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Abstract

Significance: We demonstrated the potential of using domain adaptation on functional near-
infrared spectroscopy (fNIRS) data to classify different levels of n-back tasks that involve
working memory.

Aim: Domain shift in fNIRS data is a challenge in the workload level alignment across different
experiment sessions and subjects. To address this problem, two domain adaptation approaches—
Gromov–Wasserstein (G-W) and fused Gromov–Wasserstein (FG-W) were used.

Approach: Specifically, we used labeled data from one session or one subject to classify trials in
another session (within the same subject) or another subject. We applied G-W for session-by-
session alignment and FG-W for subject-by-subject alignment to fNIRS data acquired during
different n-back task levels. We compared these approaches with three supervised methods:
multiclass support vector machine (SVM), convolutional neural network (CNN), and recurrent
neural network (RNN).

Results: In a sample of six subjects, G-W resulted in an alignment accuracy of 68%� 4%

(weighted mean ± standard error) for session-by-session alignment, FG-W resulted in an align-
ment accuracy of 55%� 2% for subject-by-subject alignment. In each of these cases, 25% accu-
racy represents chance. Alignment accuracy results from both G-W and FG-W are significantly
greater than those from SVM, CNN, and RNN. We also showed that removal of motion artifacts
from the fNIRS data plays an important role in improving alignment performance.

Conclusions: Domain adaptation has potential for session-by-session and subject-by-subject
alignment of mental workload by using fNIRS data.
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1 Introduction

Functional near-infrared spectroscopy (fNIRS) is a noninvasive optical technique for monitoring
regional tissue oxygenation based on diffusion and absorption of near-infrared light photons in
human tissue. Continuous-wave (cw) fNIRS provides measurements of concentration changes
in oxy-, deoxy-, and total-hemoglobin species (Δ½HbO2�, Δ½Hb�, and Δ½HbT�, respectively) in
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tissue with temporal sampling rate of on the order of 10 Hz.1 Over the past three decades, fNIRS
has been used in several brain imaging applications, including noninvasive imaging of cognitive
tasks and brain functional activation,1–4 and brain computer interface (BCI).5

Memory-based workload classification using fNIRS measurements has been demonstrated
to be an ideal approach for a realistic adaptive BCI to measure human workload level.6 In this
paper, we study the problem of classification of fNIRS corresponding to different conditions of
an n-back task (i.e., subjects are required to continuously remember the last n ∈ f1;2; 3; : : : g of
rapidly changing letters or numbers). We performed fNIRS measurements on prefrontal cortex
(PFC), which has been found to be a relevant area for memory-related tasks by positron emission
tomography and functional magnetic resonance imaging.7,8 Most n-back classification studies in
the literature are based on supervised methods on fNIRS signals in within-session and within-
subject basis (i.e., within single trial of data acquisition on a single subject).9–11 While those
studies showed promising results, subject- and session-dependent systems are not realistic for
an interface system that can adapt to different users with a wide range of physiological condi-
tions. With the aim of use in BCI, workload classifications based on fNIRS data across experi-
ment sessions (session-by-session alignment) and across subjects (subject-by-subject alignment)
are necessary.

There are several challenges that hamper accurate workload classification using fNIRS data.
We outline them below and propose methods to mitigate them.

The first challenge, which is the main focus of this paper, is to deal with session-by-session
and subject-by-subject variations in classification of n-back tasks. These problems are related
to what is referred to as domain adaptation in machine learning.12–14 More specifically, data from
different sessions or different subjects are referred to as belonging to different domains, and the
changes in data distributions across different domains (the session or subject that the data
belongs to) are considered as a domain shift.15 Due to this phenomenon, the knowledge we
learned from one domain cannot be applied directly to another one. To address this problem,
recent advances in the theory and methods of optimal transport (OT)16 and metric measure space
alignment17–19 could be used to align data with a known labeled n-back condition from one
session or one subject to the unlabeled data from a different session within the same subject
or from a different subject. Though OT has been applied for domain adaptation with potential
performance,20,21 it has some limitations when two sets of data used for alignment do not share
the same metric space in which case a meaningful notion of distance between two spaces does
not exist. For example, for session-by-session alignment, data from some of the fNIRS channels
are removed from one of the two sessions due to a poor signal-to-noise ratio (SNR). This will
cause two sessions’ data to be embedded in different dimensions in the two domains. A naïve
solution is to remove the corresponding channels from the other session to guarantee that the two
sessions have the same dimension. However, this has the disadvantage of causing loss of infor-
mation. In this paper, we proposed that using Gromov–Wasserstein (G-W)18,22 and fused
Gromov–Wasserstein (FG-W) barycenter23 would alleviate this problem and provide algorithms
to align across domains for fNIRS n-back task classification.

The second challenge is motion artifacts in fNIRS signals. Motion artifacts in fNIRS are
commonly due to the coupling changes of any source or detector from the scalp during the
experiment. This causes sudden increases or decreases in measured light intensity and can affect
the measured fNIRS signals. From a machine learning perspective, motion artifact detection
and correction help remove any misleading correlation from the subject behavior (twitching,
head movement, etc.) to what the classification model learns from fNIRS data. For example,
a classification model may recognize when a subject presses a button as a requirement during
the experiment by detecting spikes in the measured signals due to the subject’s head movem-
ent, instead of detecting real hemodynamic responses from the brain signals. A number of
approaches, inspired by statistical signal processing methods such as adaptive filtering, indepen-
dent component analysis (ICA), and time-frequency analysis, have been proposed to remove or
correct for motion artifacts in fNIRS signals.24–30 Most of these techniques either depend on the
use of auxiliary reference signals (e.g., accelerometry, etc.) or extraoptical channels or require
certain assumptions on the characteristics of motion artifacts and cleaned fNIRS signals. In this
paper, we used an off-the-shelf method based on sparse optimization for automatic detection and
removal of spikes and steps anomalies, namely transient artifact reduction algorithm (TARA).31
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We will apply the method TARA in the hope of improving the classification accuracy of
n-back tasks.

