
Hyperspectral imaging using RGB
color for foodborne pathogen
detection

Seung-Chul Yoon
Tae-Sung Shin
Kurt C. Lawrence
Gerald W. Heitschmidt
Bosoon Park
Gary R. Gamble



Hyperspectral imaging using RGB color for
foodborne pathogen detection

Seung-Chul Yoon,* Tae-Sung Shin, Kurt C. Lawrence, Gerald W. Heitschmidt, Bosoon Park, and Gary R. Gamble
U.S. National Poultry Research Center, U.S. Department of Agriculture-Agricultural Research Service, 950 College Station Road, Athens,
Georgia 30605, United States

Abstract. This paper reports the development of a spectral reconstruction technique for predicting hyperspectral
images from RGB color images and classifying food-borne pathogens in agar plates using reconstructed hyper-
spectral images. The six representative non-O157 Shiga-toxin producing Escherichia coli (STEC) serogroups
(O26, O45, O103, O111, O121, and O145) grown on Rainbow agar plates were used for the study. A line-scan
pushbroom hyperspectral imaging spectrometer was used to scan full reflectance spectra of pure non-O157
STEC cultures in the visible and near-infrared spectral range from 400 to 1000 nm. RGB color images were
generated by simulation from hyperspectral images. Polynomial multivariate least-squares regression analysis
was used to reconstruct hyperspectral images from RGB color images. The mean R-squared value for hyper-
spectral image reconstruction was ∼0.98 in the spectral range between 400 and 700 nm for linear, quadratic, and
cubic polynomial regression models. The accuracy of the hyperspectral image classification algorithm based on
k-nearest neighbors algorithm of principal component scores was validated to be 92% with the test set (99% with
the original hyperspectral images). The results of the study suggested that color-based hyperspectral imaging
would be feasible without much loss of prediction accuracy compared to true hyperspectral imaging. © The
Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this
work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JEI.24.4.043008]
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1 Introduction
Detection and identification of foodborne pathogens are
increasingly important for development of intervention and
verification strategies for the food industry and regulatory
agencies. Traditional culture-based direct plating methods
are still the gold standard for presumptive-positive pathogen
screening in many microbiology laboratories, where agar
media are routinely used for isolation, enumeration, and
detection of pathogenic bacteria. In practice, highly skilled
technicians visually screen and manually select presumptive-
positive colonies by trial and error for microscopic, biochemi-
cal, serological, and molecular confirmation tests whose
results may or may not be obtained rapidly. Therefore, the
culture methods are labor intensive and prone to human
subjective errors. Another challenge with direct plating is
that competitive microflora often grow together with target
microorganisms on agar media and can appear morphologi-
cally similar.

Hyperspectral image classification algorithms in the
visible and near-infrared (VNIR) spectral range from 400
to 1000 nm have been previously developed for automated
screening of pathogen colonies on agar plates, which
included Campylobacter, Salmonella, and Shiga toxin-
producing Escherichia coli (STEC).1–5 The key idea of
using hyperspectral imaging was to find spectral and spatial
features unique to the bacterial colonies on agar and utilize
the spectral and/or spatial features for detection and

classification so that relatively simple classification algo-
rithms, such as k-nearest neighbor (kNN) and quadratic dis-
criminant analysis, could be applied. Although hyperspectral
imaging using full spectra demonstrated the good sensitivity
and specificity to detect pathogen colonies and identify their
types, the high cost of a hyperspectral imaging system hin-
ders its routine use as a screening tool in microbiology labo-
ratories. RGB color (or multispectral) imaging techniques
can be a cost-effective solution, although a commercial mul-
tispectral imaging solution is still much more expensive than
color imaging. In addition, either a color-based or multi-
spectral imaging solution for pathogen detection, such as
non-O157 STECs, requires the development of a new classi-
fication algorithm. Therefore, an idea was to use the already
developed hyperspectral image classification algorithm(s)
while using color (or multispectral) imaging.

