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Abstract

Significance: Uncontrolled cryoablation of tissues is a strong reason limiting the wide appli-
cation of cryosurgery and cryotherapy due to the certain risks of unpredicted damaging of
healthy tissues. The existing guiding techniques are unable to be applied in situ or provide insuf-
ficient spatial resolution. Terahertz (THz) pulsed spectroscopy (TPS) based on sensitivity of THz
time-domain signal to changes of tissue properties caused by freezing could form the basis of
an instrument for observation of the ice ball formation.

Aim: The ability of TPS for in situmonitoring of tissue freezing depth is studied experimentally.

Approach: ATHz pulsed spectrometer operated in reflection mode and equipped with a cooled
sample holder and ex vivo samples of bovine visceral adipose tissue is applied. Signal spectro-
grams are used to analyze the changes of THz time-domain signals caused by the interface
between frozen and unfrozen tissue parts.

Results: Experimental observation of TPS signals reflected from freezing tissue demonstrates
the feasibility of TPS to detect ice ball formation up to 657-μm depth.

Conclusions: TPS could become the promising instrument for in situ control of cryoablation,
enabling observation of the freezing front propagation, which could find applications in various
fields of oncology, regenerative medicine, and THz biophotonics.
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1 Introduction

Terahertz (THz) pulsed spectroscopy (TPS) is known as a promising tool of biophotonics and
medical diagnosis.1–4 It demonstrates strong potential of study and differentiate various condi-
tions of tissues, both ex vivo and in vivo,5–9 and imaging and characterization of neoplasms in
different localizations,10–14 by means of endogenous markers of pathology, such as water con-
tent. However, high concentration of free and bound water in tissues restricts the penetration
depth of THz waves by only several hundreds of microns.1 To overcome this limitation, different
approaches can be applied. Among them are such techniques as tissue dehydration,15 paraffin-
embedding,16 lyophilization,17 compression,18 immersion optical clearing,19,20 and freezing.21–24

It was demonstrated that the latter one helps to increase the THz-wave penetration up to 1 mm,
changing at the same time dielectric properties of tissues in THz range.23 Along with reduction of
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absorption, low temperatures alter the refractive index within certain limits, thus, yielding the
dielectric contrast between tissues in different states. This opens further horizons of TPS appli-
cations, in particular, for monitoring of freezing depth in tissues during their cryosurgery.

Uncontrolled cryoablation of living tissues is a severe problem of modern cryosurgery, i.e.,
application of extreme cold aimed at rapid freezing and thus destroying or renewal of patho-
logical tissues.25–29 Unless cryoablation possesses several advantages, such as relative painless-
ness, hemostatic effect, short recovering of patients, and immunostimulating effect,25,30,31 it is
associated with certain risks of damaging healthy tissues surrounding the pathology and with
possibility of incomplete cell death.28 In particular, the use of cryosurgery for the treatment of
brain tumors and epilepsy is currently limited by the possible risks for the patient.32–34 Such
guiding techniques as ultrasonography,35,36 magnetic resonance, and computer imaging37–42

do not enable the monitoring of the tissue freezing in situ with high spatial resolution near the
cryoprobe. Alternative approach is based on measuring of tissue temperature using thermocou-
ples (TCs) combined with cryoprobe.43 However, it allows controlling of the tissue condition
only at the cryoprobe–tissue interface. Therefore, cryosurgery still needs guiding approaches for
the efficient control of ice ball formation.

In this work, we study the ability of TPS to solve this problem. We experimentally demon-
strate the changes of THz time-domain signal during tissue freezing, using ex vivo bovine adi-
pose specimen and laboratory spectrometer equipped with special sample holder. Processing of
THz pulsed signal within 45 s demonstrates the ability to detect the movement of freezing front
up to the depth of 657 μm. The results of this work reveal the potential of TPS to control the
initial stage of ice ball formation during tissue cryoablation.

