the rate constants governing efflux of the targeted
and control imaging agents, respectively, from free space to the
plasma; k3;T and k4;T are the rate constants governing targeted
imaging agent binding and dissociation from targeted receptors/
biomolecules; ROITðtÞ and ROIUðtÞ represent the measured
signals from the targeted and control agents, respectively, in
a region-of-interest; ηT and ηC represent the correction factors
relating tissue concentration to detected signal for the targeted
and control agents, respectively; and vp is the blood plasma vol-
ume fraction in the region-of-interest (volume of blood plasma/
volume of region-of-interest).

Three main assumptions are typically made to solve the sys-
tem of differential equations in Eqs. (1)–(3), which are nearly
identical to those employed in widely used reference tissue mod-
eling:14 (1) the free and bound concentrations of the targeted
imaging agent are in rapid equilibrium (known as the adiabatic
approximation), such that Eqs. (1) and (2) can be combined
into a single compartment equation;11 (2) the magnitude of
any imaging agent signal arising from the plasma compartment
is negligible compared with the signal arising from the tissue
compartments;11 and (3) the ratios of the rate constants of
extravasation and tissue efflux are the same between
targeted and control imaging agent models (i.e., K1;T∕k2;T ¼
K1;C∕k2;C). Such assumptions have led to the derivation of
the linearized simplified reference tissue model (commonly
referred to as SRTM) that is employed primarily in brain PET
studies12 but that has also been evaluated for paired-agent
imaging,16 which is referred to as the simplified paired-agent
model (SPAM) in this work and is expressed as

EQ-TARGET;temp:intralink-;e006;63;378ROITðtÞ ¼ R1ROICðtÞ þ k2;T

Z
t

0

ROICðuÞdu

−
�

k2;T
1þ BP

�Z
t

0

ROITðuÞdu; (6)

where u is a dummy variable of t, R1 ¼ K1;T∕K1;C and BP ¼
k3;T∕k4;T is the nondisplaceable “binding potential” that is
directly proportional to the targeted biomolecule,14 and is there-
fore the key parameter of interest in this type of modeling.
If ROIT and ROIC are known/measured, R1, k2;T , and BP
can all be estimated explicitly through least squares regression
of Eq. (6).

Paired-agent imaging requires that two additional assump-
tions be accurate for SRTM to be adopted for BP estimation:
(1) that the plasma input functions of the targeted and control
agents be similar (i.e., Cp;T ¼ Cp;C)—however, methods for
correction if this equivalence is not true have been
developed17—and (2) that the correction factors relating tissue
concentration to detected signal for both the targeted (ηT ) and
control (ηC) imaging agents be known/calculated, or at least that
the ratio of the two correction factors (ηT∕ηC) be known. One
method of estimating the ratio of the correction factors is by
assuming that the concentrations of the targeted and control
imaging agents are equivalent at a very early time point, te,
typically within 2 min of imaging agent injection.10 Under
this assumption, any differences in measured targeted and con-
trol agent signal at te can be attributed to differences in the

correction factors, ηT and ηC, which can be affected by local
optical properties, such that ηT∕ηC can be represented by
ROITðteÞ∕ROICðteÞ. One advantage of this method is that it
can be applied on a pixel-by-pixel (or region-by-region) basis
such that spatial heterogeneity in optical properties (and their
effects on the correction factors) can be accounted for. This
pixel-normalization method can be expressed in terms of the
SPAM as SPAMPN

EQ-TARGET;temp:intralink-;e007;326;664

ROITðtÞ ¼
ROITðteÞ
ROICðteÞ

�
R1ROICðtÞ þ k2;T

Z
t

0

ROICðuÞdu
�

−
�

k2;T
1þ BP

�Z
t

0

ROITðuÞdu: (7)

However, SPAMPN has a few limitations. As ROITðteÞ and
ROICðteÞ are collected at a single imaging time point, the vari-
ance in the ratio estimate is more sensitive to experimental noise
and errors in motion correction than a multitime point normali-
zation would be. Furthermore, binding characteristic differences
between the targeted and control agents could lead to differences
in tissue concentrations even at very early time points depending
on the imaging agents used. As such, this work presents a scal-
ing factor SPAM (SPAMSF) that provides a more robust correc-
tion for optical property-based effects on the correction factors
ηT and ηC.