The main contributions of this paper to the classification of different n-back task conditions
include: (1) applying G-W to align fNIRS data during each n-back task condition across different
experimental sessions for every single subject (session-by-session alignment); (2) applying
FG-W barycenter to align fNIRS data during each n-back condition between different subjects
(subject-by-subject alignment); and (3) demonstrating that alignment accuracy could be improved
by applying motion artifact removal with TARA as a preprocessing step on fNIRS data.

2 Experiment

2.1 Subjects and Experiment Design

Six healthy human subjects (one female, five males; age range: 23 to 54 years) participated in
this study. The Tufts University Institutional Review Board approved the experimental protocol,
and the subjects provided written informed consent prior to the experiment.

During the n-back task, subjects were instructed to watch a series of rapidly flashing random
one-digit numbers (from 0 to 9) shown on a computer screen placed ∼50 cm in front of the
subject. Subjects must continuously remember the last n numbers (n ¼ 0, 1, 2, and 3) and were
asked to press the space bar if the currently displayed number (target) matched the preceding n’th
number. In the 0-back task, the subject pressed the space bar whenever numeral “0” appeared.
With increasing n, the task difficulty is expected to increase, as the subjects must remember
an increasing number of preceding digits and continuously shift the remembered sequence.
The experiment was designed such that the targets appeared with 25% to 35% chance (i.e.,
65% to 75% nontargets) in each task (chosen randomly). We measured the task performance
by counting the number of missed targets (when the subject did not press the space bar for
a target) and the number of wrong reactions (when the subject incorrectly identified a nontarget
stimulus as a target).

Each subject performed a total of four separate experiment sessions in two days: two sessions
per day, one in the morning shift (9 to 12 a.m.) and one in the afternoon shift (1 to 4 p.m.). The
order of the n-back tasks was randomized among sessions, but the randomization order was kept
the same among subjects (i.e., only four random sequences were used and each subject was
shown each of the four after all of their sessions). A session started with 155 s of initial baseline
with a countdown timer displayed on the screen. At the beginning of a task, an instruction was
shown to inform the subject that the upcoming task was 0-, 1-, 2-, or 3-back. A task consisted of
100 displayed digits each lasting 2 s, during which the stimulus was displayed for 1.5 s and
followed by a resting time of 0.5 s where a black screen was shown. Therefore, each task was
a total of 200 s in length. Subsequently, the subject entered 30 s of baseline (rest) after finishing
the task while the performance accuracy of the preceding task was displayed on the screen. This
process was repeated for the four values of n. At the end of the fourth task, the subject rested for a
155-s baseline after which the experiment was completed. Figure 1(a) shows the experiment
protocol. The entire experiment had a recording time of 20 min (four 200-s tasks, two 155-s
baselines, and three 30-s rests in the middle).

2.2 Data Acquisition

During the entire experiment session, optical data were collected continuously with a cw fNIRS
device (NIRScout, NIRx Medical Technology, Berlin, Germany). Eight light-emitting diode
source pairs (at two wavelengths of 760 and 850 nm) and seven detector fiber bundles connected
to photodiode detectors were arranged on a conformable fabric headset. The fNIRS headset can
be quickly fixed to the forehead to enable high quality measurements of the PFC within the range
of several minutes. A total of 20 channels at 3-cm source–detector distances were collected.
A schematic diagram of the arrangement is shown in Figs. 1(b) and 1(c). Light intensities were
collected at a sampling rate of 7.81 Hz. Linear detrending was applied to the collected changes
in light intensity with respect to baseline to remove slow temporal drifts. Then, the detrended
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normalized intensities were converted into Δ½HbO2� and Δ½Hb� using the modified Beer–
Lambert law.32 We assumed the wavelength-dependent differential pathlength factors (DPFs),
which account for the increase in photon pathlength due to multiple scattering, equal to 9.1 and
8.0 for 760 and 850 nm, respectively.33

During the experiment, continuous arterial blood pressure (ABP) was collected with a beat-
to-beat finger plethysmography system (NIBP100D, BIOPAC Systems, Inc., Goleta, California).
ABP measurements were converted into mean arterial blood pressure (MAP, in units of mmHg)
and heart rate (HR, in units of beats per minute, bpm).

2.3 fNIRS Data Preprocessing by TARA

Measured fNIRS data were checked manually to remove those noisy channels contaminated by
high frequency noise (>1 Hz). Examples of removed and retained channels from two subjects
are shown in Fig. 2, and the numbers of remaining channels are reported in Table 4 in the
Appendix. The whole session will be removed if more than 60% of channels are identified
as noisy. To further remove motion artifacts from the retained channels, we used the TARA
algorithm31 in which measured time series data are treated as a linear combination of a low-pass
signal, motion artifacts, and white noise. The algorithm focuses on two types of motion artifacts:
transient pulses (spike-like signals) and step discontinuities, and assumes both of them appear
infrequently. A sparse optimization problem is then formulated to jointly estimate two types of
motion artifacts. We refer the reader to Ref. 31 for more details. We used the code provided by
the authors34 and chose parameters for our fNIRS data as shown in Table 5 in the Appendix.
Once the motion artifacts are detected, they can be removed from the original signal to obtain the
cleaned data.

3 Domain Adaptation for fNIRS

After the removal of the channels with poor SNR and motion artifacts, a small time duration w
is chosen as the window size to divide the remaining n-back data (Δ½HbO2� and Δ½Hb�) into

Fig. 1 (a) Experimental design for n-back tasks. (b) fNIRS headset with eight sources and seven
detectors to give a total of 20 channels at source–detector distance of 3 cm. (c) An enlarged view
of the schematic in (b) showing positions of the 10-10 system (Fp1, Fpz, Fp2, AF7, AF3, AFz, AF4,
AF8, F5, F3, F1, Fz, F2, F4, and F6) and the 10-5 system (AFp3, AFp4, AF5h, AFF1h, AFF2h, and
AFF6h) covered by the sources and detectors.
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N nonoverlapping small segments. Here, we use w ¼ 60 samples (∼8 s). To concretely describe
the proposed method, next we will set some notations that are used throughout the paper.