2 Experimental Setup

To experimentally test the feasibility of TPS to detect the freezing depth in biological tissues, we
use a laboratory THz pulsed spectrometer, which was described in detail in Ref. 44. It operates in
a reflection mode and has a maximum spectral operating range from about 0.05 to 4.0 THz and a
maximum spectral resolution of about 0.002 THz. The THz wave features s-polarization. To
avoid the impact of water vapors on the measurements, the spectrometer is purged with nitrogen
gas. It is also equipped with a sample holder (Fig. 1). The latter consists of a reference window

(a)

(c)

(b)

Fig. 1 Schematic of the ex vivo TPS measurement of the tissue freezing: (a) a reflection-mode
measurement unit of the THz pulsed spectrometer, PCA stands for a photoconductive antenna,
GOAPM stands for a gold off-axis parabolic mirror; (b) a sample holder; (c) an example of the
sample time-domain signal EðtÞ of the THz pulsed spectrometer, where A and B stand for pulses
reflected from the interfaces free space–reference window and reference window–sample,
respectively.

Zotov et al.: In situ terahertz monitoring of an ice ball formation during tissue cryosurgery: a feasibility test

Journal of Biomedical Optics 043003-2 April 2021 • Vol. 26(4)



made of sapphire, which on the one hand is placed on the THz beam path in contact with the
tissue sample [see Fig. 1(a)]. On the other hand, it is inserted in the metal frame connected with
the reservoir filled with liquid nitrogen prior to the measurements [Fig. 1(b)]. Thus, due to high
thermal conductivity of metal and sapphire, the window possesses low and stable temperature
during the measurements.

As a tissue sample, we use ex vivo bovine visceral adipose tissue because of its relatively
homogeneous structure. The sample thickness is near 30 mm enabling prolonged duration of
the freezing process. By two off-axis parabolic mirrors, the incident THz beam is focused
on the interface between the reference window and the tissue; the reflected beam is collimated
to the detector. Generation and detection of THz pulses are provided by two photoconductive
antennas (PCAs). A typical form of the reflected THz time-domain signal is shown in Fig. 1(c).
The sequence of pulses includes signal (A) reflected from free space–window interface and
signal (B) reflected from the window–sample interface. Since we are interested in the latter one,
the scanning range of the spectrometer is adjusted at this pulse (marked with red rectangle).

The measurements are performed at room temperature 24°C. However, the sample is pre-
liminary heated to the temperature 37°C aimed at the slowing down the initial stage of freezing.
After the contact between the tissue and the cooled window, THz pulsed signal is constantly
recorded with the period of 15 s until the sample is completely frozen. For additional control
of sample freezing, its temperature is measured by the inserted TCs.

3 THz Pulsed Spectroscopy of a Freezing Tissue

3.1 THz Dielectric Properties of a Sample

The sample refractive index was characterized before and after freezing. For this purpose, the
complex amplitude of the incident THz field is considered to have the form EðtÞ ¼ A0 expðiϕÞ,
where A0 and ϕ are the amplitude and phase of the THz field, respectively. Assuming the neg-
ligible losses in the reference window and the normal incidence of THz beam, the signal ampli-
tudes A1 and A2 of pulses reflected from the first and second interfaces [see wavelets (A) and (B)
in Fig. 1(c)] are described by the Fresnel coefficients

EQ-TARGET;temp:intralink-;e001;116;369A1 ¼ R01A0; (1)

EQ-TARGET;temp:intralink-;e002;116;326A2 ¼ T01R12T10A0; (2)

where Rmk and Tmk are the Fresnel coefficients of amplitude reflection and transmission between
m’th and k’th media, which for s-polarized wave are determined by the corresponding refractive
indices nm and nk

EQ-TARGET;temp:intralink-;e003;116;280Rmk ¼
nm − nk
nm þ nk

; (3)

EQ-TARGET;temp:intralink-;e004;116;226Tmk ¼
2nk

nm þ nk
: (4)

