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Abstract

Significance: Optical coherence tomography (OCT) is an interferometric imaging modality,
which provides tomographic information on the microscopic scale. Furthermore, OCT signal
analysis facilitates quantification of tissue optical properties (e.g., the attenuation coefficient),
which provides information regarding the structure and organization of tissue. However,
a rigorous and standardized measure of the precision of the OCT-derived optical properties,
to date, is missing.

Aim: We present a robust theoretical framework, which provides the Cramér –Rao lower bound
σμOCT for the precision of OCT-derived optical attenuation coefficients.

Approach: Using a maximum likelihood approach and Fisher information, we derive an
analytical solution for σμOCT when the position and depth of focus are known. We validate this
solution, using simulated OCT signals, for which attenuation coefficients are extracted using a
least-squares fitting procedure.

Results: Our analytical solution is in perfect agreement with simulated data without shot noise.
When shot noise is present, we show that the analytical solution still holds for signal-to-noise
ratios (SNRs) in the fitting window being above 20 dB. For other cases (SNR < 20 dB, focus
position not precisely known), we show that the numerical calculation of the precision agrees
with the σμOCT derived from simulated signals.

Conclusions: Our analytical solution provides a fast, rigorous, and easy-to-use measure for
OCT-derived attenuation coefficients for signals above 20 dB. The effect of uncertainties in the
focal point position on the precision in the attenuation coefficient, the second assumption under-
lying our analytical solution, is also investigated by numerical calculation of the lower bounds.
This method can be straightforwardly extended to uncertainty in other system parameters.
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1 Introduction

Optical coherence tomography (OCT) is an imaging technique based on low-coherence inter-
ferometry, providing cross-sectional views into the subsurface structure of samples. OCT creates
depth resolved images with a high-spatial resolution, commonly in the range of 5 to 15 μm. OCT
is widely used in numerous disciplines, ranging from diagnostic medicine to art conservation.
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Next to visualization, OCT also provides additional information about physiological proper-
ties such as blood content, as well as tissue structure and organization.1,2 This information is
extracted from the optical properties3,4 of the investigated tissue and therefore the clinical value
of this information will depend strongly on the precision with which these properties can be
determined. One important optical property is the so-called attenuation coefficient μOCT ðmm−1Þ,
which is a measure of the decay of light intensity within the sample due to absorption and
scattering. Changes of absorption and scattering properties of the investigated tissue are thus
reflected in the attenuation coefficient and can be used for tissue characterization, such as in
cancer detection.2,5,6 Promising results have been shown in medical fields, including cardiology,
dermatology, and urology.7–14 To distinguish different structures and to extract reliable optical
information from tissue, it is crucial that the μOCT is measured accurately and precisely. The main
cause of imprecision is speckle. OCT speckle is the voxel-to-voxel variation of OCT amplitude,
due to random variations in the spatial position of scattering particles within the imaging voxel.
Randomly placed scatterers within the voxels will thus return scattered fields with random ampli-
tude and phase, leading to intensity fluctuations at the detector. Another cause of fluctuation is
(shot) noise. These fluctuations ultimately limit the precision with which the attenuation coef-
ficient can be obtained.

The common approach to extract the attenuation coefficient is to select an axial fitting range
(AFR) and apply a nonlinear least squares (NLLS) curve fit using an appropriate signal
model.15 This model features the optical properties of interest as well as parameters that char-
acterize the OCT system itself. For maximum likelihood estimation (MLE) methods, the maxi-
mum obtainable precision of the parameters can be calculated using a Cramér–Rao analysis16

based on the Fisher-information matrix (FIM) Fθ. The latter is a measure of the amount of
information about the parameter set θ that is present in the observed data. The inverse of the
FIM F−1

θ represents a covariance matrix, in which the diagonal elements represent the variance
of the parameters and the off-diagonal elements represent the covariance between parameters.
The Cramér–Rao inequality reads covðθ; θÞ ≥ F−1

θ and asserts that no unbiased estimator can be
found for which the variance of the estimated parameters is lower than the diagonal elements of
the covariance matrix F−1

θ .16 For observed data that are normally distributed, NLLS curve fit-
ting (χ2-minimization) is a form of unbiased MLE and thus should be capable of reaching the
Cramér–Rao lower bound (CRLB) to achieve the maximum attainable precision. For ease of
interpretation, the CRLB will be expressed here as a standard deviation (square root of the
diagonal elements of F−1

θ ), so it has the same physical units as the parameters it applies to
[e.g., σμOCT ðmm−1Þ]. When the MLE procedure would be repeated a large number of times
on statistically independent “realizations” of the dataset, the CRLB can be interpreted as the
lowest attainable value of the standard deviation of the distribution of the resulting parameter
values.

Here, we present an analytical expression for the CRLB for the attenuation coefficient. It is
derived from the FIM for speckled OCT data, under the assumption that noise is absent, and the
focal point position, the Rayleigh length of the optical system, and the sensitivity roll-off in depth
are known. The limit of validity of the expression under the first assumption is investigated
numerically at different noise levels while assuming a shot noise limited system. The effect
of uncertainties in the focal point position on the precision in the attenuation coefficient, the
second assumption underlying our analytical solution, is also investigated and can be straight-
forwardly extended to uncertainty in other system parameters.