Notation: We will use lower-case boldface letters x to denote vectors and upper case bold-
face letters X to denote matrices. Unless otherwise stated, unbolded lower case letters denote
scalars. fðXs

m;i; y
s
m;iÞgNi¼1

stands for the collection of segmented data set of subject s in its mth

session, where N is the number of segments, integer s ∈ ½1;6�, and integer m ∈ ½1;4�. The i’th
segment is denoted as Xs

m;i ∈ Rd×w, where d is the number of channels and w is the window
length. ysm;i ∈ ½0;3� is the corresponding n-back task label for subject s in session m and segment
i, ysm ¼ vecðysm;iÞ is an N-dimensional vector of the label. The remaining notation will be intro-
duced as needed.

3.1 Session-by-Session Alignment

3.1.1 Optimal transport theory and Gromov–Wasserstein matching

Consider two discrete sets of points fxigi∈1 · · · n, xi ∈ Rd in a metric space X with a metric dX ,
and fyjgj∈1 · · ·m, yj ∈ Rd in another metric space Y with the metric dY . The main idea behind

aligning two sets of points is by viewing them as two empirical distributions

EQ-TARGET;temp:intralink-;e001;116;160a ¼
Xn

i¼1

aiδxi ; b ¼
Xm

j¼1

bjδyj ; (1)

where δxi and δyj are Dirac functions at the position of xi and yj and ai and bj are the corre-

sponding probabilities. Without further information, ai and bj will be set as
1
n and

1
m, respectively.

The OT problem is proposed to find a plan T ∈ Rn×m that is the solution to

Fig. 2 Examples of removed and retained channels from two subjects (2 and 3). The first column
shows the removed channels, the second column shows the retained channels. Time courses are
shown for concentration changes in oxy-(Δ½HbO2�, shown in orange) and deoxy-hemoglobin
(Δ½Hb�, shown in blue).
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EQ-TARGET;temp:intralink-;e002;116;735 arg min
T∈Uða;bÞ

hC;Ti; (2)

where hC;Ti ¼P
i;jCi;jTi;j, Uða;bÞ ¼ fT ∈ Rn×mþ ∶

P
m
j¼1Ti;j ¼ a;

P
n
i¼1Ti;j ¼ bg, C ∈ Rn×m

with the i; j’th element Ci;j being the cost of associating (moving) the point xi to the point
yj. This is also known as the Kantorovich’s relaxation35 for the original Monge problem.36

To reduce the computational cost of solving the linear program Eq. (2), an entropic regularization
term is usually added to Eq. (2), leading to

EQ-TARGET;temp:intralink-;e003;116;643 min
T∈Uða;bÞ

hC;Ti − λHðTÞ; (3)

where HðTÞ ¼ −
P

i;jTi;jðlog Ti;j − 1Þ. This entropic OT problem37 can be solved efficiently
using the Sinkhorn Algorithm38 or its variations such as the Greenkhorn algorithm,39 both
of which can achieve a near-linear time complexity.40 This approach has been used in domain
adaptation20,21 for transfer of data in different domains.

Though widely used for domain adaptation, classic OT lacks the ability of mapping two
different metric spaces. When the points have different dimensions, i.e., xi ∈ Rd1 and yj ∈ Rd2 ,
where d1 ≠ d2, a distance between xi and yj may not be meaningfully defined. Thus, instead of
seeking a distance matrix between elements in different domains, the G-W method compares the
dissimilarity between the pairwise distances in each domain. It poses a weaker assumption that
if xi should be aligned to yj and xi 0 should be aligned to yj 0 , then for two distance matrices

CX ∈ Rn×n and CY ∈ Rm×m in space X and Y, CX
i;i 0 and CY

j;j 0 should be similar.17 Formally,

the G-W distance is defined as

EQ-TARGET;temp:intralink-;e004;116;452GW½ða;CX Þ; ðb;CYÞ� ¼ min
T∈Uða;bÞ

X

i;i 0;j;j 0
LðCX

i;i 0 ;C
Y
j;j 0 ÞTi;jTi 0;j 0 ; (4)

where L is a cost function, which typically can be chosen as a quadratic function or Kullback–
Leibler divergence. For our method, a squared loss function is applied. Equation (4) is a non-
convex problem related to a quadratic assignment problem.18 A regularized version of the GW
problem is proposed in Ref. 17, written as

EQ-TARGET;temp:intralink-;e005;116;360GWλ½ða;CX Þ; ðb;CYÞ� ¼ min
T∈Uða;bÞ

X

i;i 0;j;j 0
LðCX

i;i 0 ;C
Y
j;j 0 ÞTi;jTi 0;j 0 − λHðTÞ: (5)

The problem in Eq. (5) can be solved by projected gradient descent algorithm wherein each
iteration solution is found by running Sinkhorn Algorithm.22

3.1.2 Metric for G-W alignment for fNIRS data

For electroencephalogram (EEG) and fNIRS processing, mean and covariance of the time
segments have been considered as useful features.41,42 Here, we use these features to compute
the inner metric matrix of each session. Specifically, for data fXs

m;igNi¼1
from the m’th session

of subject s, we compute its covariance matrices fPs
m;igNi¼1

and mean vectors fhsm;igNi¼1
, where

Ps
m;i ∈ Rd×d, hsm;i ∈ Rd. The distance matrix Cs

m ∈ RN×N is then defined with the i; i 0’th element
ðCs

mÞii 0 set as
EQ-TARGET;temp:intralink-;e006;116;177ðCs

mÞii 0 ¼ ðρhellingerðPs
m;i;P

s
m;i 0 Þ þ khsm;i − hsm;i 0 k2Þ∕d; (6)

where ρhellingerð·Þ is the matrix version of the Hellinger distance,43 written as

EQ-TARGET;temp:intralink-;e007;116;132ρhellingerðA;BÞ ¼ ftrðAþ BÞ − 2tr½A1∕2ðA−1∕2BA−1∕2Þ1∕2A1∕2�g1∕2; (7)

where A and B are positive definite matrices. Since the number of channels d selected for
different sessions’ data are not necessarily the same, we normalize by the number of channels
in each session.
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3.1.3 Domain adaptation for session-by-session alignment

We assume the label is given for one session’s data and aim to infer the label for all other sessions
belonging to the same subject. Using the metric defined in Eq. (6), we show the pseudocode for
the session-by-session alignment in Algorithm 1. Since we only consider data within the same
subject, the upper index for the subject will be dropped in the algorithm.