2.1 Linearized Scaling Factor Simplified Paired
Agent Model

Here, a derivation of the SPAMSF model is presented directly
from Eqs. (1)–(5). First, assuming Cp;T and Cp;C are different,
they can be related generally as

EQ-TARGET;temp:intralink-;e008;326;396Cp;TðtÞ ¼ Cp;CðtÞ � gðtÞ; (8)

where gðtÞ is any function that can be convolved with Cp;C that
will match its shape to Cp;T , and * represents the convolution
operator. Equation (3) can be rearranged to achieve

EQ-TARGET;temp:intralink-;e009;326;331Cp;CðtÞ ¼
1

K1;C

dCf;CðtÞ
dt

þ k2;C
K1;C

Cf;CðtÞ: (9)

Then, Cp;TðtÞ can be approximated as a function of ROICðtÞ
by combining Eqs. (8) and (9) and assuming Cf;C ≫ vpCp;C

from Eq. (5) (the later assumption is often assumed for fast
clearing imaging agents11)

EQ-TARGET;temp:intralink-;e010;326;241Cp;TðtÞ ¼
�

1

ηCK1;C

dROICðtÞ
dt

þ k2;C
ηCK1;C

ROICðtÞ
�
� gðtÞ:

(10)

Concurrently, assuming the adiabatic approximation [i.e.,
Cb;TðtÞ∕Cf;TðtÞ ¼ constant], and Cf;T ≫ vpCp;T from Eq. (4),
Eqs. (1) and (2) can be combined to form

EQ-TARGET;temp:intralink-;e011;326;150

dROITðtÞ
dt

¼ ηTK1;TCp;TðtÞ −
k2;T

1þ BP
ROITðtÞ: (11)

Combining Eqs. (10) and (11), integrating both sides, and
assuming K1;T∕k2;T ¼ K1;C∕k2;C produces

Journal of Biomedical Optics 066004-3 June 2018 • Vol. 23(6)

Sadeghipour, Davis, and Tichauer: Correcting for targeted and control agent signal differences. . .



EQ-TARGET;temp:intralink-;e012;63;752ROITðtÞ ¼
ηT
ηC

�
R1ROICðtÞ � gðtÞ þ k2;T

Z
t

0

ROICðuÞ

� gðuÞdu
�
−
�

k2;T
1þ BP

�Z
t

0

ROITðuÞdu; (12)

where K1;T and K1;C are the primarily influenced by the blood
flow and vascular permeability of the tissue, approximated as

EQ-TARGET;temp:intralink-;e013;63;665K1 ¼
�
1 − e−

PS
F

�
F; (13)

where PS is the permeability-surface area product (leakiness of
the blood vessel multiplied by blood vessel surface area) and F
is the blood flow.18 Therefore, for chemically similar targeted
and control imaging agents an assumption that K1;T ¼ K1;C
and therefore R1 ¼ 1, is likely valid, yielding SPAMSF with
plasma input function correction
EQ-TARGET;temp:intralink-;e014;63;560

ROITðtÞ ¼ αROICðtÞ � gðtÞ þ αk2;T

Z
t

0

ROICðuÞ � gðuÞdu

−
�

k2;T
1þ BP

�Z
t

0

ROITðuÞdu; (14)

where α ¼ ηT∕ηC. Under the condition where targeted and con-
trol agents are selected such that Cp;TðtÞ ¼ Cp;CðtÞ, gðtÞ is equal
to a Dirac-delta function, δðtÞ, and Eq. (14) simplifies to the
standard SPAMSF

EQ-TARGET;temp:intralink-;e015;63;446ROITðtÞ ¼ αROICðtÞ þ αk2;T

Z
t

0

ROICðuÞdu

−
�

k2;T
1þ BP

�Z
t

0

ROITðuÞdu; (15)

which can be solved explicitly using least squares to estimate α,
k2;T , and BP. If Cp;TðtÞ and Cp;CðtÞ are not equivalent, then gðtÞ
can either be estimated by deconvolving direct measures of
Cp;TðtÞ and Cp;CðtÞ, or by deconvolving targeted and control
kinetic curves taken from a “reference” region (one devoid of
target biomolecule). These methods have been described in
detail previously;17 however, there is a subtle difference in
this reference region correction method that requires an addi-
tional note in the case where the ratio of correction factors
(ηT∕ηC) is not the same in an ROI and the reference region
(REF). Briefly, Eq. (1) can be solved in the absence of binding
(k3;T ¼ 0) for the reference region, REFT

EQ-TARGET;temp:intralink-;e016;63;245REFTðtÞ ¼ ηT;REFK1;T;REFCp;T � e−k2;T;REFt; (16)

where ηT;REF represents the targeted concentration-to-signal cor-
rection factor for the reference region specifically. Similarly,
Eq. (2) can be solved for the reference region