2 Theoretical Background

Several preclinical and phantom studies have shown that the OCT signal versus depth z is best
described by a single exponential decay curve, corrected with the confocal point spread function
and sensitivity roll-off in depth. The resulting expression for the mean-squared OCT signal as a
function of depth in the sample is17

EQ-TARGET;temp:intralink-;e001;116;97hidðzÞi2 ¼ α · Tðz − zfÞ · Hðz − z0Þ · expð−2μOCTzÞ þ hζi2; (1)
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where α ¼ η · μb;NA is a conversion factor that includes the detector response; μb;NA is the back-
scattering coefficient within the numerical aperture (NA) of the detection system; hζi2 is the
mean-squared noise floor, which is assumed to be independent of depth, and TðzÞ is the confocal
point spread function:18

EQ-TARGET;temp:intralink-;e002;116;686Tðz − zfÞ ¼
1�

z−zf
2nzR

�
2 þ 1

: (2)

Here, zf is the focus position and 2nzR is the depth of focus, with n denoting the average refrac-
tive index along the beam and zR is the Rayleigh length measured in air. The function Hðz − z0Þ
describes the sensitivity roll-off in depth for non-time domain OCT systems as19

EQ-TARGET;temp:intralink-;e003;116;600Hðz − z0Þ ¼ sinc2
�
πðz − z0Þ

2zD

�
exp

�
−

r2

2 ln 2

�
πðz − z0Þ

2zD

�
2
�
; (3)

where z0 is the distance between zero-delay and the tissue boundary; r is the ratio of optical
resolution to sampling resolution; and zD ¼ λ2∕4nδλ is the maximum imaging depth achievable
with a spectral sampling pitch δλ and a central wavelength of λ.

In contrast to the confocal parameters, the roll-off is nowadays almost negligible for swept
source-based OCT systems. To simplify the following analysis, we assume that the sensitivity
roll-off can be accurately calibrated and that the signal is preprocessed to account for its influ-
ence. To include the roll-off into the theoretical framework, the following analysis can straight-
forwardly be extended by including the parameters r, z0, and zD in the parameter set and the
function HðzÞ in the signal model as described in Eq. (1). We proceed with the mean-squared
measured signal

EQ-TARGET;temp:intralink-;e004;116;434hAðzÞi2 ¼ α · Tðz − zfÞ · expð−2μOCTzÞ þ hζi2 ¼ hÃðzÞi2 þ hζi2; (4)

where hÃðzÞi2 represents the mean-squared amplitude in the absence of noise.
In contrast to the mean-squared amplitude of Eq. (4), a single A-scan AiðzÞ is a fluctuating

(random) signal due to the presence of speckle and noise. Under the assumptions of fully devel-
oped speckle and shot noise limited detection, the random amplitude at each depth follows
a Rayleigh distribution.17,20 The amplitude variance σ2AðzÞ is the sum of the variances due to
speckle and shot noise, which are proportional to the backscattered power from the sample and
the reference arm power, respectively. Note that for a Rayleigh distribution, the relation between
its variance and mean is fixed as σ2A ¼ ðcR

4
ÞhAðzÞi2, where the constant cR ¼ 4ð4 − πÞ∕π is intro-

duced for later convenience. This relation yields to the familiar “speckle contrast” for fully devel-
oped speckle, the ratio of standard deviation, and mean amplitude, σA

hÃðzÞi2 ¼
ffiffiffiffi
cR

p
2

¼ 0.5227.21,22

Consequently, the amplitude variance at each depth using Eq. (4) can be expressed as

EQ-TARGET;temp:intralink-;e005;116;259σ2AðzÞ ¼
cR
4
ðhÃðzÞi2 þ hζi2Þ: (5)

To reduce the amplitude fluctuations, A-scan averaging of statistically independent individual
A-scans can be performed.22 The averaged amplitude SðzÞ ¼ 1

N

P
N
j¼1 AjðzÞ remains a fluctuating

quantity with mean hSðzÞi ¼ hAðzÞi and variance σ2SðzÞ ¼ σ2AðzÞ∕N. This averaged amplitude, in
general, follows an unspecified distribution ρSðSÞ different from the Rayleigh distribution.
However, with a sufficient number of averages N ≳ 30, the averaged amplitudes at each depth
can be adequately characterized by a normal distribution ρSðSÞ ¼ N ðhAðzÞi; σ2A∕NÞ,23 which we
will assume henceforth.

The single A-scans, and therefore the averaged OCT signal, are fully parameterized by the
parameter array θ ¼ ½α; μOCT; zf; zR; ζ�. In this parameter array, only α and μOCT represent the
optical properties of interest, all other parameters characterize the OCT system and can in prin-
ciple be calibrated to some finite precision. The attenuation coefficient is commonly extracted
trough NLLS χ2-fitting using the square root of Eq. (4) as fit model, which is applied on an AFR
from positions AFRmin to AFRmax. An example of such fit is shown in Fig. 1 (orange line).
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Fluctuations in amplitude due to speckle and shot noise lead to uncertainty in the parameter
estimation. To determine the smallest achievable uncertainty, i.e., the CRLB corresponding to
the most precise μOCT estimation, we start with the FIM matrix for the averaged A-scans16

EQ-TARGET;temp:intralink-;e006;116;351ðFθÞkl ¼
XM
i¼1

ES

�
∂2 log ρSðSðziÞ; θÞ

∂θk∂θl

�
; (6)

where ρSðSÞ is the probability density function for the averaged OCTamplitude, the sum i ¼ 1: : :M
runs over all independent averaged amplitude values within the AFR and k and l index the param-

eter array. The expectation value ES½∂
2 log ρSðSðziÞ;θÞ

∂θk∂θl
� ¼ ∫ ∞

0 ρSðSðziÞ; θÞ½∂
2 log ρSðSðziÞ;θÞ

∂θk∂θl
�dSðziÞ is

calculated by integration over the probability density function ρSðSÞ. For normally distributed
values of SðziÞ, the FIM evaluates to12

EQ-TARGET;temp:intralink-;e007;116;236ðFθÞkl ¼
XM
i¼1

1

σ2SðziÞ
	
∂hSðziÞi
∂θk

∂hSðziÞi
∂θl


����
θ¼θ0

; (7)

forM independent measurement points within the AFR and evaluated at a given set of parameters
θ0. Here, hSðziÞi is the expectation value of the averaged OCTamplitude at depth zi, and σ2SðziÞ is
the corresponding variance. In terms of OCT amplitude mean and variance,

EQ-TARGET;temp:intralink-;e008;116;149ðFθÞkl ¼
XM
i¼1

N
σ2AðziÞ

	
∂hAðziÞi

∂θk
∂hAðziÞi

∂θl


����
θ¼θ0

; (8)

where N is the number of averages in the averaged A-scans, hAðzÞi is obtained from the square
root of Eq. (4), and σ2AðziÞ is obtained from Eq. (5).