3.2 Subject-by-Subject Alignment

When targeting subject-by-subject alignment, we assume data and the corresponding labels for
all sessions of one subject are given and denote this subject as the source subject. Then, we will
use this information to predict the labels of fNIRS data for all four sessions of other subjects
(target subjects). Transferring labels between different subjects is a bigger challenge since there
is a larger shift in domain. Directly using the same G-Walignment as discussed above will lead to
a large variance in alignment accuracy. More importantly, we will lose the advantage of knowing
all the features and structural information from multiple sessions of the source subject. To
address this problem, we consider a recently proposed method named FG-W.23 By computing
an FG-W barycenter, which is the Fréchet mean of the FG-W distance, we summarize all the
given information into a new representation of the source subject and then follow the same
routine as session-by-session alignment to achieve the label alignment.

3.2.1 Fused Gromov–Wasserstein barycenter

FG-W, unlike the G-W, combines both feature and structural information and shows its advan-
tage in graph classification.23,44 Consider two sets of tuples fðxi; f iÞgi∈1 · · · n in space ðX ;ΣÞ
and fðyj; gjÞgj∈1 · · ·m, in space ðY;ΣÞ, here, xi ∈ Rd1 and yj ∈ Rd2 are the data points, f i and

gj are their corresponding features, which are both in space Σ and share the same dimension.
With a slight abuse of notation, we will use the same symbol as Eq. (1) to denote their empirical
distribution

EQ-TARGET;temp:intralink-;e008;116;229a ¼
Xn

i¼1

aiδðxi ;f iÞ; b ¼
Xm

j¼1

bjδðyj;gjÞ: (8)

The FG-W distance between such two distributions with both data and the corresponding
feature information included is then defined as

EQ-TARGET;temp:intralink-;e009;116;154FGWða; bÞ ¼ min
T∈Uða;bÞ

X

i;i 0;j;j 0
½ð1 − αÞρðf i; gjÞq þ αjCX

i;i 0 − CY
j;j 0 jq�Ti;jTi 0;j 0 ; (9)

where α ∈ ½0;1� is a trade-off parameter, q ≥ 1, ρðf i; gjÞ stands for the cost of matching feature f i
to feature gj which in our case corresponds to the labels, i.e., scalar value n in the n-back task.

For multiple distribution setting like those related to multiple sessions, a natural extension of
FG-W distance is its barycenter, which inherits the advantages of FG-W that leverages both

Algorithm 1 Alignment between session m and session n.

Input: Source data and label fðXm;i ; ym;i ÞgNi¼1, target data fXn;igNi¼1

Output: Target label fyn;igNi¼1

1: Calculate inner distance matrices Cm and Cn using Eq. (6) for fXm;igNi¼1 and fXn;igNi¼1.

2: Solve Eq. (5) to get the transport plan T between session m and session n.

3: Choose the largest value of each column of T as 1 and set others to be 0 to get the coupling matrix Tcp

4: Get target label fyn;igNi¼1 by calculating TT
cpvecðym;i Þ
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structural and feature information. The FG-W barycenter can be obtained by minimizing the
weighted sum of a set of FG-W distances. Let fCkgKk¼1 be a set of distance matrices, where
Ck ∈ RN×N , ffkgKk¼1, f

k ∈ RN is the corresponding feature vector. Here, K will correspond to
the number of sessions for each subject in our case. We assume the base histograms fakgKk¼1 and
the histogram a associated with the barycenter are known and fixed as uniform distributions.
By calculating the Fréchet mean of the FG-W distance, we aim to find a feature vector f and
a distance matrix C that represents the structure information, such that

EQ-TARGET;temp:intralink-;e010;116;648 min
C∈RN×N;f∈RN;ðTkÞk∈Uða;akÞ

X

k

X

i;i 0;j;j 0
ζk½ð1 − αÞρðf i; fkjÞq þ αjCi;i 0 − Ck

j;j 0 jq�Tk
i;jT

k
i 0;j 0 ; (10)

where
P

kζk ¼ 1 are the weights for sessions and are chosen evenly for each session. q ≥ 1 for
the loss of features and a squared loss between features is used for our method. This problem can
be solved by block coordinate descent algorithm described in Ref. 23. Note that after solving
Eq. (10), only the distance matrix C and feature vector f will be used to form the new repre-
sentation of the provided K sessions.

3.2.2 Metric for FG-W barycenter alignment

Unlike the metric defined in Eq. (6) for session-by-session alignment, we removed the L2 norm
of the mean difference from the distance when considering the metric for subject-by-subject
alignment. This is because the differences of the mean values are usually the same within the
same subject but vary across different subjects. It is worth mentioning that after removing the
L2 norm of the mean difference, the covariance matrices themselves can be viewed as points in
a Riemannian space.45 Formally, for the m’th session of subject s, the distance matrix Cs

m is
defined using its covariance matrices fPs

m;igNi¼1
, Ps

m;i ∈ Rd×d, with the i, i 0’th element ðCs
mÞii 0

computed via

EQ-TARGET;temp:intralink-;e011;116;409ðCs
mÞii 0 ¼ ½ρhellingerðPs

m;i;P
s
m;i 0 Þ�∕d: (11)

3.2.3 Domain adaptation for subject-by-subject alignment

The algorithm for subject-by-subject alignment is shown in Algorithm 2, where we only take two
subjects (each with four sessions) as an example, but the algorithm can be easily adapted to all
other subjects with different number of sessions.

3.3 Comparison with Supervised Machine Learning Methods

To further demonstrate the potential of domain adaptation methods, we compared our method
with a convolutional neural network (CNN), a recurrent neural network (RNN), and a multi-

Algorithm 2 Alignment between subject s and subject t .

Input: Source data and label fðXs
f1: : : 4g;i ; y

s
f1: : : 4g;i ÞgNi¼1

, target data fXt
f1: : : 4g;igNi¼1

Output: Target label fyt
f1: : : 4g;igNi¼1

1: For source and target data, calculate two lists of distance matrices ½Cs
1;C

s
2;C

s
3;C

s
4� and ½Ct

1;C
t
2;C

t
3;C

t
4�,

respectively, using Eq. (11).