EQ-TARGET;temp:intralink-;e017;63;180REFCðtÞ ¼ ηC;REFK1;C;REFCp;C � e−k2;C;REFt; (17)

If the K1s and k2s again are considered equivalent in the
reference region, it can be shown that the deconvolution of
REFT and REFC will yield

EQ-TARGET;temp:intralink-;e018;63;114gREFðtÞ ¼ αREFgðtÞ; (18)

where αREF ¼ ηT;REF∕ηC;REF. Therefore, Eq. (14) must be
amended slightly to

EQ-TARGET;temp:intralink-;e019;326;752

ROITðtÞ ¼
α

αREF
ROICðtÞ � gREFðtÞ þ

α

αREF
k2;T

Z
t

0

ROICðuÞ

� gREFðuÞdu −
�

k2;T
1þ BP

�Z
t

0

ROITðuÞdu: (19)

3 Methods

3.1 Simulation Study

To compare the scaling factor model, SPAMSF, with two estab-
lished models, SPAM and SPAMPN, targeted and control imag-
ing agent kinetic data were generated from an analytical solution
to the compartmental model system of differential equations
presented in Eqs. (1)–(3), based on parameter estimates
described below and experimentally derived plasma input func-
tions of epidermal growth factor (EGF) labeled with IRDye
800CW (LI-COR Biosciences, Lincoln, Nebraska).19 Resulting
curves were interpolated to 60-min time windows at 1-min time
intervals and scaled such that the highest concentration curve in
all simulated curves would be representative of 50% of signal
saturation on a 16-bit detector. Assuming noise in light detection
is dominated by shot-noise, Poisson noise was then added to
all curves using the Matlab built-in function, poissrnd()
(Mathworks, Natick, Massachusetts). “Typical” targeted and
control kinetic curves were approximated by setting K1;T and
K1;C to 0.13 min−1, and k2;T and k2;C values to 0.08 min−1,
which were in the range of what was measured previously
for IRDye 800CW-EGF;13 and k3;T and k4;T values were set
to 0.2 and 0.1 min−1 in the tumor, based on direct measures
of EGF binding to its receptor, EGFR.20,21 To evaluate the
effects of differences in the concentration-to-signal correction
factors, ηT and ηC, on the fitting models (SPAM, SPAMPN,
and SPAMSF), αwas varied over a range of 0.1 to 10 while hold-
ing all other parameters constant. For optical imaging applica-
tions, α depends on the fractional differences between the
optical properties of the tissue (absorption and scattering) expe-
rienced by the light emitted from the targeted and control
imaging agent, as long as all other differences in channel sen-
sitivity are accounted for. It can vary significantly from location
to location with magnitudes that will depend on a number of
factors that are difficult to approximate. In a previous study
mouse human xenograft study, the measured range of α was
1.5 to 2.7 for paired agents at wavelengths with very similar
tissue optical properties.10 The rangewas expanded here for gen-
eralization to a greater array of conditions. In addition, separate
simulations were carried out holding α ¼ 1 and varying BP, k2
and R1 from 0.5 to 5.5, 0.03 to 0.1 min−1, and 0.5 to 1.5, respec-
tively. These ranges were selected from previous studies of BP
measurement in a wide range of EGFR overexpressing tumor
lines6 and from tumor imaging with various sized imaging
agents, measuring variability in K1 and k2.

22 Under all condi-
tions, 1000 noise realizations were repeated to evaluate BP esti-
mation accuracy and precision using the different fitting models.

To understand the effect of errors in the assumption that
R1 ¼ 1 on the BP estimation of SPAM, SPAMSF, and SPAMPN,
the simulations were altered for R1 not equal to 1. As
R1 ¼ K1;T∕K1;C, so it can be manipulated by either changing
K1;T or K1;C (or a combination of both). All methods were
explored, yet results were only displayed for changing K1;T
while keepingK1;C constant as all methods led to similar results.
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3.2 Animal Experimental Protocol