The use of multispectral imaging to recover reflectance
spectra has been extensively studied in the color science
field typically with color charts or targets with known spec-
tra.6 There are many techniques to recover reflectance spec-
tra from multispectral (typically color) information.6,7 Some
of the hyperspectral estimation techniques to recover reflec-
tance spectra include Wiener estimation, multiple regression
analysis, Maloney-Wandell method, Imai-Berns method, and
Shi-Healey method.6–12 Hyperspectral images have also been
used to develop a hyperspectral estimation method from
color and/or multispectral images for spectral estimation
of paint.8 A different group of techniques for hyperspectral
estimation is based on sparse signal representation and sam-
pling, such as compressive sensing. Sparse representation
methods were developed to increase the spatial resolution
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of hyperspectral images with spectral unmixing and L1 min-
imization.13,14 Compressive sensing techniques were applied
to reconstruct hyperspectral images from undersampled
fluorescent microscopic images in biomedical imaging15

and from a few noisy multispectral images in remote sens-
ing.16 Active spectral illumination has been studied to
quantify complex spectral responses of tissue oxygenation
with sparse sampled multispectral images.17 But the use
of color to recover hyperspectral images is still an underex-
plored research area, especially to the hyperspectral imaging
researchers in the field of agriculture and food science and
engineering.

In this paper, polynomial multivariate regression analysis
was used to recover reflectance spectra from RGB color
images and to reconstruct full VNIR hyperspectral images that
would be applied to a hyperspectral image classification algo-
rithm specifically developed for detection of non-O157 STEC
colonies on agar plates. Thus, the overall objective of the study
was to investigate the potential of using color to recover reflec-
tance spectra in the form of hyperspectral images and to evalu-
ate the performance of the hyperspectral image classification
algorithm with the recovered hyperspectral images.

2 Materials and Methods

2.1 Pathogenic Bacteria
The pathogenic bacterial cultures were obtained from a cul-
ture collection at the Eastern Laboratory of U.S. Department
of Agriculture–Food Safety and Inspection Service (FSIS)
according to the FSIS protocol.18 A total of six non-O157
STEC strains were chosen from each of the big six
O-serogroups (O26, O45, O103, O111, O121, and O145).
The details on how to prepare the non-O157 STEC bacteria
are provided in our previous publications.3–5 Three replicated
experiments were carried out to grow the bacterial colonies
on Rainbow agar plates. Each experiment generated two sets
of six agar plates inoculated with two cell concentrations of
the pure cultures, where only one type of bacteria was grown
in an agar plate. Serial dilutions of each cell suspension were
prepared in ∼50 and 100 colony forming units (CFU) (50
and 100 μL aliquots of 103 CFUmL−1 dilutions) that were
inoculated onto Rainbow agar plates by a spread plating
technique. All inoculated plates were incubated at 37°C for
24 h. A total of 36 agar plates (2 dilutions × 3 replicates ×
6 serogroups) were prepared.

2.2 Hyperspectral Images
Hyperspectral image acquisition was done with a pushbroom
line-scan hyperspectral imaging system (Themis Vision
Systems, Richmond, Virginia) in the VNIR spectral range
from 400 to 1000 nm. The imaging system, shown in Fig. 1,
consisted of a 12-bit CCD camera with 1376 × 1040 pixels
(SensiCamQE, The Cooke Corporation, Romulus, Michigan),
an imaging spectrograph (ImSpector V10E with 30 μm slit,
Specim-Spectral Imaging Ltd., Oulu, Finland), a C-mount
objective lens (APO-Xenoplan 1.8∕35 mm, Schneider Optics),
a motion control (Newark, California), a custom sample-
holder, and a computer. The front objective lens was
moved to scan one spatial line for one scan such that the
dispersed full spectra along the line were recorded on the
CCD detector. Further details on the system are provided in
our previous publications.3–5