In this work, refractive indices for free space and reference window are n0 ¼ 1 and
n1 ¼ 3.07, respectively, at 1-THz frequency.45 Estimating the relation jA2∕A1j from the mea-
sured TPS waveforms and accounting the dispersion relation, the values of the sample refractive
index n2 at 1-THz frequency were determined for two conditions of the tissue, i.e., nR ¼ 1.84�
0.01 at room temperature and nF ¼ 1.37� 0.01 after freezing. Thus, freezing of the adipose
tissue leads to significant changes of its refractive index. The value nF is used further for esti-
mation of the freezing depth z according to the relation z ¼ tc∕ð2nFÞ, where t is the temporal
position of the detected freezing depth, c is speed of light in free space.
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3.2 Analysis of THz Signal Spectrograms

According to the measurement of sample temperature, the freezing depth of 4 mmwas reached in
<1 min. This depth significantly exceeds the typical values of THz penetration depth in frozen
biological tissues.23 Thus, only several THz waveforms can be recorded during this stage of
the analyzed process. To increase the number of detected signals, the accumulation time and
discretization of the spectrometer should be reduced.

Figure 2 shows the sequence of THz waveforms detected at (I) 0 s, (II) 15 s, (III) 30 s, and
(IV) 45 s from the beginning of the sample cooling. At the initial moment t ¼ 0 of the ice front
propagation, the temporal width of first THz pulse, caused by the window–tissue interface, is
about 5 ps, which corresponds to ∼0.5 mm of the sample depth. Within this tissue layer, the
second pulse caused by the existence of the ice front interface, is probably overlapped by the first
one. Its amplitude is expected to be significantly smaller, since the dielectric contrast between
frozen and unfrozen tissue is lower than that for the tissue and the reference window. Thus, it is
difficult to estimate directly from the THz waveforms the moving position of the second pulse.

To overcome this problem, we analyze the signal intensity spectrograms in addition to their
temporal waveforms. Figures 3(a)–3(d) show the spectrograms of the measured signals shown in
the insets [Figs. 3(e)–3(h)]. Comparing them between each other, it is possible to detect the
temporal position of the pulse reflected from the ice front. Figures 3(i)–3(k) show the difference
ΔIðtÞ between the normalized spectrogram InðtÞ ¼ IðtÞ∕max½IðtÞ� at t ¼ 15, 30, and 45 s and
the initial normalized spectrogram at t ¼ 0. Obviously, the first pulse is altering during the first
30 s, then its appearance remains stable. We can clearly observe the presence of the second pulse
at t ¼ 15 and 30 s, which indicates the freezing depths of z ¼ 328 μm and z ¼ 657 μm, respec-
tively; then, its amplitude becomes lower due to absorbtion, which does not allow us to detect it.
Therefore, during 30 s starting from the tissue cooling, TPS provides an ability to analyze the ice
ball formation and estimate the freezing depth. It should be mentioned that time-domain THz
signals feature rather weak changes at the determined moments, not allowing us to evaluate them
directly. To demonstrate this, the detected positions of the second pulses at t ¼ 15 and 30 s are

Fig. 2 The waterfall of THz time-domain signals reflected from the window–tissue interface and
detected by the spectrometer during the tissue freezing. Signals I, II, III, and IV correspond to
t ¼ 0, 15, 30, and 45 s moments of freezing, respectively.
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marked with red rectangles on the THz waveforms [see Figs. 3(f) and 3(g)]. Due to the absence
of second pulses at t ¼ 0 and 45 s, there are no marks on Figs. 3(e) and 3(h).

4 Results and Discussion

The estimation of the tissue freezing depth is shown in Fig. 4, where the values obtained by TPS
are combined with the direct measurements of the sample temperature. Figure 4(b) demonstrates
the temperature change at two depths 4 and 11 mm from the window–tissue interface. The slow-
down of the freezing process at the beginning can be explained by the initial cooling of the tissue
from 37°C to 0°C. In our feasibility study, the maximal freezing depth observed by TPS is limited
by the value 657 μm. However, we believe that it could be increased using THz time-domain

(a) (b)

(e)

(g) (h)

(f)

(c) (d)

(i)

(j)

(k)