2: Solve Eq. (10) using ½ðCs
1; y

s
1Þ; ðCs

2;y
s
2Þ; ðCs

3;y
s
3Þ; ðCs

4;y
s
4Þ� to get the inner distance matrix and

corresponding label vector of the barycenter for subject s, denoted as fCs
bary; y

s
baryg.

3: Repeat steps 2 to 4 in Algorithm 1 using fCs
bary; y

s
baryg and Ct

1, C
t
2, C

t
3, C

t
4, respectively, as input to get

the labels fy t
f1: : : 4g;igNi¼1

for target data.
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class support vector machine (SVM)-based classifiers applied without any domain adaptation
techniques.

For the CNN model, we adapted the architecture structure of EEG-NET.46 Due to paucity of
the amount of data in our case compared to the original paper,46 we simplified the structure to
three convolutional layers followed by two dense layers. Details of the CNN structure can be
found in Appendix, Table 3. To compare with the session-by-session alignment using the G-W
method, Δ½HbO2� and Δ½Hb� data were first separated and then stacked along a new dimension
as input to the CNN. Since the removal of some noisy channels will lead to different input data
points being in different dimensions, thereby causing a mismatch between input data and the
fixed model structure, we replaced the discarded channels with the average of data from the
remaining channels (separately for Δ½HbO2� and Δ½Hb�). We used data from one session as input
to train the model with Adam optimizer47 using cross entropy loss and tested the remaining
sessions. The model was trained until severe overfitting occurred (300 epochs in our case)
to guarantee the best test accuracy can be achieved within the training process. Test accuracy
was recorded during the whole training process (i.e., after each training epoch) and the best result
was selected among them. The training and testing processes were conducted five times and the
average test accuracy was reported. To compare with subject-by-subject alignment using the FG-
W method, data from all four sessions of one subject were combined and used as input and the
classification model was trained to predict the task labels for the other five subjects in the same
manner as discussed above.

For the RNN model, we used a basic three-layer long short term memory48 model with the
hidden size set as 20. The training and testing data were prepared in the same way as the CNN
method except that Δ½HbO2� and Δ½Hb� data were not separated, but were input together. For
both session and subject prediction, the training and evaluation procedure followed the same
routine as CNN.

Before applying SVM, a dimension reduction technique was applied to the segmented multi-
channel fNIRS data. Here, we used uniform manifold approximation and projection (UMAP)49

to compress each piece of segmented data50 into a 50-dimensional vector, with the distance
matrix calculated using Eq. (6) for session-by-session alignment and Eq. (11) for subject-by-
subject alignment. During the training procedure for session-by-session alignment, only one
session’s data was used for testing and all the remaining data were used for training. Hyper-
parameters were selected by leave-one-session-out cross-validation. This was similar for sub-
ject-by-subject alignment, where one subject’s data (including all the sessions) was used for
testing while all other data were used for training. Hyperparameters were again selected by
leave-one-subject-out cross-validation.

The Student’s t-test was used to investigate differences between alignment accuracy from
G-W/FG-Wmethods with 25% chance levels (25% stands for the chance to assign any session as
0, 1, 2, or 3-back), between G-W/FG-W methods using raw and cleaned data from TARA,
and between G-W/FG-W and comparison methods stated above. All values are reported as
mean ± standard error weighted by the standard deviations of the alignment accuracy values
from six subjects unless otherwise noted.

4 Results

4.1 Subject Performance

Figure 3 shows summary of subject performance analysis with the average percentages of wrong
and missed responses, respectively, across four sessions and six subjects for each n-back task
condition. The difficulty level, in terms of the amounts of wrong and missed responses, increases
significantly for the 3-back task as compared to other n-back tasks (p < 0.05, paired-sample
t-test). Next, the numbers of wrong and missed responses for the 2-back task in the four experi-
ment sessions are significantly higher than those for the 1- and the 0-back tasks (p < 0.05,
paired-sample t-test). Finally, there was no significant difference in the difficulty level between
the 0- and the 1-back task in terms of wrong and missed responses (p > 0.05, paired-sample
t-test).
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4.2 Peripheral Physiological Measurements

Figure 4 shows the examples of average time courses of changes in MAP and HR from three
subjects (1, 2, and 4) across different measurement sessions of the 2-back task. We observe a
greater variability in task-evoked changes in HR and MAP across subjects than across sessions.
In particular, subjects 1 and 2 show negligible changes in MAP and HR during the task with
respect to the initial baseline, with individual measurements from different sessions following the
same trend. On the other hand, all the measurements from different sessions from subject 4 show

Fig. 3 Summary of subject performance for the n-back task: average percentages of (a) wrong
responses and (b) missed responses for n-back task conditions across subjects. Bars represent
the means, and error bars represent standard errors across four experimental sessions.

Fig. 4 Average changes in HR and MAP across all sections of 2-back task for three subjects
(1, 2, and 4). The time traces are shown starting from 30 s before the task. Black dotted lines
indicate time t ¼ 0 s. Solid green lines are the averages across sessions in ΔMAP and ΔHR;
standard errors of these averages are shown by the cyan shaded regions; solid gray lines depict
the individual measurements.
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totally different responses as compared to subjects 1 and 2. For subject 4, MAP increases during
the middle of the task and then returns to the baseline in the last minute. The HR measurements
from this subject feature an initial increase and immediate decrease at the onset of the task.

4.3 Effects of Motion Artifact Removal Using TARA

Figure 5 shows the effects of TARA in removing motion artifacts in the fNIRS signals (Δ½Hb�).
As shown in the figure, the original signal is contaminated by the motion artifacts with spikes
and steps. After applying the TARA algorithm, most of the motion artifacts have been removed.
As compared to applying a low-pass filter to the original signal, TARA does not bring any further
distortion to the cleaned signal and is more effective at removing step artifacts. The effect of this
motion artifacts’ removal as a preprocessing step before applying alignment algorithms is also
shown in Table 1 and Fig. 8. An improvement for session-by-session alignment accuracy (by an
average of 3� 3% across six subjects; p < 0.005, paired-sample t-test) and subject-by-subject
alignment accuracy (by an average of 5� 2% across six subjects; p < 0.0005, paired-sample
t-test) can be seen after applying TARA on fNIRS signals.