The average wavelength interval was 1.27 nm. The
dimensions of a raw hyperspectral data cube after 2 (spatial)
by 2 (spectral) hardware binning on camera were 688 ðWÞ ×
500 ðHÞ × 520 ðwavelengthsÞ from 380 to 1000 nm. Mea-
sured reflectance values were calibrated (i.e., normalized)
to relative reflectance R with a 40% reflectance Spectralon®
target (13 × 13 cm, SRT-75-050, Labsphere, North Sutton,
New Hampshire), as described in Refs. 7 and 8. The spectral
dimension of each image was reduced to 473 spectral bands
ranging from 400 to 1000 nm by removing extreme wave-
length bands. Thus, the resulting dimension of each hyperspec-
tral data cube became 688ðWÞ×500ðHÞ×473ðwavelengthsÞ.
Also, spectral noise was reduced by a Savitzky-Golay
smoothing filter (window size: 25; order of moment: 4) at
each pixel position. After that, the calibrated hyperspectral
images (relative reflectance) were stitched together into a
single image mosaic. The images from the same dilution
were added to each column of the mosaic from left (less
cells) to right (more cells). Figure 2 shows two color-
composite image mosaics (enhanced by 2% linear stretch
for display purpose only) obtained from 36 calibrated hyper-
spectral reflectance images divided into training and test
sets with 18 images for each set. The dimensions of each
mosaic were 2064 × 3000 × 473 pixels with floating-point
values. The file size of each mosaic was ∼11.7 GB. The
18 hyperspectral images in each mosaic were arranged in
six rows and three columns, where rows consisted of images
with pure cultures of O26, O45, O103, O111, O121, and
O145 from top to bottom, and columns referred to replicates
and different cell dilutions.

Fig. 1 Hyperspectral imaging system.
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2.3 RGB Color Images
The color images (called camera responses) were obtained
from the calibrated hyperspectral images by simulation.
Mathematically, the camera responses ci at each color chan-
nel and at each image pixel location ðx; yÞwere calculated by
the following:

EQ-TARGET;temp:intralink-;e001;63;305ciðx; yÞ ¼
X1000
λ¼400

rðx; y; λÞβðλiÞ; i ¼ 1; 2; 3; (1)

where rðx; y; λÞ and βiðλÞ are a reflectance spectrum at ðx; yÞ
and the spectral sensitivity of the camera’s i’th channel,
respectively. A total of 473 wavelengths, λ’s, were defined
at nonuniform intervals from 400 to 1000 nm, whose average
interval was 1.27 as previously mentioned. The spectral sen-
sitivities were resampled at the same wavelengths as the
hyperspectral data.

Three spectral sensitivity functions were compared in
order to determine the best method to extract color images
from hyperspectral images. The first method, assuming the
synthetic unit-impulse functions for a camera’s spectral sen-
sitivities, was to use three spectral band images obtained at
three discrete wavelengths, 455, 535, and 610 nm for blue,
green, and red color channels, respectively. The second
method, assuming the synthetic rectangular functions for
the sensitivities, was to use three spectral ranges of nonover-
lapping wavelengths at 435 to 485 (blue), 505 to 575 (green),

and 595 to 660 (red) nm. Average reflectance values com-
puted in each wavelength range were assigned to the corre-
sponding RGB values. The third method, which was more
practical, was to use the spectral sensitivities of a CCD
sensor (ICX445AQ, Sony Corp.) used in a commercial RGB
color camera (Prosilica GC1290C, Allied Vision Technolo-
gies GmbH, Stadtroda, Germany), whose spectral sensitivities

Fig. 2 Hyperspectral reflectance image mosaics (color-composites): (a) training set and (b) test set.
The hyperspectral images of each of six serogroups were arranged into one row from top to bottom.
The images in each column were the cultures of the same cell dilution, as denoted by the target colony
forming unit (CFU).

Fig. 3 Spectral sensitivities of a color CCD sensor (Sony ICX445AQ)
on Prosilica GC1290C.
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are shown in Fig. 3. The RGB values computed by Eq. (1)
were converted to unsigned 16 bits.