Fig. 3 Analysis of THz time-domain signals detected during the tissue freezing. (a)–(d) Signal
intensity spectrograms, where white arrows indicate the positions of second pulses reflected from
the freezing front; (e) and (f) the temporal amplitudes of the signals, where red rectangles mark
the same positions; (a) and (e) correspond to the moment t ¼ 0; (b) and (f) 15 s; (c) and (g) 30 s;
and (d) and (h) 45 s; (i)–(k) the differences ΔIðtÞ between the normalized spectrogram InðtÞ ¼
IðtÞ∕max½IðtÞ� at t ¼ 15, 30, and 45 s and the initial normalized spectrogram at t ¼ 0.

(b)

(a)

Fig. 4 An estimation of the tissue freezing depth. (a) The combination of TPS measurements
(points marked with red color) and data obtained by TCs (points marked with green color),
here, TC stands for thermocouple; (b) temperature changes of the freezing tissue at depths of
4 and 11 mm from the reference window. Error bars represent �2σ confidential interval of
measurements.
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spectrometer with more efficient performance, particularly, scanning rate, which would yield
the reduction of the detection period and increasing of the temporal resolution.

Though the penetration depth of THz waves even in frozen tissue remains extremely low, the
detection of the freezing depth by TPS could provide rather high precision of monitoring ice
front propagation, enabling the observation and control of cryoablation and cooling of cell and
artificial tissue structures, and agglomeration of cell spheroids. Thus, it could become a ben-
eficial research instrument in regenerative medicine and microbiology.

THz technologies are still far from clinical application, suffering from a list of problems, such
as low performance of THz sources and detectors, and low spatial resolution due to high absorb-
tion and scattering.46,47 However, the rapid progress of THz sources and optical components in
the recent years 48–52 stimulates the further improvements of THz instruments for biophotonics.
A strong limitation is caused by the absence of efficient waveguides and fibers.53 Nevertheless,
the sapphire shaped crystal waveguides, exploiting both anti-resonant reflecting optical and pho-
tonic crystal waveguidance principles, have certain perspectives for delivering THz pulses with
relatively low losses and dispersion;44,54 thus, they could form the basis for further developments
of THz instruments for biophotonics and medicine. In addition, sapphire features high thermal
conductivity at cryogenic temperatures, being more efficient material for cryosurgery than metal
(copper, titanium nickelide, and stainless steel), since it enables higher tissue freezing rate.53

Combination of these advantages opens future perspectives for the appearance of sapphire
probes for controlled cryoablation.

Cryosurgery demonstrates high potential in oncology, in particular, to remove neoplasms
and metastases of different localizations, such as liver,37 breast,55 lungs,40prostate,56 kidney,57

stomach,58 and skin.59 Considering the ability of THz technologies for tumor diagnosis along
with currently developing THz instruments and methods for healthy and pathological tissues
differentiation,2 the combination of THz preoperative characterization of tissue with further
TPS-controlled cryoablation could become an effective tool for oncology.

It is worth mentioning that several techniques enable increasing of low penetration depth of
THz waves into living tissues. Among them are methods of immersion optical clearing,19 which
could also be combined with THz freezing depth detection. However, a list of hyperosmotic
agents applied for tissue clearing act as cryoprotectors (e.g., glycerol, dimethyl sulfoxide, and
propylene glycol), since they substitute the interstitial water. Thus, the particular approaches of
their application for increasing of THz-wave penetration into tissues during their freezing, such
as concentration of aqueous solutions and exposure time, are the subjects of further studies.

5 Conclusion

The performed experimental study demonstrates the feasibility of in situ observation of the ice
ball formation in tissues using TPS instrumentation. Applying the spectrogram analysis of THz
time-domain signals recorded in the reflection-mode of THz pulsed spectrometer during tissue
freezing, it is possible to detect the positions of the freezing depth up to 657μm. We believe that
the described approach would be helpful for the development of novel approaches and instru-
ments of controlled cryoablation and would be useful for various tasks of oncology, regenerative
medicine, microbiology, and further progress of THz biophotonics.
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