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Abstract

Significance: Photoacoustic (PA) tomography has demonstrated versatile biomedical applica-
tions. However, an array-based PA computed tomography (PACT) system is complex and expen-
sive, whereas a single-element detector-based scanning PA system is too slow to detect some fast
biological dynamics in vivo. New PA imaging methods are sought after.

Aim: To overcome these limitations, we developed photoacoustic topography through an ergo-
dic relay (PATER), a novel high-speed imaging system with a single-element detector.

Approach: PATER images widefield PA signals encoded by the acoustic ergodic relay with
a single-laser shot.

Results: We applied PATER in vivo to monitor changes in oxygen saturation in a mouse brain
and also to demonstrate high-speed matching of vascular patterns for biometric authentication.

Conclusions: PATER has achieved a high-speed temporal resolution over a large field of view.
Our results suggest that PATER is a promising and economical alternative to PACT for fast
imaging.
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Photoacoustic (PA) imaging provides functional and molecular information by sensing optical
absorption, which supports a wide range of biomedical applications.1–4 PA computed tomogra-
phy (PACT) has successfully imaged structural and dynamic features in animals and humans.5–7

Using an array of ultrasonic transducers, a PACT system can detect signals from a large field of
view (FOV) in parallel, but the multichannel detection and acquisition system is complex and
expensive.8,9 Moreover, PACT systems are often bulky. On the other hand, conventional PA
microscopy systems scan a single-element ultrasonic transducer to form images, with reduced
imaging throughput.4,10

As an alternative, we developed photoacoustic topography through an ergodic relay
(PATER), a novel high-speed imaging technology with a single-element ultrasonic transducer.11

An acoustic ergodic relay (ER) is an acoustic waveguide that encodes sound waves from the
input points to an output point with distinct acoustic reverberant characteristics.12 We had pre-
viously shown that a right-angle prism works as an ER for PATER.11 Using only a single-element
ultrasonic transducer, PATER simultaneously detects widefield PA signals encoded by the ER
and then mathematically decodes the received signal to form a widefield image.11,13,14

Consequently, PATER can be used to study dynamic activities with a submillisecond temporal
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resolution over a large FOV. Applying PATER in vivo, we monitored changes in oxygen sat-
uration in a mouse brain and demonstrated high-speed recognition of vascular patterns for bio-
metric authentication. Our results have demonstrated that PATER is a promising and economical
alternative to PACT for a broad range of biomedical applications.

Figure 1(a) shows a schematic of the PATER system. A 532-nm pulsed laser beam
(INNOSAB IS8II-E, Edgewave GmbH, 5-ns pulse width, and 1-kHz pulse repetition rate) passes
through an optical-element wheel (LTFW6, Thorlabs, Inc.), which switches the active optical
elements (a lens and an engineered diffuser) in and out of the light path according to the acquis-
ition mode. The laser beam then passes through the ER and illuminates the object on the ER’s
imaging plane. PA waves are encoded inside the ER and finally detected by a single-element
ultrasonic transducer (VP-0.5-20 MHz, CTS Electronics, Inc.).

PATER requires two acquisition steps. In the first step—a point-by-point scanning called
calibration mode [Fig. 1(b)], a laser beam is focused by a plano-convex lens (LA1433,
Thorlabs, Inc.; 150-mm focal length) to a small spot (∼30 μm) on the input surface of the ER
that interfaces with the object to be imaged. Because the pulse width of the laser (∼5 ns) is much
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Fig. 1 PATER: (a) schematic of the system. BS, beam splitter; DAQ, data-acquisition unit; ER,
ergodic relay; OEW, optical-element wheel; and UST, ultrasonic transducer. The OEW switches
the two optical elements (a lens or an engineered diffuser) according to the acquisition mode
(calibration or widefield). (b) Schematic for the calibration mode. The light is focused by a lens to
generate PA waves. Each detected PA signal represents the impulse response from the focused
illumination position. (c) Schematic for the widefield imaging mode. The widefield light is homog-
enized by an engineered diffuser to illuminate the entire FOV homogeneously. The detected PA
signal is a linear combination of impulse responses from the entire FOV.
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shorter than the central period of the ultrasonic transducer (50 ns, correspoinding to 20 MHz) and
the focused beam spot (∼30 μm) is much smaller than the central acoustic wavelength (∼300 μm
inside the ER), each PA wave input to the ER can be approximated as a spatiotemporal delta
function.11,15 Therefore, each calibration measurement quantifies the impulse response of the
system at one scanning position. The ER is driven by a customized two-axis motorized stage
for raster scanning along the x and y axes, so impulse responses over the entire FOV can be
calibrated. The second step, referred to as widefield imaging mode, uses a broad laser beam for
illumination [Fig. 1(c)]. The laser beam passes through an engineered diffuser (EDC-5-A-1r,
RPC Photonics, Inc.; 5.5-deg divergence angle) that homogenizes the beam for uniform
illumination.