2.4 Region of Interest
Both hyperspectral and RGB images of agar plates were
masked by binary plate masks in Fig. 4 in order to suppress
the unwanted background outside of each agar plate. The
plate masks were created manually by a drawing tool in
the ENVI software (Exelis Visual Information Solutions,
Boulder, Colorado).

The ground-truth colony regions of interest (ROIs)
representing the identity (i.e., STEC serogroup) of each
colony were obtained by an automatic colony segmentation

algorithm utilizing the characteristics of colony morphology
and response to lights.19 As shown in Fig. 5, the colony seg-
mentation images were stitched into two mosaics for training
and testing in the same way as the hyperspectral image
mosaics. The choice of the ROIs was studied to determine
whether there is a sampling bias caused by different ROI
(i.e., sampling).

Seven different sample sets derived from the original
colony ROIs and agar background regions in the training
set were compared to find the best sampling size for hyper-
spectral data reconstruction from RGB color data. Figure 6
shows the examples of the defined ROI sets. Each sample
set consisted of (1) all pixels in each plate image (excluding
the outside of agar plate) defined by a binary plate mask
(MASK), (2) randomly selected 5% of total pixels in each
plate mask (MASK5%), (3) all pixels in each colony ROI
plus randomly selected agar pixels (COLONY), (4) four
neighboring pixels from the center position of each colony
ROI plus the center position pixel (a total of five colony
pixels) and randomly selected agar pixels (COLONY5p),
(5) one mean spectrum from each colony ROI plus randomly
selected agar pixels (COLONYa), and finally (6) all pixels
in morphologically dilated (i.e., spatially extended) colony
ROIs and randomly selected agar pixels (COLONYd). The
number of randomly selected agar pixels from (3) to (6) was
∼30% of the total number of pixels in each ROI set, which
was heuristically determined.

2.5 Reconstruction of Hyperspectral Data
Given the reflectance spectra and RGB values of n observa-
tions, which were obtained from the n pixels on the previ-
ously mentioned ROIs, the hyperspectral data reconstruction
problem was formulated as a system of linear equations as
follows:

Fig. 4 Plate binary mask mosaics of (a) training set and (b) test set.

Fig. 5 Region-of-interest (ROI) image mosaics of (a) training set and (b) test set.

Journal of Electronic Imaging 043008-4 Jul∕Aug 2015 • Vol. 24(4)

Yoon et al.: Hyperspectral imaging using RGB color for foodborne pathogen detection



EQ-TARGET;temp:intralink-;e002;63;429R ¼ C · T; (2)

whereR,C, and T are a hyperspectral reflectance data matrix
of n row vectors each with 473 reflectance values, a camera
response matrix of n row vectors each with an RGB color
3-tuple, and the transform matrix (unknown) to be estimated,
respectively. There are several solutions available in the
literature.6–12 In this paper, polynomial multivariate least-
squares regression (PMLR) was used to estimate the transform
matrix T and thus the hyperspectral data. The polynomial
regression model assumes that there is a nonlinear relation-
ship between the predictors (color image) and the dependent
variables (hyperspectral image). The degree of a polynomial
is an unknown control parameter that determines the behav-
ior of the independent variables (predictors) to fit to the
hyperspectral data. The optimal degree was determined
in a heuristic way, for which the regression performance
was compared. A total of five PMLR models from first-
to fifth-degree polynomials was compared to find the best
estimation method. The camera response matrix C in Eq. (2)
was expanded to include higher-order polynomial terms as
follows:

EQ-TARGET;temp:intralink-;e003;63;187R ¼ Ce · T; (3)

where Ce ¼ ½c1; : : : ; cn� is an expanded camera response
matrix of n row vectors ci, i ¼ 1; 2; : : : ; n. For example, a
row vector ci consists of ½c1; c2; c3; c1 × c1; c2 × c2; c3 × c3;
c1 × c2; c1 × c3; c2 × c3; : : : ; � higher-order terms. The
Moore–Penrose pseudoinverse method was used to solve
Eq. (3) and to obtain the estimated transform matrix T̂ as
follows:

EQ-TARGET;temp:intralink-;e004;326;429T̂ ¼ Cþ
e · R: (4)

Then, given the RGB color values, the hyperspectral data
were estimated by the transform matrix by plugging into
Eq. (3).