4.4 Session-by-Session Alignment

A low-dimensional UMAP visualization of the alignment for two sessions’ data is shown in
Fig. 6 for subject 4. In Fig. 6, the low-dimensional projection was generated individually from

Fig. 5 Effect of using TARA onΔ½Hb� signal. (a) The original and cleaned signals. (b) The detected
motion artifacts, including spike- and step-like features. The cleaned signal is obtained by sub-
tracting these motion artifact features from the original signal. (c) The low-pass filtered signal of the
original data. Distortion in the signal arising from the step discontinuity can still be observed from
the low-pass filtered signal.
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the distance matrix of each session’s data. Therefore, the positions of the two groups of sessions’
data are assigned randomly and their relative distances are not their true distances.

Figure 7 shows the confusion matrices of session-by-session alignment for four n-back tasks
(0, 1, 2, and 3) of six subjects. Numbers reported in the confusion matrix are the average align-
ment accuracies of all the possible combinations of two out of all four sessions for each subject.
Values in the main diagonal of each confusion matrix represent correct alignment between pre-
dicted and true labels, while the other values represent the misalignment results. Correct align-
ment results are significantly greater than chance level of 25% (p < 0.0001, one-sample t-test).

Fig. 6 Visualization of the alignment from session 1 to session 2 for subject 4. Circles indicate
data from session 1 and triangles indicate the data from session 2. Four different colors repre-
sent 0- to 3-back experiments. Black lines indicate correct alignment and red lines indicate
misalignment.

Table 1 Average session-by-session and subject-by-subject alignment accuracy (%) using G-W
and FG-W, respectively, as compared with SVM, CNN, and RNN. G-W and FG-W barycenter
alignment methods applied to both original data (org) and data cleaned by TARA algorithm, using
data including and excluding data from subject 3. For other methods, only cleaned data were used
as input. Averages and standard errors across all subjects are reported (Avg.).

Sub 1 Sub 2 Sub 3 Sub 4 Sub 5 Sub 6 Avg.

Sess-by-sess SVM 25 31 34 38 23 20 29� 3**

CNN 60� 7 37� 11 40� 12 58� 12 70� 7 52� 6 56� 4**

RNN 68� 10 40� 11 43� 13 61� 14 70� 8 53� 11 58� 5*

G-W org 54� 17 58� 12 48� 23 76� 12 75� 7 49� 26 68� 4*

G-W 54� 8 63� 16 63� 21 76� 12 77� 6 62� 15 68� 4

Sub-by-sub SVM 25 39 30 36 47 43 37� 3**

CNN 45� 8 45� 10 50� 10 36� 10 38� 10 47� 11 44� 5**

RNN 42� 6 49� 9 50� 10 41� 11 37� 9 49� 10 44� 2**

FG-W org 51� 12 57� 10 48� 6 60� 18 57� 10 60� 16 53� 2**

FG-W 55� 12 71� 16 50� 4 68� 18 67� 9 67� 16 55� 2

FG-W w/o Sub 3 60� 3 77� 9 N/A 75� 9 69� 7 74� 9 64� 3

*p < 0.005 compared to G-W or FG-W.
**p < 0.0005 compared to G-W or FG-W.
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The averages and standard deviations of session-by-session alignment accuracy for six subjects
are summarized in Table 1 and Fig. 8. For each subject, the value reported is calculated based on
the alignment or prediction accuracy for all possible combination of session pairs. As compared
to SVM, CNN, and RNN, alignment accuracy of G-W is greater by an average of 43%� 5%,
7%� 4%, and 5%� 5%, respectively (p < 0.005, paired-sample t-test).

4.5 Subject-by-Subject Alignment

Figure 7 shows the confusion matrices of subject-by-subject alignment for four n-back tasks
of six subjects. Each number in the reported confusion matrix is the average of alignment accu-
racies of different tasks from the source subject to five other subjects as the targets. Correct
alignment results are significantly greater than chance level of 25% (p < 0.0001, one-sample
t-test). Average subject-by-subject alignment accuracy is shown in Table 1 and Fig. 8. Each
reported average accuracy value is the average of the alignment accuracy when considering one
subject as the source and five other subjects as the targets. For each subject pair, accuracies
are calculated between source subject and all sessions within the target subject and averaged
to obtain the accuracy between source and target subject. As compared to SVM, CNN, and RNN,
alignment accuracy of FG-W is greater by an average of 22%� 2%, 15%� 5%, and 15%� 5%,
respectively (p < 0.0005, paired-sample t-test).

Since data from subject 3 have poor SNR and are severely affected by motion artifacts in half
of the fNIRS data (see appendix Table 4), we could treat this subject as an outlier. Alignment
accuracy without using data from subject 3 is reported in Table 1 and Fig. 8.

4.6 Combining n-Back Tasks in Session-by-Session and Subject-by-Subject
Alignment

The analysis of subject performance (Sec. 4.1) showed significant differences in the number
of missed targets and wrong reactions depending on the n-back task conditions. Particularly,

Fig. 7 Confusion matrices of session-by-session and subject-by-subject alignments in six sub-
jects. (a) Session-by-session alignment accuracy within each subject. Each number reported
in each confusion matrix is the average accuracy from the alignment of every two separate ses-
sions among four sessions. (b) Subject-by-subject alignment accuracy. Each number reported
is the average accuracy from the alignment between one source subject to the other five target
subjects.
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the subject performance suggests that 0- and 1-back tasks could be combined together in the
alignment since they show similar brain activation behaviors. In this section, we showed that by
combining data from 0-back together with 1-back and 2-back together with 3-back tasks, the
alignment accuracy increased abruptly for both session-by-session and subject-by-subject align-
ment, as shown in Table 2. As compared to the results reported in Table 1, the session-by-session
alignment accuracy increased by an average of 22%� 2%, and the subject-by-subject alignment
accuracy increased by an average of 33%� 3%.