Animal studies were performed in accordance with a protocol
approved by the institutional animal care and user committee
at Illinois Institute of Technology. The performance of
SPAMSF was also investigated in a set of in vivo human glioma
(U251) xenograft mouse model studies using two different im-
aging systems and two different sets of paired imaging agents to
evaluate EGFR receptor status (via BP estimation). In the first
group, five 6-week-old severe combined immunodeficient
(SCID) male mice (Charles River, Wilmington, Massachusetts)
were implanted with 106 U251 human glioblastoma cells
(ATCC, Manassas, Virginia) subcutaneously on the left flank.
Tumors were allowed to grow until they reached 5 mm in diam-
eter. The mice were then anesthetized with an i.p. injection of
ketamine-xylazine (100 mg∕kg∶10 mg∕kg) and the skin sur-
rounding the tumors was removed, prior to taping the mice
down onto a glass slide and placement into a fluorescent imag-
ing system (Odyssey®, LI-COR Biosciences). One nanomole of
each IRDye 800CW-EGF and hydrolyzed IRDye 700DX
(reacted with water at room temperature for 3 h) were injected
i.v. into a tail vein and fluorescence images from 700 to 740 nm
(with 685 nm excitation) and from 800 to 840 nm (with 785 nm
excitation) were collected every 2 to 5 min for 60 min. In a sep-
arate study, five 6-week-old athymic nude male mice (ENVIGO,
Indianapolis, Indiana) were similarly implanted with U251
tumor cells. When the tumors reached a diameter of 5 mm,
the mice were anesthetized with 3% isoflurane and maintained
with 1% to 3% isoflurane inhalation in 100% O2. Tissue sur-
rounding the tumors was then removed and the area was flushed
with PBS and capped with clear plastic wrap to prevent the tis-
sue from drying during imaging. Other areas of the mice were
covered with nonfluorescent black felt to minimize sources of
signal outside the tissues of interest. The mice were then fixed to
the 37°C heated bed of a Pearl® Imaging System (LI-COR
Bioscience), and 0.2 nanomoles each of IRDye 800CW-labeled
anti EGFR Affibody (Affibody AB, Solna, Sweden) and IRDye
700DX-labeled negative-control-Affibody (Affibody AB) were
injected i.v. via a tail vein. The targeted Affibody agent is
a good-manufacturing-procedures (GMP) produced agent that
is a product of a clinical trial at Dartmouth College,23–27 and
is referred to as ABY-029. Fluorescent images at the same wave-
length ranges as defined for the Odyssey were then collected for

1 h at two-min intervals. In all experiments, a section of leg
muscle in the opposing leg to the location of the tumor was
exposed to act as a reference region. To further test the
model on an orthotopic study, previously published fluorescence
tomographic data of U251 cells implanted in mice brain was
used.28 Briefly, once brain tumors were visible through gadolin-
ium-enhanced magnetic resonance imaging (Gd-MRI), athymic
nude mice (n ¼ 5) were injected via a tail vein with a cocktail of
0.2 nmol each of IRDye 800CW-anti-EGFR Affibody (targeted)
and Alexa Fluor 750 labeled negative control Affibody (control)
imaging agents. The mice were then imaged on an MRI-coupled
fluorescence molecular tomography (MRI-FMT) system.29

The dynamic uptake of the targeted and control imaging
agent kinetics was imaged in the tumor using hard-prior
reconstruction for 1 h at two-min intervals. In the Odyssey and
Pearl studies, kinetic curves were extracted pixel by pixel and
for whole tumor regions-of-interest using lab software created
in MATLAB. SPAMPN and SPAMSF were fitted directly to
targeted and control imaging agent kinetic curve pairs after
correcting for potential differences in plasma input function
kinetics by deconvolution of the reference region kinetic curves
(see Sec. 2). No plasma input correction was carried out for
tomography study as the two agents were shown to have
very similar plasma curves.28

3.3 Statistics

Statistical analyses were carried out using the statistical pack-
age, SPSS (IBM®, Armonk, New York). Linear regression was
employed to evaluate the strength of the correlation between the
SPAMSF and SPAMPN estimates of BP in the case of no scaling
factor. Statistical significance was based on p < 0.05. All data
are presented as mean� sd. The goodness of real data and
model fits were evaluated by standard χ2 value analyses.

4 Results

4.1 Simulation Results

Examples of simulated, noise-added targeted, and control imag-
ing agent kinetics from Eqs. (1)–(3) and corresponding fits of
the data using SPAM, SPAMPN, and SPAMSF models to the
data are presented in Fig. 2. The average of χ2 values for all

Fig. 2 Simulation results. Generated noisy targeted and control agent curves and model fits for (a) the
linearized SPAM (b) the pixel-normalization SPAM (SPAMPN), and (c) the scaling factor SPAM
(SPAMSF). The blue dots represent the targeted imaging agent signal intensity, ROIT ðtÞ. The orange
dots represent the control imaging agent signal intensity, ROIC ðtÞ. Poisson noise was added to
the data. The solid red, blue, and green lines represent SPAM, SPAMPN, and SPAMSF fit results, respec-
tively. The simulated values of kinetic parameters to create these simulated curves were:
K 1 ¼ 0.013 min−1, k2 ¼ 0.08 min−1, k3 ¼ 0.2 min−1, k4 ¼ 0.1 min−1, and α ¼ 1, and simulated time
was 60 min.
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three model fits over a range of α from 0.1 to 10 was from 0.06
to 0.33 with all fits looking similar in quality to those displayed
in Fig. 2.