Fig. 1 Average of N ¼ 100 independent A-scans (blue line). The amplitudes in the underlying
single A-scans follow a Rayleigh distribution and are simulated using Eq. (11) using a parameter
set θ ¼ ½α ¼ 2500; μOCT ¼ 2 mm−1; zf ¼ 0.3 mm; zR ¼ 0.2 mm; and σshot ¼ 7]. The two gray
dashed lines indicate the boundaries of the AFR (AFR length: 328 μm and sample points:
M ¼ 41). The inset depicts the normally distributed amplitude values SðzÞ of 104 averaged
A-scans at depth position z ¼ 0.49 mm. The amplitude at the end of the AFR is used to calculate
the window-specific SNR with Eq. (13) as SNRAFR ¼ 37 dB. The orange line depicts a curve fit
using the square root of Eq. (4) as fit model with α and μOCT free running.
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Fθ quantifies the variation in signal likelihood caused by variations in the parameters of the
signal model. By inversion of the FIM, we obtain the variation in estimated model parameters
due to variation in the signal likelihood. This inverse of the FIM, F−1

θ , constitutes a quadratic
covariance matrix, in which the diagonal elements represent the variances for each parameter in
the set θ ¼ ½α; μOCT; zf; zR; ζ� (and the off-diagonal elements represent covariances). We express
the CRLB on the precision as a standard deviation, e.g., as the square root of the diagonal
element values of F−1

θ . In our case, the CRLB of the precision of the attenuation coefficient
(σμOCT ) is then given by the square root of the second diagonal element of F−1

θ . When the fitting
procedure would be repeated a large number of times on statistically independent “realizations”
of the dataset, the CRLB can be interpreted as the lowest attainable value of the standard
deviation of the distribution of the resulting attenuation coefficient values.

For the present set of parameters, Fisher-information and covariance matrices of dimensions
5 × 5 are obtained.

In contrast, by assuming zf and zR as exactly known and shot noise as being negligible and
thus absent from the model, the parameter array is θ ¼ ½α; μOCT� and the FIM becomes a 2 × 2

matrix whose inversion can be computed analytically. Approximating the summation in Eq. (8)
as an integration, a closed-form expression for the CRLB for the attenuation coefficient σμOCT can
be obtained (Appendix A):

EQ-TARGET;temp:intralink-;e009;116;513σμOCT ¼
1

AFRmax − AFRmin

ffiffiffiffiffiffiffiffiffiffiffiffi
3 · cR
M · N

r
: (9)

Equation (9), the main theoretical result of this article, shows that under the present assumptions,
the maximum precision obtainable for μOCT depends only on the axial size of the AFR, the
number of independent points (M) in the AFR, and the number of independent preaverages
(N). The σμOCT is independent of the attenuation coefficient and the amplitude values. When
noise is nonnegligible, it is not possible to find an analytical solution, and the lower bound has
to be calculated numerically.

In practice, the focal point position in tissue zf will not be known exactly but with some a
priori determined or estimated precision pzf , expressed in the same units as zf. Calculation of the
CRLB using Eq. (9), based on a 2 × 2 FIM in which the focal position is assumed to be exactly
known (pzf ¼ 0), will yield an overestimation of the best attainable precision in μOCT. However,
the calculation of the CRLB based on a 3 × 3 FIM, with θ ¼ ½α; μOCT; zf� may yield an under-
estimation of the best attainable precision because in that case zf is a free running parameter in
the fit, allowed to take all possible values (pzf ¼ ∞). Some variation of μOCT can then be com-
pensated by variation in zf. Following the procedure in Ref. 24, it is possible to compute the
change in σμOCT by including prior knowledge of the precision in zf as follows:

EQ-TARGET;temp:intralink-;e010;116;275σμOCT ¼ σ̃μOCT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − P2ðμOCT;zfÞ

σ̃2zf
p2
zf þ σ̃2zf

s
; (10)

where σ̃μOCT and σ̃zf are the CRLBs assuming no prior information on both parameters,

PðμOCT;zfÞ ¼ σ2ðμOCT;zfÞ∕
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ̃2μOCT σ̃

2
zf

q
is the normalized covariance between the attenuation coeffi-

cient, and focal point position ðPðμOCT;zfÞ ≤ 1Þ. With increasing precision of the focal point posi-
tion due to calibration (e.g., pzf → 0), the CRLB σ̃μOCT decreases. Note that the extent of
improvement depends on the magnitude of PðμOCT;zfÞ: for very weak covariance between both
parameters, the improvement in the CRLB will be small. In this case too, an analytical expres-
sion cannot be found and the CRLB must be calculated numerically.

3 Methods

We performed three sets of numerical experiments, all implemented in Python 3.8.2. For each,
N single A-scans are simulated using Eq. (11) with the parameters set as α ¼ 2500,
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μOCT ¼ 1; 2; 5; 10 mm−1, zf ¼ 0.3 mm, and zR ¼ 0.2 mm. Each A-scan consisted of 250 inde-
pendent data points, over a simulated range of 2 mm (δz ¼ 8 μm increments). These settings
correspond to typical system parameters for nonophthalmic OCT systems. To simulate A-scans
with Rayleigh distributed amplitudes, we used the standard method of sampling25 based on
inversion of the continuous distribution function:

EQ-TARGET;temp:intralink-;e011;116;674AsimðziÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

4

4 − π
· σ2AðziÞ · lnðξ½0;1�Þ

r
; (11)

where ξ½0;1� is a uniformly distributed random number between 0 and 1. The total variance

σ2AðziÞ is calculated according to Eq. (5). These A-scans are subsequently laterally averaged,
SsimðziÞ ¼ 1

N

PN
j¼1 Asim;jðziÞ. Next to the mean, for each data point the variance σ2SsimðziÞ is

also computed. Values on the discrete depth axis are given by zi ¼ ði − 1
2
Þ δz with i ¼ 1: : : N.