PATER’s system setup and reconstruction method were reported in Ref. 11. Each widefield
measurement can be expressed as a linear combination of the impulse responses from all pixels:

EQ-TARGET;temp:intralink-;e001;116;592sðtÞ ¼
XNp

i¼1

kiðtÞPi; (1)

where s denotes the detected widefield PA signal, t is the time, i is the pixel index, Np is the total
number of pixels, ki is the normalized impulse response from the calibration, and Pi is the root-
mean-squared (RMS) PA amplitude.11 The RMS value of the raw calibration signal k̃iðtÞ for
the i’th pixel was calculated as

EQ-TARGET;temp:intralink-;e002;116;490RMSi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nt

XNt

j¼1

½k̃iðtjÞ�2
vuut ; (2)

where Nt denotes the number of sampled time points and t is the time. A 2-D density plot of
RMSi over all pixels is a calibration image. To construct the system matrix K, the normalized
impulse response was computed for each time point through kiðtjÞ ¼ k̃iðtjÞ∕RMSi. Eq. (1) can
be recast to matrix form by discretizing time t:

EQ-TARGET;temp:intralink-;e003;116;383s ¼ KP; (3)

where K ¼ ½k1; k2; : : : ; kNp
� is the system matrix. Pixels with RMS values lower than twice

(6 dB) the noise amplitude were considered as the background that was too dark to calibrate
for; therefore, the impulse responses of these pixels were excluded from the system matrix K.
The widefield image P is reconstructed by solving the inverse problem of Eq. (3) as a minimizer
of the objective function, adopting a two-step iterative shrinkage/thresholding algorithm:16

EQ-TARGET;temp:intralink-;e004;116;290P̂ ¼ arg min
P
ks − KPk2 þ 2λΦTVðPÞ: (4)

Here ΦTVðPÞ is the total variation regularization term and λ is the regularization parameter.16

We tested the linearity of the PATER system by measuring concentrations of the Evans Blue
(EB) dye (E2129, Sigma-Aldrich, Inc.) in two tubes with 532-nm light illumination. Two sil-
icone tubes with a 0.65-mm inner diameter were placed on the ER surface in parallel, separated
by ∼3 mm. Ultrasonic gel was applied between the tubes and the ER to facilitate acoustic cou-
pling. An EB solution with a 0.6% concentration by mass was injected into the two tubes for
calibration. The concentration of EB in one tube was kept unchanged as a control, whereas the
concentration of EB in the other tube was varied from 0% to 0.9% [Fig. 2(a)]. The measured
concentrations, calculated based on the widefield images, agreed well with the preset concen-
trations [Figs. 2(b) and 2(c)], which proved the linearity of the PATER system’s widefield
measurement.

For in vivo studies, we used female ND4 Swiss Webster mice (Envigo; 18 to 20 g, 6 to 8
weeks). All the laboratory animal protocols were approved by the Animal Studies Committee of
Washington University in St. Louis and the Institutional Animal Care and Use Committee of
California Institute of Technology. The mouse was anesthetized in a small chamber with 5%
vaporized isoflurane mixed with air for anesthesia induction and then transferred to a customized
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animal mount where it was kept anesthetized with a continuous supply of 1.5% vaporized iso-
flurane. The animal mount consisted of a stereotaxic frame that fixed the mouse’s head and a
heating pad that maintained the mouse’s body temperature at ∼38°C. The hair on the mouse’s
head was razor trimmed, and the scalp was surgically removed, but the skull was left intact.
The scalp was removed to enable direct contact between the skull and ER to facilitate acoustic
coupling. Bloodstains on the skull were carefully cleaned off with phosphate buffered saline
solution, and ultrasound gel was applied on the skull for acoustic coupling. Then the animal
mount was raised until the mouse’s skull was in contact with the imaging surface of the ER.
An adequate amount of pressure was maintained between the mounted animal and the ER to
prevent the mouse’s head from moving, but not so much pressure as to interrupt the blood supply
in the brain.