Figure 3 shows a comparison of the accuracy of all three fit-
ting models over a range of simulated parameters—specifically,
α, BP, k2, and R1—as defined by errors in estimations of
simulated BP values. In these experiments, the time point for
approximating α with SPAMPN [te from Eq. (7)] was set to
1 min postimaging agent administration [Fig. 4(a) presents the
effect of this selection]. While setting R1 ¼ 1, k2 ¼ 0.08 min−1,
and BP ¼ 2, average errors in BP estimation for both SPAMPN

and SPAMSF remained <10% for values of α between 0.1 and
10, whereas SPAM yielded average errors that were directly pro-
portional to the percent difference in α from 1 [Fig. 3(a)]. For
example, α ¼ 1.1 led to a 10% overestimation in BP using
SPAM, whereas α ¼ 0.5 led to a 50% underestimation in BP.
No statistically significant differences were observed between
BP estimates using SPAMPN and SPAMSF; however, a small
negative bias in BP error using SPAMPN was observed,
along with a variance that was more than four times larger than
the error observed using SPAMSF (SPAMPN average BP error ¼
−3.25� 9.85%; SPAMSF average BP error ¼ 0.17� 2.02%).

Fig. 3 Simulation results: BP estimation errors are presented for all three kinetic models tested in this
study as a function of the ratios of correction factors, α (a), BP (b), the tissue-to-blood efflux rate constant,
k2 (c), and ratio of the targeted and control imaging agent blood-to-tissue extravasation rate constants,
R1 (d). The linearized SPAM results are presented in red, the pixel normalization SPAM (SPAMPN)
results are presented in blue, and the scaling factor SPAM (SPAMSF) results are presented in green.

Fig. 4 Simulation results: (a) errors in BP estimation using the linearized pixel-normalization SPAMPN as
a function of. Different colors correspond to sets of data created from different ratios of correction factors
(α ¼ ηT ∕ηC ). (b) Errors in BP estimation using SPAMPN and the SPAM scaling factor model (SPAMSF) as
a function of time-spacing of imaging data (t e) where t e also represents the first time point after agent
administration with keeping α ¼ 1. SPAMPN and SPAMSF results are presented in blue and green,
respectively.
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At α ¼ 1, SPAM and SPAMSF were found to have equivalent
performance. The magnitude of BP and k2 had little effect on the
accuracy of all three models, with α ¼ 1, K1 ¼ 0.013 min−1

[Figs. 3(b) and 3(c), respectively]. No statistically significant
differences in BP estimation were observed between any of
the models over a k2 range of 0.03 to 0.1 min−1 and a BP
range of 0.5 to 5.5. However, again there was a slight BP under-
estimation in SPAMPN that was amplified at higher k2 values,
and the variance in SPAMPN was more than four times that of
SPAM and SPAMSF in all cases. Errors in the approximation

that R1 ¼ 1 resulted in significant errors in both SPAMPN

and SPAMSF which were inversely proportional to the scale
of error in R1 [Fig. 3(d)]. As these simulations were carried
out at α ¼ 1, SPAM performed well for all levels of R1 tested,
with an average BP error of 0.28� 3.18%. For testing of R1

sensitivity, the K1;T∕k2;T ¼ K1;C∕k2;C equivalency was held,
such that R1 ¼ 1.1 corresponded to K1;T ¼ 1.1 � K1;C and
k2;T ¼ 1.1 � k2;C. If only K1;T was changed, then SPAMPN

and SPAMSF were found to be insensitive to the value of R1,
as long as k2;T ¼ k2;C (results not shown). However, SPAM