The attenuation coefficient is found by a Levenberg–Marquardt NLLS curve-fitting pro-
cedure applied to the averaged A-scan, with either two (α; μOCT) or three (α; μOCT; zf) or all
parameters except the noise floor ðα; μOCT; zf; zRÞ free running, as specified below, and the other
parameters fixed at the input value of the simulations. This procedure finds the model parameters
by minimizing the variance-weighted sum of squared residuals χ2 in the AFR according to

EQ-TARGET;temp:intralink-;e012;116;512χ2 ¼
P

M
i¼1 ½SsimðziÞ − AðziÞ�2

σ2SsimðziÞ
; (12)

where the fit model AðziÞ is obtained from the square root of Eq. (4). Fit procedures are repeated
104 times to calculate the mean and standard deviation of the distribution of μOCT estimations.
This obtained standard deviation is then compared to the CRLB for the specific experiment,
calculated numerically based on Eq. (8)—as the square root of the second diagonal element
of F−1

θ —or analytically using Eq. (9). To quantify the effect of noise on the μOCT estimation,
we calculate an AFR-specific signal-to-noise metric as26

EQ-TARGET;temp:intralink-;e013;116;391SNRAFR ¼ 20 · log10

	
SðAFRmaxÞ

σshot



; (13)

using the amplitude at the maximum depth of the AFR SðAFRmaxÞ and the standard deviation
of the shot noise σshot ¼

ffiffiffifficR
4

p hζi.
In the first experiment, we compare the standard deviation of the 104 fitted attenuation coef-

ficients to the CRLB on the precision of μOCT as a function of the number of averaged A-scansN.
The CRLB is calculated numerically as well as with the analytical solution of Eq. (9), in the
absence of shot noise (ζ ¼ 0, σshot ¼ 0), and numerically in the presence of shot noise (ζ ¼ 13.5,
σshot ¼ 7). The shot noise value is arbitrarily chosen and corresponds to the signal-to-noise ratio
(SNR) value encountered in practice. The AFR was 2 mm. Values for averaging were linearly
spaced between 2 and 110.

In the second experiment, we investigate the influence of the noise level in the AFR on the
precision of the attenuation coefficient estimation by shifting an jAFRj ¼ 328 μm starting at
z ¼ 0 down to a depth of 6 mm to vary AFRmax and thus SNRAFR in Eq. (13). Simulations
are done using ζ ¼ 0.191 (σshot ¼ 0.1) to facilitate SNRAFR up to 80 dB. We lowered the noise
level to ensure that the full range up to 60 dB of the SNRs is covered.

In the third experiment, we investigate the influence of prior knowledge of the precision in
focal point position zf in the presence (ζ ¼ 13.5, σshot ¼ 7) of noise. We calculated the CRLB in
the case of two free parameters with two (α; μOCT) or three (α; μOCT; zf) free parameters. The
former case indicates complete knowledge of the focal point position, the latter case indicates
no knowledge at all. Equation (10) predicts the achievable precision when some knowledge,
between these two extremes, is available. To simulate this situation, we implemented a con-
strained NLLS fitting algorithm, in which the parameter zf was only allowed to vary between
in a restricted range around the true value, 0.3 mm �pzf where pzf was increased from 0.001 to
0.05 mm with a step size of 0.001. The AFR was 2 mm.

Neubrand, van Leeuwen, and Faber: Precision of attenuation coefficient measurements. . .

Journal of Biomedical Optics 085001-6 August 2022 • Vol. 27(8)



4 Results

An example of a simulated 100 times averaged A-scan SðzÞ is shown in Fig. 1 (dark blue line).
In this simulation, the parameter set of θ ¼ ½α ¼ 2500; μOCT ¼ 2 mm−1; zf ¼ 0.3 mm;
zR ¼ 0.2 mm; and σshot ¼ 7� was used. The orange line depicts an NLLS fit using the square
root of Eq. (4) as fit model, with α and μOCT free running. The boundaries of the jAFRj ¼
328 μm are given by the vertical gray lines. The inset shows the distribution of 104 values
of the SðzÞ values at position z ¼ 0.49 mm and demonstrates that the data points used in the
fit can assumed as being normally distributed. The mean and standard deviation of 104 values of
the fitted parameters are α ¼ 2500� 21 and μOCT ¼ 1.999� 0.088 mm−1.

For the example given, numerical evaluation of the CRLB using Eq. (8) yields σθ ¼
½σα ¼ 112; σμOCT ¼ 0.0863 mm−1�. The corresponding CLRB from the noise-less analytical
expression Eq. (9) is σμOCT;an ¼ 0.0862 mm−1, indicating that the influence of noise is nearly
negligible in this simulation. We compared the CRLB for the attenuation coefficient using differ-
ent combination of fixed and free running parameters, shown in Table 1 (an extended version is
shown in Table 2 in Appendix B).

With relatively high SNRAFR ¼ 37 dB, the influence of noise is not visible. This table clearly
illustrates that precise knowledge of the confocal parameters zf and zR, which removes them as
variable parameters in the estimation procedure, increases the achievable precision in the attenu-
ation coefficient. No precise determination of the attenuation coefficient is possible when all
parameters are free running (bottom row). Essentially, the fit in the selected AFR is now over-
parameterized, and variations in μOCT can be counteracted by variations in other parameters to
maintain a minimum χ2. In the two intermediate cases, with either zf or zR free running, the
CRLB is not reached using the employed NLLS curve-fitting algorithm.

The result of the first numerical experiment is shown in Fig. 2, which shows the precision of the
attenuation coefficient determination as a function of the number of averages N. We used an AFR
equal to the full penetration depth of 2 mm in the absence (a) and presence of shot noise (b). Please
note the different vertical scales. The confocal parameters are fixed at zf ¼ 0.3 mm, zR ¼ 0.2 mm.
The dashed black line in both panels represents the CRLB σμOCT in the absence of noise using Eq. (9),
and the colored lines indicate the calculated σμOCT associated with the particular values of μOCT.
The colored dots each indicate the standard deviation of 104 μOCT fits to the averaged A-line.