We first imaged the in vivo dynamic change in blood oxygen saturation (sO2) in a mouse
brain using a deoxy-hemoglobin-dominated absorption wavelength of light at 620 nm. Oxygen
challenges were performed to stimulate changes in the sO2 level in the mouse brain by manipu-
lating the oxygen concentration of the mouse’s inhaled gas. In this study, a mixture of 95%
oxygen and 5% nitrogen was initially used, with gaseous isoflurane for anesthesia. The mouse
brain vasculature was first imaged through the intact skull in calibration mode. For the oxygen
challenge, the mixture was changed to 5% oxygen and 95% nitrogen for 3 min; it was then
changed back to the initial concentration to end the challenge.

To estimate the change in sO2 in a mouse brain using a single wavelength of light,
a few assumptions are required. First, absorption in blood mainly comes from oxy- and deoxy-
hemoglobin. Thus the absorption coefficient μa of blood can be calculated as

EQ-TARGET;temp:intralink-;e005;116;225μa ¼ lnð10ÞðεHbO2
CHbO2

þ εHbCHbÞ; (5)

where ε is the molar absorption coefficient (M−1 cm−1), C is the concentration (M), and the
subscripts HbO2 and Hb denote oxy- and deoxy-hemoglobin, respectively. The oxygen satura-
tion in the blood is calculated as

EQ-TARGET;temp:intralink-;e006;116;157sO2 ¼
CHbO2

CHbO2
þ CHb

¼ 1 −
CHb

CHbT

; (6)

where the total hemoglobin concentration (CHBT) is given by CHBT ¼ CHbO2
þ CHb. Therefore,

the change in the blood oxygen saturation can be calculated as
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Fig. 2 Quantification of EB dye concentration in tubes. (a) Widefield images of EB in the two
tubes. Tube 2 was the control, where the EB’s concentration by mass remained at 0.6%. The
concentration of EB in tube 1 varied from 0% to 0.9% from left to right, with a step size of
0.3%. (b) Concentration of EB measured by PATER versus the preset concentration of EB in tube
1. (c) Concentration of EB in tube 2 measured by PATER as the control for each measurement.
Error bars, standard deviations of the pixel values within the corresponding tubes.
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EQ-TARGET;temp:intralink-;e007;116;735ΔsO2 ¼ −
ΔCHb

CHbT

: (7)

Second, if we assume that the change in the total hemoglobin concentration in blood is
insignificant, then a change in blood oxygen saturation signifies that ΔCHb ¼ −ΔCHbO2

. At
a deoxy-hemoglobin dominant absorption wavelength, such as 620 nm, the ratio of εHb∕εHbO2

is ∼7∶1, thus a change in absorption is mainly due to a change in the concentration of deoxy-
hemoglobin.17,18 Therefore, we can assume that Δμa ≈ lnð10ÞεHbΔCHb and that the change in
PA signal amplitude at 620 nm is proportional to the change in blood oxygen saturation.

To monitor the oxygen challenge, a tunable dye laser (CBR-D, Sirah GmbH), using DCM
(SDL-550, Sirah GmbH) dissolved in ethanol as the gain medium, was pumped by the 532-nm
pulsed laser (INNOSAB IS8II-E, Edgewave GmbH, 5-ns pulse width, 1-kHz pulse repetition
rate) to generate laser light at 620 nm. The calibration (200 × 200 pixels, 30-min acquisition
time) was performed at both 532 and 620 nm wavelengths, with an FOV of 3 × 3 mm2. We
recorded the same FOV in widefield imaging mode at 620 nm during the oxygen challenge
(Video S1) and calculated the signal differences pixel by pixel from the widefield images after
temporal running averaging. Two oxygen challenge cycles were performed and analyzed
[Fig. 3(a)]. The rate of signal change during the challenge was smaller than that during recovery
from hypoxia [Fig. 3(b)], which is consistent with the results reported previously.19,20 To provide
dual-wavelength measurements for sO2 calculation, widefield measurements at 532 nm were
taken before and at 3 min into the oxygen challenge and reconstructed with the 532-nm
calibration data. A vessel-segmentation and sO2 quantification algorithm was used to identify
vessels and compute the sO2 within those vessels.21,22 The sO2 in the brain was found to have
dropped significantly during the challenge [Fig. 3(c)].