Fig. 5 In vivo experimental results: The linearized pixel-normalization simplified paired agent model
SPAMPN in (a) targeted (IRDye 800CW-EGF) and control (IRDye 700DX) imaging agent signal curves
measured with the Odyssey System in exposed subcutaneous human glioblastoma (U251) tumors
grown in athymic mice, (b) targeted (IRDye 800CW-anti-EGFR-Affibody) and control (IRDye 700DX-
negative-control-Affibody) imaging agent signal curves measured with the Pearl System in exposed
subcutaneous U251 tumors and (c) targeted (IRDye 800CW-anti-EGFR-Affibody) and control (IRDye
700DX-negative-control-Affibody) imaging agent signal curves measured with an MRI–FMT system
from a typical tumor region-of-interest, respectively. Corresponding model fits using the scaling factor
SPAM (SPAMSF) are presented in (d)–(f), respectively. The blue dots represent the targeted imaging
agent signal intensity, the orange dots represent the control imaging agent signal intensity before cor-
recting for plasma input function differences, the black dots represent the control imaging agent signal
intensity after correcting for plasma input function differences. The solid light blue line represents the
SPAMPN fit and the solid green line represents the SPAMSF fit. In (g) and (h) a pixel-by-pixel correlation
of SPAMSF and SPAMPN BP estimates in all regions of an image on the same mouse data presented in
(a) and (b) are presented. The dashed line is the line-of-identity. A correlation between BP values esti-
mated by SPAMSF and SPAMPN in Odyssey, Pearl and tomography imaging studies are presented in (i)
for average tumor region-of-interest fits.
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exhibited errors proportional to the value of R1 as it strictly
requires that K1;T∕k2;T ¼ K1;C∕k2;C, which is not held in this
simulation (results not shown).

Irrespective of the ratio of correction factors (α ¼ ηT∕ηC), the
accuracy of SPAMPN, defined by the error in estimation of the
BP, was observed to be highly dependent on the time point after
imaging agent delivery that was selected for normalization of α
[Fig. 4(a)]. Specifically, the later the time point selected for nor-
malization, the larger the underestimation in BP. Average sd in
the BP estimation error at α ¼ 0.1 was 24.10%, and at α ¼ 10

was 5.13%. When normalization was carried out at 1-min post-
agent-administration for SPAMPN at α ¼ 1, the average percent-
error was −3.8� 6.62%; whereas, when carrying out the nor-
malization at 5 min the average was −12.67� 4.72%. Although
the SPAMSF requires no selected time of normalization (as the
normalization is included as a fitting parameter), it was assumed
that a delayed time of normalization in SPAMPN would
only arise if data were not sampled as frequently after imaging
agent administration. Therefore, the effect of data collection at
a period of te (time of normalization for SPAMPN) on the accu-
racy of SPAMSF was evaluated in comparison with time of nor-
malization for SPAMPN [Fig. 4(b)]. For te ¼ 1 min at α ¼ 1,
the average percent-error of SPAMSF was −0.01� 1.94%,
for te ¼ 5 min, the average was −7.60� 3.56%. An increase
in the error of the SPAMSF with data-spacing (te) was commen-
surate with the expected truncation error increase from a numeri-
cal analysis perspective. Here, SPAM was not evaluated as it
resulted in identical results to SPAMSF since α ¼ 1.

Examples of targeted (IRDye 800CW-EGF) and control
(IRDye 700DX) imaging agent signal curves in a typical
U251 tumor are shown in Figs. 5(a) and 5(d), along with fit
results using SPAMPN and SPAMSF, respectively. Examples of
targeted (ABY-029) and control (IRDye 700DX-negative-con-
trol-Affibody) imaging agent signal curves in a typical U251
tumor are shown in Figs. 5(b) and 5(e), along with fit results
using SPAMPN and SPAMSF, respectively. Examples of targeted
(IRDye 800CW-anti-EGFR-Affibody) and control (IRDye
700DX-negative-control-Affibody) imaging agent signal curves
in a typical orthotopic U251 tumor are shown in Figs. 5(c) and
5(f), along with fit results using SPAMPN and SPAMSF, respec-
tively. Note: SPAM fits evaluated but not displayed or
discussed owing to large errors attributable to α not equal to
1 [see Fig. 3(a)]. The average goodness of the fit, quantified
by χ2, of SPAMPN and SPAMSF for all tumors were not
significantly different statistically and were 0.05� 0.02 and
0.08� 0.03, respectively. The statistically significant correla-
tion held for all individual animal datasets when BP estimation
from SPAMPN and SPAMSF were compared on a pixel-by-pixel
level (average r ¼ 0.95� 0.06, p < 0.001 for all cases).
Examples of correlations from a single animal from the EGF-
Odyssey and Affibody-Pearl groups are shown in Figs. 5(g)
and 5(h), respectively. The mean� sd of BP for SPAMPN

and SPAMSF were 1.34� 0.47 and 1.49� 0.52 for the EGF-
Odyssey group, respectively, 1.40� 0.37 and 1.41� 0.44 for
the Affibody-Pearl group, respectively (when accounting for
differences in EGF and anti-EGFR affinity), and 0.87� 0.14

and 0.85� 0.14 for the orthotopic tomography group. A sta-
tistically significant correlation was observed between BP
estimates determined using SPAMSF and SPAMPN (r ¼ 0.98,
p < 0.001) when including data from all experimental groups.
The correlation was not significantly different from the line-of-
identity, statistically. The mean� sd for R1 and k2 in all

SPAMPN cases were 1.00� 0.03 and 0.07� 0.04 min−1,
respectively. The mean� sd for α and k2 in all SPAMSF

cases were 0.91� 0.01 and 0.06� 0.03 min−1, respectively.
The BP maps from two representative mice each from the
EGF-Odyssey and Affibody-Pearl groups are presented in
Fig. 6.