The predicted 1∕
ffiffiffiffi
N

p
dependency of the precision is visible for the analytically and numeri-

cally calculated σμOCT and is verified by the simulation results. For small N (<30), the distribution
of averaged amplitudes SðzÞ is not sufficiently approximated by a normal distribution, leading to
a small difference between the predicted CRLB and the standard deviation of the simulated data.
Figure 2(a) shows that the calculated and simulated precisions overlap perfectly if the averaged
amplitudes can be assumed as being normal distributed (number of averages N ≳ 30, see also

Table 1 CRLB for precision of attenuation coefficient estimation at μOCT ¼ 2 mm−1; and corre-
sponding simulation results for different parameters fixed or free running in the fitting procedure.
Parameter and simulation values are equal to those in Fig. 1. The CRLB marked with (Γ) is
calculated using the analytical expression Eq. (9); other values are calculated numerically from
Eq. (8). The simulation results are the standard deviation of 104 μOCT estimations.

Free running (✓) or fixed (–) parameter σμOCT
ðmm−1Þ

A μOCT zf zR σshot ¼ 0 σshot ¼ 7

2500 2 mm−1 0.3 mm 0.2 mm CRLB sim CRLB sim

✓ ✓ — — 0.086a 0.088 0.086 0.087

✓ ✓ ✓ — 0.34 0.46b 0.34 0.45b

✓ ✓ — ✓ 0.89 0.67b 0.89 0.67b

✓ ✓ ✓ ✓ 2.5 1.8b 2.5 1.7b

aCalculated from Eq. (9).
bFitted μOCT values were not normally distributed.
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Appendix C). In the absence of noise [Fig 2(a)], the simulation results and CRLB predictions for
μOCT ¼ ½1; 2; 5; 10� mm−1 coincide as predicted by Eq. (9). This nondependence on μOCT of the
precision appears lost when noise is present [Fig. 2(b)]. Better precision is predicted and
obtained for lower attenuation coefficient values, all other parameters being equal. This tendency
is explained by the fact that with decreasing μOCT, the averaged amplitude SðzÞ decays slower,
and therefore reaches the noise level at a later point in within the fixed AFR. Consequently, with
less data points falling into the noise region, the number of data points that effectively carry
information on μOCT is increased compared to curves with higher attenuation coefficients.
For small μOCT, the noise-dependency remains negligible, for which reason the CRLB is
described well by the analytical expression Eq. (9) in this regime.

To further substantiate the effect of noise in the AFR on the CRLB, in the second experiment
we decreased the AFR to 328 μm (M ¼ 41 data points). By sliding the AFR in depth, the
contribution of noise is increased leading to a reduced SNRAFR [Eq. (13)]. The reduced AFR
corresponds to measurements when the μOCT of a limited section of the depth scan is sought.
The results are shown in Fig. 3, where the notation is kept the same as in Fig. 2.

The limiting value of ∼0.086 mm−1 for increasing SNRAFR is found from Eq. (9) and is the
direct consequence of the presence of speckle. Shot noise as an additional source of signal fluc-
tuation leads to a further decrease of achievable precision (higher σμOCT ). The lowest value of

Fig. 2 CRLB on the precision of μOCT (mm−1) (lines) as a function of the number of averaged
A-scans N in (a) the absence and (b) presence of shot noise (σshot ¼ 7). The CRLB is calculated
analytically using Eq. (9) (dashed lines) and numerically based on Eq. (8) (solid lines). Model
parameters θ ¼ ½α ¼ 2500; μOCT ¼ ½1; 2; 5; 10� mm−1; zf ¼ 0.3 mm; and zR ¼ 0.2 mm�. The dots
each show the standard deviation of 104 fitted μOCT values using the square root of Eq. (4) as
fit model, with α and μOCT free running. AFR ¼ 2 mm with M ¼ 250 data points.

Fig. 3 CRLB on the precision of μOCT (mm−1) as a function of window-specific SNRAFR. The black
dashed line represents the CRLB in absence of noise, calculated with Eq. (9). Colored curves re-
present the CRLB based on Eq. (8). The dots each show the standard deviation of 104 fitted μOCT

values. The data were simulated using θ¼ ½α¼ 2500;μOCT ¼ ½1;2;5;10� mm−1; zf ¼ 0.3 mm; zR ¼
0.2 mm;σshot ¼ 0.1�. Sliding AFR ¼ 328 μm with M ¼ 41 data points. N ¼ 100 A-scans were aver-
aged prior to the fitting using the square root of Eq. (4) as fit model, with α and μOCT free running.
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SNRAFR in the current experiment is 5.63 dB, which is found by rewriting Eq. (13) as SNRAFR ¼
20 · log10ð

ffiffiffiffi
4
cR

q
AðzmaxÞ

ζ Þ and setting the amplitude at the end of the AFR equal to the mean noise

floor. Clearly, in this case, the data carry little information on μOCT and the achievable σμOCT
grows infinitely large. For high SNRAFR, the precision tends asymptotically toward the value
obtained from the analytical expression.

Above an SNRAFR of 20 dB, shot noise shows negligible impact on the CRLB for the attenu-
ation coefficient. In commonly performed OCT measurements, the SNR is usually higher within
the fit range. In this SNR regime, σμOCT is sufficiently described by Eq. (9) if zf and zR are
exactly known.

In general, increasing the number of free running parameters in a fit leads to larger CRLBs,
because a fit with more parameters allows more “wiggle room” for other parameters to achieve
low χ2-values (see also the example in Table 1) especially with strong covariances between the
parameters. For example, in the second and third rows in Table 1, high values for the CRLBs of
both the attenuation coefficient and focus position or Rayleigh length will be computed, indicat-
ing low precision in simultaneously estimating these parameters. The more realistic intermediate
approach is given by Eq. (10), where a parameter is known to some precision px.

We investigated the case where the focal point position is a priori known with some precision
pzf . In the NLLS curve-fitting algorithm, this information is “incorporated” by restricting the
range over which the parameter zf is allowed to vary to its initial value 0.3 mm �pzf . The result
of this third experiment is shown in Fig. 4.