In our second in vivo study, we demonstrated PATER’s ability to differentiate blood vessel
patterns for potential biometric authentication applications. Biometric authentication utilizes
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Fig. 3 Change in blood oxygen saturation (sO2) in a mouse brain due to oxygen challenge (n ¼ 4),
imaged through an intact skull. (a) Time course of fractional change in signal amplitude with two
cycles of oxygen challenge, measured at a deoxy-hemoglobin-dominant 620 nm wavelength. The
imaging rate was 50 frames∕s. The time window used for averaging was 20 s. Error bars, standard
errors of the widefield measurements within averaging time windows. (b) Blood oxygen saturation
in arteries and veins measured before (normoxia) and after (hypoxia) the challenge. Error bars,
standard deviations. *** p < 0.001, calculated by the two-sample t -test. (c) Blood oxygen satura-
tion calculated before (left) and after (right) the challenge, using measurements acquired from two
light wavelengths (532 and 620 nm) (Video S1, mp4, 8830 kB [URL: https://doi.org/10.1117/1.JBO
.25.7.070501.1]).
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unique biological characteristics of individuals to verify their identities. Internal characteristics
such as vascular patterns can more securely identify an individual than external characteristics
such as fingerprints23 because the internal characteristics are less exposed and contain in vivo
physiological features—such as blood flow, arterial oxygenation, and venous oxygenation—
that cannot be readily duplicated by others. Security applications based on internal biometric
characteristics have great potential, but they require high processing speed and accuracy to
be reliable.

First, one mouse was fixed in a stereotaxic frame and a region of the cortical vasculature was
recorded in calibration mode [Fig. 4(a)]. Then, the same FOV was imaged in widefield imaging
mode. During the widefield recording, we detached the mouse from the ER and then reattached it
to the same position using a linear translational stage (PT1, Thorlabs, Inc.). Only noise was
recorded while the mouse was detached, and signals were observed again when the mouse was
reattached. This process was repeated for the second mouse. We then tried to reconstruct the
widefield images of the first mouse’s vasculature using each of the two recorded calibration data
sets. As a result, the widefield image reconstructed from the matched calibration data (the first
mouse’s) revealed the original vasculature, whereas the widefield image reconstructed from the
mismatched calibration data (the second mouse’s) could not [Fig. 4(b) and Video S2]. The cor-
relation coefficients between the widefield reconstruction images and the calibration images
were quantified [Fig. 4(c)]. The plot indicates that the widefield images reconstructed from
the matched calibration data have a much higher correlation than those reconstructed from the
mismatched calibration data. Also the vasculature is again recognizable after being detached and
reattached to the ER. Several aspects of this proof-of-concept experiment still need to be
addressed to make the technology more applicable. First, the region where the object is reat-
tached to the ER needs to be the same as the calibrated region, requiring an effective reposition-
ing method. Second, the deformation of soft tissue should be minimized for the current system,
as it could change the boundary conditions. Third, the present PATER system requires calibra-
tion for each object; a universal calibration method is being explored, which will promise more
biomedical applications in the future.

In summary, we have demonstrated PATER’s ability to quantify in vivo functional processes
such as oxygen saturation changes in a mouse brain and also to identify vasculature patterns
based on PATER’s unique detection method. PATER’s single-channel ultrasonic detection
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Fig. 4 High-speed vascular recognition in mice through intact skulls (n ¼ 2). (a) RMS projections
of brain vasculatures from mouse 1 and mouse 2, respectively, acquired in calibration mode.
(b) Widefield images of mouse 1’s vasculature, reconstructed using the calibration data of mouse
1 (matched) and mouse 2 (mismatched), respectively. (c) Correlation between the widefield recon-
structions and the RMS projections of mouse 1 and mouse 2, according to (b). The mouse was
detached from and reattached to the ER to demonstrate the consistency of reconstruction. Error
bars, standard deviations. ***, p < 0.001, calculated by the two-sample t -test (Video S2, mp4,
718 kB [URL: https://doi.org/10.1117/1.JBO.25.7.070501.2]).
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system can be a feasible alternative to a PACT’s multichannel ultrasound detection system.
Compared to PACT, PATER has greatly reduced cost and system complexity, making it more
affordable for portable applications, such as a wearable device to monitor vital signs in patients.
Furthermore, since it can both identify vessel patterns and quantify functional processes, PATER
can potentially provide comprehensive, secure, and robust biometric authentication.
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