5 Discussion
The development of accurate, noninvasive methods to quantify
cell surface receptor concentrations in cancer molecular imaging
could have far-reaching impacts on the future of precision medi-
cine,30 drug development,31 and molecular guided surgery.32

Paired-agent kinetic modeling, where the kinetics of a control
(untargeted) imaging agent that is coadministered with a tar-
geted imaging agent are used to account for nonspecific effects,
has proven great promise in being capable of quantifying cancer
cell surface receptor concentrations in vivo.7 The paired-agent
imaging kinetic models were adopted from the simplified refer-
ence tissue model (SRTM), used widely in PET studies,14 and
are referred to here as SPAM. Recently, our group derived a gen-
eralized form of SRTM and SPAM, capable of accounting for
receptor saturation.33 In this work, we present a modification to
SPAM in particular, allowing the automatic correction for signal
scaling differences between the detected signals of targeted and
control imaging agents. This advance is particularly relevant for
fluorescence imaging-based applications of SPAM, where tissue
optical properties can differ heterogeneously in tissue making it
difficult to accurately achieve imaging agent concentration maps
of both agents.

The accuracy and precision of this scaling factor SPAM
(SPAMSF) was compared against an existing method that cor-
rects for scaling differences between targeted and control imag-
ing agent signals by normalizing the signals at a very early time
point after agent administration10—assuming early signal is
dominated by delivery, rather than binding, such that early
targeted and control agent signals should be measured to be
the same. This method is referred to here as SPAMPN. The
SPAMSF and SPAMPN models were compared both in physio-
logically informed, noise-added numerical simulations of tar-
geted and control agent uptake in tumors, as well as in three
different animal study groups. In each study, EGFR was targeted

Fig. 6 In vivo experimental results: BP parametric maps of estimated
epidermal growth factor receptor (EGFR) concentration are depicted
as calculated by either the linearized pixel-normalization SPAMPN or
the scaling factor SPAM (SPAMSF). Here, results of four mice are dis-
played: two from the group imaged on the Odyssey System (targeted
agent = IRDye 800CW-EGF; control = IRDye 700DX), and two from
the group imaged on the Pearl System (targeted agent = ABY-029;
control = IRDye 700DX-negative-control-affibody). The left two col-
umns show the two mice imaged on the Odyssey, and the right
two columns show the two mice imaged on Pearl.

Journal of Biomedical Optics 066004-8 June 2018 • Vol. 23(6)

Sadeghipour, Davis, and Tichauer: Correcting for targeted and control agent signal differences. . .



by either fluorescently labeled native ligand to EGFR, EGF, or
with an anti-EGFR Affibody. The results demonstrated both
improved accuracy and precision of BP estimation using
SPAMSF compared with SPAMPN in the simulation studies,
and a strong correlation between SPAMSF and SPAMPN in
the animal studies.

With respect to the simulation results, SPAMPN exhibited a
slight underestimation in BP under all conditions tested, owing
to errors in the assumption that there is no preferential retention
of the targeted agent over the control agent by 1-min postinjec-
tion. In the simulation studies at least, there is some divergence
of the targeted and control curves at this time, which amplified
over time (Fig. 4). Furthermore, the standard deviation in the
BP estimates using SPAMPN was found to be ∼3 times larger
than those found for SPAMSF. This improvement in precision of
SPAMSF over SPAMPN is attributable to the fact that SPAMSF

essentially “fits” for the scaling factor, α, over as many time
points as are in the dataset, whereas SPAMPN directly estimates
α by normalizing targeted and control agent signals at a single
time point. Therefore, it is expected that SPAMPN is consider-
ably more sensitive to noise.