The black dashed line represents the CRLB σμOCT ¼ 0.0069 mm−1, where zf and zR are
assumed to be known exactly. The red line represents the CRLB σ̃μOCT ¼ 0.0082 mm−1 based on
a 3 × 3-FIM assuming zR is known and α, μOCT, and zf are unconstrained (i.e., allowed to vary
while fitting). In that latter case, the CRLB on the focal point position is σ̃zf ¼ 0.006 mm.
The normalized covariance between both parameters PðμOCT;zfÞ ¼ 0.54. By including a priori
knowledge about the precision of zf, the CRLB σ̃μOCT is reduced according to Eq. (10) and is
shown as a blue line in Fig. 4. The yellow dots show the corresponding simulation results.
Because the normalized covariance between the parameters is relatively low, it requires a prior
(here pzf ≲ 0.01 mm, which is more restrictive than the value of σ̃zf ¼ 0.006 mm) before a
significant improvement on σμOCT becomes evident. The simulated values for μOCT precision
are slightly larger than predicted by the CRLB. A possible explanation is that the constrained
nonlinear curve fitting as implemented in this experiment is not strictly an unbiased estimator.

Fig. 4 CRLB on the precision of μOCT as a function of prior standard deviation of the focal point
position pzf . The black dashed line represents the CRLB for a two-parameter model (α; μOCT),
the red line represents the CRLB for a tree-parameter model (α; μOCT, zf ) both based on Eq. (8).
The dark blue curve shows the adjusted CRLB incorporating pzf

using Eq. (10). The dots each show
the standard deviation of 104 fitted μOCT values. Data are simulated using Eq. (11), θ¼ ½α¼ 2500;
μOCT ¼ 2mm−1;zf ¼ 0.3mm;zR ¼ 0.2mm; andσshot ¼ 7�; AFR ¼ 2 mm with M ¼ 250 data points.
N ¼ 100 A-scans were averaged prior to the constrained fitting using the square root of Eq. (4) as
fit model, with α and μOCT free running and zf allowed to vary only around zf ¼ 0.3 mm� pzf .
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5 Discussion

Quantification of the attenuation coefficient requires proper assessment of the accuracy and
precision of the measurement method. This knowledge can be obtained in various ways. First,
the experiments can be repeated a large number of times, after which the spread of the retrieved
attenuation coefficients is assessed. When stable, fully characterized phantoms (in terms of
optical properties, structure, etc.) are available, and this method will yield valuable information
on accuracy and precision. Performing such series on tissue samples, however, is prone to under-
estimate the achievable precision because now biological variability is also factored in.
Moreover, these measurements can be laborious and time consuming, and they may need to
be repeated when system parameters change. Second, the measurement procedure can be numeri-
cally simulated a large number of times. This approach too can be time consuming especially when
many parameters are involved, and the parameter space that must be mapped is large. We used this
second approach as validation for the third method: a Cramér–Rao analysis based on the FIM,
which is computationally fast and can easily be scaled to include additional parameters. The
interpretation of CRLB in this article is also frequentist: when the estimation of the attenuation
coefficient using an unbiased, MLE procedure would be repeated a very large number of times,
and the standard deviation of the normally distributed attenuation coefficients would approach
the CRLB. This concise formulation somewhat obscures the practical challenges in reaching the
CRLB. First, an unbiased MLE method must be devised. For normally distributed measurement
data, NLLS curve fitting is such a method, and we have ensured the normality of the measure-
ment data by preaveraging 100 A-scans (see also Appendix C for further justification). Second,
the performance of the NLLS algorithm should be such that the resulting attenuation coefficients
are normally distributed. As indicated in Table 1, normally distributed values were not always the
case especially when the fit model appears over parameterized or conversely, appears under
parameterized, in case the model does not fit the data well. Having a biased estimation may
also be the case for the data shown in Fig. 4, which was obtained using a constrained NLLS
algorithm and allowed restricting fit parameter values to certain ranges.

Furthermore, the success of all three methods relies on the correctness of the fit/simulation
model. In our present study, both data simulation and curve fitting were based on the same
model. This assumption may be different for experimentally obtained OCT data, for example,
a small fraction of multiply forward scattered light is not taken into account in the model; or
when other noise sources are overlooked. Multiple scattering models are available (see the dis-
cussion in Refs. 2 and 5) and will lead to the inclusion of one more tissue parameter, e.g., the
root-mean-square scattering angle or scattering anisotropy g. In our present study, we excluded
the effects of sensitivity roll-off in depth for simplicity. It can be added straightforwardly at the
additional cost of two parameters. Possibly, a distinction between the absorption and scattering
contribution to the attenuation is desired. Then, such a comprehensive model would have the
parameter array θ ¼ ½α; μa; μs; g; zf; zR; r; z0; zD; ζ� of which only three (μa; μs; g) are tissue-
specific “target parameters,” and for which a high covariance between some of them can be
expected. Because of this, wide CRLBs on the target parameters will result indicating low pre-
cision in simultaneously estimating these parameters. Putting constraints on some of the param-
eters using prior knowledge—either from calibration or physical insight—can mitigate this
effect. The common procedure24 to investigate this is to first invert (back) the parameter covari-
ance matrix provided by the Cramér–Rao analysis or by an experiment, retrieving the FIM.
Then, add priors to the FIM and invert again to obtain an updated covariance matrix. The updated
CRLB, in our formalism, will then be the square root of the diagonal elements of this matrix. If
the prior is found to produce a strong decrease in the CRLB of the target parameter, we would
typically try to establish a measurement that can produce the constraint correspond to the prior,
for example, fixing the focus position or go to great lengths to carefully calibrate the roll-off
parameter r. For a single parameter, this analysis procedure is captured in Eq. (10) for the focal
position. If more parameters are controlled, or calibrated, it can be repeatedly applied, even when
applied to the target parameter itself.24 Equation (10) also reveals that the highest gain in pre-
cision can be obtained by restricting a parameter, which has large initial covariance with the
target parameter. For the attenuation coefficient, this will in general be the focal position or the
Rayleigh length. Increasing precision of a parameter x, e.g., px → 0 in Eq. (10), corresponds to
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adding an ever larger number to the corresponding element in the FIM. Rather than risk numeri-
cal instability in the Cramér–Rao analysis due to this, it should be considered to remove the rows
and columns corresponding to the parameter from the FIM altogether so the parameter does not
appear in the model as a variable anymore. In fact, we used this approach to reduce the Fisher
matrix to a 2 × 2 matrix leading to the analytical expression of Eq. (9).