The goodness of fit (GOF) of hyperspectral reconstruction
was measured by the coefficient of determination (R2) and
the root mean square deviation (RMSD, also called root
mean square error), which were defined as follows:
EQ-TARGET;temp:intralink-;e005;326;328

R2 ¼ 1 −
PNλ

k¼1 ðrk − r̂kÞ2PNλ
k¼1 ðrk − μrÞ2

;

μr ¼
PNλ

k¼1 rk
Nλ

;

RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNλ

k¼1 ðrk − r̂kÞ2
Nλ

s
; (5)

where rk and r̂k are the measured and estimated reflectance
values at the k’th wavelength band, respectively. The number
of wavelength points was Nλ (N ¼ 473). The R2 value is
a statistical measure of how well the predicted data agree
with the measured data. An R2 of 1 refers to a perfect fit of
a regression line to the measured data. The RMSD represents
the sample standard deviation of the differences between pre-
dicted values and measured values.

2.6 Hyperspectral Image Classification Algorithm
A hyperspectral image classification algorithm for non-O157
STEC colony classification was based on chemometric pre-
processing of spectral data, including the transformation of

Fig. 6 ROI examples are (a) plate mask ROI (MASK), (b) 5% random samples (MASK5%), (c) colony
ROIs plus random pixels (COLONY), (d) 5-colony pixels plus random pixels (COLONY5p), (e) mean
spectra (denoted at the center of each colony in the image) of each colony ROI plus random pixels
(COLONYa), and (f) enlarged colony ROIs and random pixels (COLONYd).
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measured reflectance spectra to absorbance spectra, standard
normal variate and detrending for correction of light scatter-
ing, first derivative, and moving average smoothing.3–5 Then,
the preprocessed spectra were transformed by principal com-
ponent analysis. The classification for the six STEC classes
was performed by the kNN algorithm (with k ¼ 3) of scores
in the principal component subspace spanned by six princi-
pal components.3–5 Note that the reflectance spectra at each
pixel were transformed to absorbance log10ð1∕RÞ for classi-
fication, whereas the prediction of hyperspectral data from
color data was done with reflectance spectra.

When extracting spectral data from pixel locations
defined by the various ROIs, the data were unfolded into
an n × 473 spectral data matrix X whose values were asso-
ciated with n observations (number of samples in pixels) in
rows and 473 independent variables (wavelengths) in col-
umns. A response vector of class labels from 1 to 6 was also
created. The training set for classification consisted of 916
ROIs (i.e., colonies) with 63,136 pixels (i.e., observations
or samples), whereas the test set for validation of classifica-
tion models consisted of 1250 colonies with 77,473 pixels.
The classification model was trained with both original and
reconstructed hyperspectral data and validated with the train-
ing and test sets. All spectral data were treated in the same
way as the aforementioned data preprocessing techniques
and unfolded into a data matrix. The final decision-making
rule was applied at colony level by the winner-take-all strat-
egy (simple majority voting) of prediction results at pixel
level. Prediction results of each sample in the training or

test set were projected back onto the corresponding image
domain to create a hyperspectral image.

3 Results and Discussion

3.1 Spectral Sensitivity Functions
The RGB color images obtained by simulation of a camera
sensitivity function (Sony ICX445AQ CCD) are shown in
Fig. 7. The other RGB images are not shown because they
were visually similar to each other. The displayed color
images in Fig. 7 were enhanced by 2% linear stretch for
display purpose.

The GOF of the regression models in relation to spectral
sensitivity functions is summarized in Table 1.