5 Discussion

In this study of six subjects, we showed that fNIRS signals measured from 20 channels on the
PFC can be used to robustly discriminate subjects’ mental workload between different n-back
task levels across sessions within one subject and across different subjects. One limitation of our
study is a small number of subjects. However, with the current number of subjects (six subjects),
this paper still achieved the goals of demonstrating: (1) an alignment accuracy greater than that
of chance (25%) for the majority of session-session and subject-subject combinations; and
(2) greater accuracies than that obtained from multiclass SVM-, CNN-, and RNN-based models.

Table 2 Average session-by-session and subject-by-subject alignment accuracy (%) from G-W
and FG-W methods, respectively, when combining 0-back together with 1-back tasks, and 2-back
together with 3-back tasks. Cleaned fNIRS data were used. Averages and standard errors across
all subjects are reported (Avg.).

Sub 1 Sub 2 Sub 3 Sub 4 Sub 5 Sub 6 Avg.

Sess-by-sess using G-W 79� 8 99� 2 82� 17 99� 1 96� 2 87� 10 98� 3

Sub-by-sub using FG-W 81� 11 89� 9 89� 3 86� 13 88� 7 86� 13 88� 2

Fig. 8 Average alignment accuracy (%) from six subjects. (a) Session-by-session alignment, val-
ues are shown for SVM, CNN, and RNN using cleaned data from TARA, G-W using original data,
and cleaned data from TARA. (b) For subject-by-subject alignment, values are shown for SVM,
CNN, and RNN using cleaned data from TARA, FG-W using original and cleaned data from TARA,
and FG-W using cleaned data from TARA when data from subject 3 is excluded. Bars represent
the means, and error bars represent standard errors.
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We thereby showed the potential of fNIRS as a modality for BCI and user state monitoring that
can adapt to different users with various physiological states. Future works will address the
extension of this study with a larger sample of subjects to further investigate the variability
between sessions and subjects.

In regards to data preprocessing, we show that motion artifact removal in fNIRS signals is an
important step for the following mental workload alignment. Specifically, we report that using
TARA to remove motion artifacts from fNIRS signals increased alignment accuracy by an aver-
age of 3%� 3% for session-by-session alignment and by 5%� 2% for subject-by-subject
alignment (p < 0.005). Future work could include addressing different types of artifacts that
could arise in fNIRS time series, which were not considered by TARA, such as oscillatory
transients. In addition, possible future improvements in TARA may be to investigate an auto-
matic way for selection of regularization and nonconvexity parameters in TARA algorithm
across subjects.

We introduced two approaches, G-W and FG-W barycenter, for session-by-session and
subject-by-subject alignment of mental workload during n-back task. We proved that our meth-
ods could be generalized across different sessions and subjects’ data. In particular, for session-
by-session alignment, we used labeled fNIRS data with known n-back task conditions from
one session to align with other unlabeled sessions from the same subject using the G-W
method. We showed that most of the unlabeled sessions’ data could be mapped correctly
to their true labels, with the alignment accuracy ranging from 54% to 77% (with 25% repre-
senting chance alignment). Meanwhile, with multi-class SVM and simplified CNN and RNN
models, the n-back task classification accuracy was lower (by an average of 43%� 5%,
7%� 4%, and 5%� 5%, respectively). Note that CNN and RNN required the same amount
of data as the proposed methods for training, while SVM required more data (from more than
one session) for training. Similarly, for subject-by-subject alignment, we used labeled data
from one subject as the source data for alignment. Labels and structural information of the
source data were combined to generate a new representation (i.e. the FG-W barycenter).
Following the same routine as the session-by-session alignment, we were able to use the bary-
center from the source subject to predict the labels for data from different sessions for other
subjects, with the alignment accuracy from 50% to 71% (also with 25% representing chance
alignment). From the corresponding SVM, RNN, and CNN methods, n-back task classification
performance achieved lower accuracy than the FG-W method (by an average of 15% to 22%).
Again, CNN and RNN were trained from data from one subject (source data), while SVM was
trained from data from five subjects for classification. Moreover, our methods of G-W and FG-
W do not require the two subsets of data used for alignment to have the same dimension. Thus,
they do not require data interpolation due to removing noisy fNIRS signals as for CNN and
RNN methods. However, we note that even though G-W and FG-W methods are free from the
dimension requirement for data, they could not achieve satisfying results when a large amount
of data is missing (e.g., in the case of subject 3 when around half of the channels were discarded
in the preprocessing step).

We found relatively higher alignment results for session-by-session alignment (average of
68%� 4%) than subject-by-subject alignment (average of 55%� 2%). One source of variation
in fNIRS data across experiment sessions and across different subjects could come from the
variability in systemic physiology, as seen in the variability in the task-evoked changes in
MAP and HR (see Sec. 4.2). We observed that the variability of these two physiological mea-
surements are larger across subjects than across sessions. This may explain a greater accuracy
results for session-by-session alignment than subject-by-subject alignment. Another source of
variability across sessions and subjects may also come from the variation in fNIRS optode place-
ment on the subject’s head. We anticipate the optode placement variation to be greater across
subjects than across sessions due to different head geometry from different human subjects.
From our results, we found that the new representation of the barycenter of the source subject
still aligned well to data from other subjects even though subject-by-subject alignment was a
more challenging problem. This is indicative that representations of different subjects may still
share similar underlying structures even from different domains. Future work will explore gen-
erating barycenter from source data from multiple subjects’ information for subject-by-subject
alignment to account for the across-subject variations in the barycenter.
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Based on our alignment results shown in confusion matrices in Fig. 7, the misalignment in
session-by-session and subject-by-subject alignments are relatively high between 0-back and
1-back, and between 2-back and 3-back tasks. In particular, the misalignment is the highest
between 2- and 3-back tasks (when the 2-back task is the true label and the 3-back is the pre-
dicted label and vice versa), ranging from 19.8% to 43.5%. The second highest misalignment is
between 0- and 1-back tasks, ranging from 6.8% to 31.8%. Similarly, for subject-by-subject
alignment, the highest misalignment came from 0- and 1-back tasks, ranging from 15.2% to
46.5%. The second highest misalignment is between 2- and 3-back tasks, ranging from
14.2% to 38.9%. This gave us an idea of combining 0- with 1-back tasks, and 2- with 3-back
tasks in the alignment. Substantial increases in alignment performance (by an average of
22� 2% for session-by-session and 33� 3% for subject-by-subject alignment) suggests that
future works could study workload classification between rest to low workload level (0- and
1-back tasks) versus high workload level (2- and 3-back tasks).