Our analysis can be extended to the depth resolved estimation (DRE) method for the attenu-
ation coefficient, which has recently emerged as an alternative to the curve-fitting method.27

Following the same theoretical framework as described in Sec. 2, the CRLB for the estimated
attenuation coefficient in the absence of shot noise is obtained as

EQ-TARGET;temp:intralink-;e014;116;628σμOCT ¼
μ̂OCTffiffiffiffiffiffiffiffiffiffiffiffi
M · N

p : (14)

The scaling with the number of averages and data points is identical to the curve-fitting method.
However, contrary to the CRLB for curve fitting, which does not depend on the attenuation
coefficient itself, the precision now depends on the estimated μ̂OCT. The precision as well as
the accuracy of the DRE method will be subject of a future publication.

5.1 Clinical Implication

Various studies have demonstrated the potential for tissue discrimination based on the attenu-
ation coefficient. Patient studies can be undertaken to determine cut-off values from ROC
analysis9,28 to discriminate between benign and malignant lesions. When an attenuation coef-
ficient close to the cut-off value is found in a subsequent measurement, the relevance of that
result in clinical decision making hinges on the precision of the individual OCT measurement.
The CRLB analysis as presented in this article provides a convenient method to assess the pre-
cision as influenced by noise, by system properties such as the confocal parameters and by data
processing steps such as the number of averages and AFR selection. Moreover, the analytical
expression Eq. (9), which is valid when noise is negligible in the AFR (which is usually satisfied)
and when the confocal parameters are well-known, directly gives the precision that can be
obtained as a function of postprocessing parameters only.

In this article, we used parameter values that are typically encountered in OCT measurements
in dermatology or urology. A Cramér–Rao analysis for ophthalmic applications was recently
given by Ghafaryasl et al.,23 albeit with some procedural mistakes. The result of our Cramér–
Rao analysis using the system parameters in Ref. 23 can be found in Appendix D. Promising
clinical applications include spectroscopic OCT,28 where the attenuation coefficient is measured
at multiple wavelengths to determine, e.g., oxygen saturation29 and hemoglobin concentration.30

Endeavors to measure water content31 and glucose levels32–34 based on the attenuation coefficient
have also been undertaken. The precision with which these physiological properties can be deter-
mined, and the corresponding diagnostic relevance of such approaches squarely depends
on the precision of the attenuation coefficient measurement.

6 Conclusion

In this article, we have used the Fisher information matrix to compute the maximum achievable
precision of OCT attenuation coefficient determination. We specified this CRLB σμOCT in the
same units as the attenuation coefficient, e.g., mm−1, and derived an analytical expression for
this bound in the absence of noise and assuming exact knowledge of OCT (confocal) system
parameters. We have validated the calculations using numerical simulations. Results from the
analytical expression are in good agreement with the standard deviation extracted from simu-
lations when the SNR in the AFR is above 20 dB, which is usually obtainable in OCT mea-
surements. Furthermore, our theoretical framework can be expanded to include the roll-off or be
used to calculate the CRLB for the confocal parameters. Therefore, we strongly believe that this
framework is an important advance toward the standardized clinical use of OCT-based tissue
characterization and given its wide applicability, and we believe that our theoretical framework
gives a valuable insight toward improvement and design of OCT measurements.
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7 Appendix A: Analytical Expression for the Cramér–Rao Lower Bound
for the Attenuation Coefficient

It is assumed that the focal position zf and Rayleigh length zR are known. In the absence of shot
noise, this leads to a 2 × 2 Fisher matrix with θ ¼ ½α; μOCT� as the parameter array of interest.
Starting from Eq. (8), the Fisher matrix simplifies to

EQ-TARGET;temp:intralink-;e015;116;667Fθ ¼
XM
i¼1

N
σ2AðziÞ

	
α−1 −ziα−1∕2

−ziα−1∕2 z2i



αTðzi − zfÞe−2μOCTzi : (15)

For the normal distribution that is obtained from averaging Rayleigh random variables, we have
the fixed relation between variance and mean σ2AðziÞ ¼ cR

4
A2ðziÞ so

EQ-TARGET;temp:intralink-;e016;116;595Fθ ¼
XM
i¼1

4N
cR

	
α−1 −ziα−1∕2

−ziα−1∕2 z2i



: (16)

An analytical solution for the CRLB for μOCT can be obtained by replacing the sum by a definite
integral.

For an AFR containing M independent data points,
P

M
i¼1ð: : : Þ → 1

δz ∫
AFRmax

AFRmin
ð: : : Þdz, where

δz is the pixel increment in the OCT data.
This leads to the 2 × 2 FIM

EQ-TARGET;temp:intralink-;e017;116;482Fθ ¼

0
B@

4NðAFRmax−AFRminÞ
cRαδz

− 2NðAFRmax−AFRminÞðAFRmaxþAFRminÞ
cRα1∕2δz

− 2NðAFRmax−AFRminÞðAFRmaxþAFRminÞ
cRα1∕2δz

4NðAFR3
max−AFR3

min
Þ

3cRδz

1
CA: (17)

The parameter covariance matrix can be calculated analytically by matrix inversion of Eq. (17).
With the aid of the determinant jFθj ¼ Fθ11Fθ22 − Fθ12Fθ21

EQ-TARGET;temp:intralink-;e018;116;395jFθj ¼
1

3

	
4N2

c2Rαδz
2



ðAFRmax − AFRminÞ4: (18)