An additional finding from the simulation study was that
errors in the assumption that R1 ¼ 1 caused significant and
similar errors in the BP estimation with both SPAMSF and
SPAMPN: specifically, BP estimation using SPAMPN and
SPAMSF was found to be inversely proportional to the scale
of error in the R1 ¼ 1 assumption [Fig. 3(d)]. The sensitivity
of SPAMSF to R1 errors was expected because the model
expressly requires R1 ¼ 1. The sensitivity of SPAMPN was ini-
tially difficult to explain as it fits for R1. However, the scaling
method in SPAMPN was found to partially normalize out R1,
which forcing an erroneous fit of true R1, which in turn affected
the accuracy in the estimation of both k2;T and BP.

An important assumption in all introduced models that war-
rants discussion is that K1;T∕k2;T ¼ K1;C∕k2;C. The superiority
of paired-agent imaging methods to conventional reference tis-
sue models comes back to this assumption, as in conventional
reference tissue imaging, it is important that the reference tissue
and the region of interest have the same partition coefficients,
which can be particularly difficult in cancer imaging.13

However, in paired-agent imaging, as long as both imaging
agents experience diffusion/permeability limited delivery, the
K1;T∕k2;T ¼ K1;C∕k2;C assumption should always be accurate
as both should be equivalent to the inverse of the partition
coefficient. Ensuring that similar vascular permeability be expe-
rienced by both the targeted and control agents in all environ-
ments requires the agents to have similar size, charge, and
lipophilicity,22 which is true for the agents employed in this
study and is generally not difficult to achieve, though should
be verified by ensuring the agents have equivalent kinetics is
tissues devoid of the targeted biomolecule.6,34

The two obvious molecular imaging modalities capable of
carrying out paired-agent imaging (for application of SPAM
models)—where signal for two distinct imaging agent signals
must be resolvable—include SPECT and optical imaging.
Considerable effort is ongoing in dual-isotope SPECT35 to
achieve signal quantification, involving correction for signal
cross-talk, and photon absorption and scattering property
differences in different energy windows. In SPECT, the photon
absorption and scattering tissue property differences can be
subtle, but they are considerably more complex in fluorescence
imaging. Even so, much work has gone into designing protocols

that minimize these effects. For instance, employing excitation
at wavelengths with low tissue attenuation can avoid high tissue
absorption by hemoglobin,36 and multispectral fluorescence im-
aging can allow multiple fluorescence agents to be imaged
within similar wavelength ranges.28 Use of surface-enhanced
Raman scattering nanoparticles takes this idea to the limit as
multiple “flavors” of particles can be excited with the same
wavelength, and their respective, unique spectral signatures
can be measured over identical spectral windows such that
the optical properties of excitation and emission are nearly
identical.37 Moreover, the idea of epi-illumination surface imag-
ing, where both source and detector are focused at the same
location, could minimize absorption and scattering effects by
limiting the detectable fluorescence events to those close to
the surface.38 It is also possible to mitigate optical property
effects by normalizing fluorescence signals to simultaneously
measured excitation light signals,39,40 or the excitation light
spectrum can be employed in more sophisticated terms to
quantify the optical properties.41

In summary, it can be stated that if the data being collected is
more likely to conform to α ¼ 1, but R1 not equal to 1 (“case
1”), then SPAM (which is similar to SRTM in conventional
reference tissue imaging) is the model of choice. If the data
is more likely to conform to R1 ¼ 1, but α is not equal to 1
(“case 2”), then SPAMSF is the model of choice (outperforming
SPAMPN, which is also more accurate than SPAM for “case 2”).
Examples of “case 1” include studies where imaging agent con-
centration can be readily quantified from images such as PET
neurotransmitter receptor imaging. Examples of “case 2”
include studies where a control agent signal in the region of
interest is used to account for agent delivery kinetics and non-
specific retention—require simultaneous imaging of two agents
such as dual-isotope single photon emission tomography
(SPECT) or fluorescence optical paired-agent imaging. In both
modalities, accurate concentration quantification from signal is
not straightforward, such that it may not be possible to ensure
that α ¼ 1. Yet, if the targeted and control agents are designed
such that they experience the same levels of blood vessel per-
meability (PS), based on their size, charge, and lipophilicity,42

then it is conceivable by Eq. (13) that the R1 ¼ 1 assumption
would hold. Despite the potential for signal quantification in
both SPECT and optics, all of the methods require either
specialized equipment or unique expertise in data analysis.
The advantage of SPAMSF—demonstrated in this work in sim-
ulations and animal studies—is that it does not require either
the targeted or control imaging agent signals to be quantified.
The scaling error in quantification is instead incorporated
into the fitting algorithm, which is accurate as long as
R1 ¼ 1 and K1;T∕k2;T ¼ K1;C∕k2;C: conditions that are highly
likely as long as the chemical properties of the targeted and
control agents are similar.
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