Finally, single-distance cw fNIRS measurements of intensity from source-detector pairs at
3-cm distance were used in this study. These measurements have been known to be more sen-
sitive to hemodynamic changes in superficial tissues (i.e., scalp and skull) than in the brain.51

Previous study52 has shown that tasked-evoked superficial artifacts may arise during brain acti-
vation task due to systemic changes in peripheral physiology rather than the cerebral hemo-
dynamics. This also confirms the claim that variations in our alignment results across sessions
and subjects could be partially due to variability in systemic physiological origins. For the
purpose of our aim, it is desirable to increase the sensitivity of our measurements to brain tissue
to probe hemodynamic changes associated with brain activation. One approach, namely the
dual-slope method, involves a simple implementation of a certain arrangement of sources and
detectors to localize sensitivity of NIRS measurements to a deeper region,53 thus suppressing
confounding signals from superficial tissue. This approach could also help remove instrumental
drifts and motion artifacts from measured signals as dual-slopes are unaffected by changes in
optical coupling. Future extensions of this work may involve implementing the dual-slope con-
figuration in such experiments as those described here. Another approach to correct for extrac-
erebral contamination is to acquire measurements in a multidistance arrangement to incorporate
short (<1 cm, sensitive to extracerebral tissue only) and long (>2.5 cm, sensitive to both extrac-
erebral and brain tissues) source–detector separations54 and apply a processing method such as
adaptive filtering55 to remove global interference from systemic physiology from fNIRS
measurements.

6 Conclusions

To illustrate that fNIRS signals can be effectively used to identify subjects’ mental workload
between different n-back task levels across different sessions and subjects, we proposed two
domain adaptation methods, G-W and FG-W, for session-by-session and subject-by-subject
alignments, respectively. The proposed methods can achieve alignment accuracies greater than
the chance level of 25%. At the same time, the proposed methods do not require the same subset
of fNIRS channels or further data interpolation for classification across all subjects and sessions
as opposed to some other supervised methods such as CNN and RNN. This will alleviate the
pressure from having to exclude fNIRS channels that were noisy in one session but not in others,
or from having to interpolate the signals to replace those noisy channels. Besides adapting the
domain adaptation method, we explored the effect of using the TARA signal processing algo-
rithm for removing motion artifacts and found an improvement in the alignment accuracy results.
In the future, we plan to explore the effect of our method on a larger sample of subjects and make
it applicable for multiple source subjects.

7 Appendix

Tables 3, 4, and 5 specify the structure of CNN, the number of retained channels for all subjects
and the parameters used in TARA for motion artifact removal, respectively. “∗” stands for multi-
plication operator and ReLU means the rectified linear activation function.
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Table 3 CNN architecture, where d = number of channels (20 in our case), w = number of time
points (60 in our case), T 1; T 2 = length of time points after applying the filter and C = number of
classes (four in our case).

Layer Operation Output size

Input — (2, d , w )

Conv2D 20 ∗ filter (1, 10) + BatchNorm + ReLU + Dropout (0.2) (20, d , T 1)

Conv2D 20 ∗ filter (1, 5) + BatchNorm + ReLU + Dropout (0.2) (20, d , T 2)

DepthwiseConv2D 20 ∗ kernel (d , 1) + BatchNorm + ReLU + Dropout (0.2) (20, 1, T 2)

— Flatten (20 � T 2)

Dense � 2 — C

Table 4 Number of retained channels for six subjects. The total number
of channels is 20. “0” indicates when the particular session is removed.

Subject Number of retained channels

Sub 1 [20, 20, 20, 0]

Sub 2 [15, 17, 16, 16]

Sub 3 [11, 0, 14, 8]

Sub 4 [20, 20, 20, 20]

Sub 5 [20, 20, 20, 20]

Sub 6 [0, 20, 20, 20]

Table 5 Values of TARA parameters (f c , cut-off frequency for the low-pass filter; d , order of the
filter; θ and β, regularization parameters for TARA; σ, noise standard deviation). Parameter values
were chosen differently for Δ½HbO2� and Δ½Hb� due to different noise level. For each subject, val-
ues of σ and the choice of β vary among sessions, as reported in square brackets “[]”. “-” indicates
when TARA is not applied or when the session is removed.

Subject Signal type

Parameters

f c (Hz) d θ β σ (μM)

Sub 1 Δ½HbO2� 0.15 1 0.01 [1.9, 1.9, 1.9, —] [0.15, 0.15, 0.1, —]

Δ½Hb� 0.15 1 0.01 [1.9, 1.9, 1.9, 1.9] [0.05, 0.05, 0.05, 0.025]

Sub 2 Δ½HbO2� 0.15 1 0.01 [1.7, 1.6, 1.3, 1.2] [0.25, 0.23, 0.3, 0.15]

Δ½Hb� 0.15 1 0.01 [1.7, 1.7, 1.3, 1.3] [0.06, 0.03, 0.04, 0.03]

Sub 3 Δ½HbO2� 0.15 1 0.01 [1.9, —, 1.5, 1.4] [0.15, —, 0.13, 0.15]

Δ½Hb� 0.15 1 0.01 [1.9, —, 1.5, 1.6] [0.04, —, 0.05, 0.1]

Sub 4 Δ½HbO2� — — — — —

Δ½Hb� — — — — —

Sub 5 Δ½HbO2� 0.15 1 0.01 [1.8, 1.3, 1.9, 1.9] [0.1, 0.1, 0.15, 0.14]

Δ½Hb� 0.15 1 0.01 [1.8, 1.3, 1.9, 1.9] [0.02, 0.015, 0.025, 0.02]

Sub 6 Δ½HbO2� 0.15 1 0.01 [—, 1.9, 1.9, 1.7] [—, 0.16, 0.1, 0.16]

Δ½Hb� 0.15 1 0.01 [—, 1.9, 1.6, 1.9] [—, 0.03, 0.019, 0.015]
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