The covariance matrix becomes after some algebraic manipulations

EQ-TARGET;temp:intralink-;e019;116;337F−1
θ ¼ cR

N ⋅M

0
B@

αðAFR3
max−AFR3

min
Þ

ðAFRmax−AFRminÞ3
3α1∕2ðAFRmaxþAFRminÞ
2ðAFRmax−AFRminÞ2

3α1∕2ðAFRmaxþAFRminÞ
2ðAFRmax−AFRminÞ2

3
ðAFRmax−AFRminÞ2

1
CA: (19)

The diagonal elements of the covariance matrix correspond to the lower bounds on variance of
amplitude and attenuation coefficient, respectively. The CRLB, expressed as standard deviation,
is then given as

EQ-TARGET;temp:intralink-;e020;116;239σμOCT;an ¼
1

AFRmax − AFRmin

ffiffiffiffiffiffiffiffiffiffiffiffi
3cR
N · M

r
: (20)

8 Appendix B

CRLBs for the precision of all model parameters and corresponding simulation results for
different parameters fixed or free running in the fitting procedure are presented in Table 2.
Parameter set θ ¼ ½α ¼ 2500; μOCT ¼ 2 mm−1; zf ¼ 0.3 mm; zR ¼ 0.2 mm; and σshot ¼ 7�.
Prior to fitting, N ¼ 100 independent A-scans are averaged. AFRmin ¼ 328 μm, AFRmax ¼
656 μm, jAFRj ¼ 328 μm, and sample points: M ¼ 41. The noise background σshot ¼ 7 cor-
responds to SNRAFR ¼ 37 dB. The CRLB marked with (b) is calculated using the analytical
expression Eq. (9); other values are calculated numerically from Eq. (8). The simulation results
are the standard deviation of 104 parameter estimations (Table 2). The columns listing results for
σμOCT are the same as Table 1.
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9 Appendix C

Upon averaging a number N of statistically independent A-scans, the distribution of the OCT
amplitude values changes away from the Rayleigh distribution. Whereas the mean amplitude

does not change; the variance is reduced by a factor N: σ2hAi ¼
σ2A
N ¼ cRhAi2

4N . When N ≳ 30, the

amplitudes in the averaged signal follow a Gaussian distribution with these means and variances.
To justify this estimation, we have numerically generated sets of 104 Rayleigh distributed

random values y parameterized by hyi ¼ 10, and progressively averaged N ¼ 2 − 100 of these
sets. For each value of N, a normal distribution was generated with mean hyi and variance
σ2y ¼ cR

4N hyi2 (shown in Fig. 5(a) for N ¼ ½2; 10; 100�). We then calculated the coefficient of
determination R2 between the averaged dataset, and the generated normal distribution [shown
in Fig. 5(b)] and find that R2 asymptotically approaches 1 as N increases above 30.

10 Appendix D

ACramér–Rao analysis for the parameter set θ ¼ ½α ¼ 25000; μOCT ¼ 0.72 mm−1; zf ¼ 160 μm;
and zR ¼ 42 μm� representative for ophthalmic OCT systems was previously reported in Ref. 23,
using the same signal model as in the present manuscript. Before the analysis, the signal is already
noise corrected. Instead of CRLBs expressed as standard deviations, the relative CRLB were
reported (e.g., normalized on the parameter values). For comparison, we calculated accordingly
the relative lower bounds using Eqs. (7) and (8) while setting the noise floor to zero (ζ ¼ 0,
σshot ¼ 0). Similar to Ref. 23, N ¼ 500 A-scans were taken for averaging, yet a more realistic
axial increment of δz ¼ 8 μm was used instead of 1.27 μm. The AFR was 6.29 mm. The rCRLB
on the parameters α, μOCT, zf, and zR as a function of the number of A-scans taken for averaging

N ¼ ½0; 1; : : : ; 99; 100� is shown in Fig. 6, resulting in an expected 1∕
ffiffiffiffi
N

p
-dependency for all

four parameters. In addition, Figs. 7(a)–7(d) show the rCRLB for the four parameters versus the
value of the parameter α ¼ ½102 − 106� in a.u., μOCT ¼ ½0.01 − 8� in mm−1, zf ¼ ½−0.2 − 0.9� in
mm, and zR ¼ ½0.01 − 0.5� in mm while using 1000 equally distributed data points. Please note

Fig. 5 N-times averaged Rayleigh distributed random values hyi (orange dots, mean hyi ¼ 10)
compared to a Gaussian distribution (blue line) with the same mean and variance. (a) The prob-
ability distributions of hyi for N ¼ ½2;30; 100�. (b) The coefficient of determination, R2 between
the averaged Rayleigh and normal distributions as function of N (note the logarithmic horizontal
scale). R2 rises asymptotically towards 1, indicating that, for N ≳ 30, the averaged Rayleigh
variable can be approximated as being normally distributed.
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Fig. 6 Relative CRLB on the precision of α; μOCT, zf , and zR (lines) as a function of the number of
averaged A-scans N . The Cramér–Rao bounds are calculated based on Eq. (8). Model param-
eters θ ¼ ½α ¼ 25000; μOCT ¼ 0.72 mm−1; zf ¼ 160 μm; and zR ¼ 42 μm�. AFR ¼ 6.29 mm with
M ¼ 1000 data points. A priori correction for noise is assumed.

Fig. 7 Relative CRLB on the precision of α; μOCT, zf , and zR (lines) as a function of (a) α, (b) μOCT ,
(c) zf , and (d) zR . Other parameters are fixed at their base values from the set θ ¼ ½α ¼
25000; μOCT ¼ 0.72 mm−1; zf ¼ 160 μm; and zR ¼ 42 μm�. The CRLBs are calculated based on
Eq. (8). AFR ¼ 6.29 mm with M ¼ 1000 data points. A priori correction for noise is assumed.
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that our numerical evaluations, which are shown in Figs. 6 and 7, result in a different relative error
as reported in Ref. 23 due to some procedural mistakes in Ref. 23. In OCT, the variance is directly
related to the mean value [Eq. (5)] and is thus variable for each data point. However, all relative
errors are below the 10% threshold as stated in Ref. 23 upholding their main conclusion.
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