The average R2 and RMSD values in Table 1 were
obtained from the validation of the regression models with
all samples in the test set. The statistical significance of
R2 and RMSD values varying among different spectral
sensitivity functions was tested by the analysis of variance
(ANOVA). The p values resulting from the ANOVA test
were 0.33 (p > 0.05) and 0.34 (p > 0.05) for R2 and
RMSD, respectively. Hence, the selection of a particular
spectral sensitivity function would not be statistically sig-
nificant. Nonetheless, when the three different spectral
sensitivity functions were compared, the spectral sensitivity
functions emulating them of a commercial color camera
with the broad range of wavelengths produced the best fit
spectra, especially over the spectral range between 400
and 700 nm. Therefore, the spectral sensitivity functions of

Fig. 7 RGB color images simulated by a camera sensitivity function (Sony ICX445AQ CCD): (a) training
set and (b) test set.
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a real camera covering the broad spectral ranges were used
for the development of the regression models later on.

In this study, there was no need to solve an image regis-
tration problem to find the corresponding points or regions
between the RGB and hyperspectral images, because RGB
color values used to compute the transform matrix were cre-
ated by the simulation of three different camera sensitivity
functions from the defined ROI sample locations on hyper-
spectral images. However, in real-life applications of hyper-
spectral estimation from color, it would be important to
calibrate a color camera with measured camera responses
(color values) and their corresponding spectra measured by
a hyperspectral image sensor, which will be a topic for our
future research.

3.2 Sample Sizes
The size of samples (i.e., the number of pixels) of each ROI
set in the training set is summarized in the first row of
Table 2. The sample sizes selected from the training set
with the six different ROI sets were evaluated and compared
on the basis of the regression performance with the test set.
The ANOVA test of the GOF values (R2 and RMSD), similar
to the comparison of the spectral sensitivity functions,
showed that the differences in sample size were statistically
significant (p < 0.001). Therefore, it was important to find
the best sample size for the regression models. The GOFs
of each different sample size are summarized in Table 2.
The average R2 and RMSD values in Table 2 were computed
with the samples (5% random selection, ROI set MASK5%)
in the test set and for all regression models.

The average R2 values tended to increase as sample size
increased. The 5% random selection of pixels in the training
set for training the regression models showed the best pre-
diction (or called regression) performance, closely followed
by all pixels in plate masks. The RMSD values <1 could
mean <1% difference in percent reflectance. Note that this
small difference in reflectance did not mean uniform perfor-
mance regardless of regression model, sample location,
material type (serogroup), and wavelength.

3.3 Hyperspectral Image Reconstruction
The prediction performance of the five regression models
was evaluated by the fitting accuracy of the reconstructed
hyperspectral data to the measured hyperspectral data in
terms of GOFs. Figure 8 shows the average R2 and RMSD
values of the five regression models, where each model was
trained with all samples (ROI set MASK, N ¼ 3;058;576) in
the training set and tested with all samples (ROI set MASK,
N ¼ 3;121;509) in the test set. Overall, linear, quadratic, and
cubic polynomial regression models showed better perfor-
mance than the higher-order polynomial regression models.

Figure 8(b) shows that the spectral data in the spectral
range below 700 nm would be better predicted by all five
regression models than the spectral range above 700 nm,
although the quintic (p ¼ 5) polynomial model was the
worst. The prediction performance of the regression models
measured by α, not shown here, was also similar to the per-
formance measured by R2 and RMSD. The cubic (p ¼ 3)
polynomial regression model showed the least prediction
errors in terms of the GOFs when measured with all samples
in the test set.

The prediction performance of the regression models
was also evaluated in relation to colony identities (STEC
serogroups in our case). Figure 9 shows the mean reflectance
spectra obtained from the colony ROIs on the original and
the regressed hyperspectral images, when the regression
models were trained with all pixels on the plate masks (ROI
set MASK, N ¼ 3;058;576) in the training set and tested
with all colony ROIs (1250 colonies with 77,473 pixels)
in the test set.

The analysis of the mean reflectance spectra showed over-
all better fit of all regression models in the wavelengths
below 700 nm. Large variations in mean reflectance were
observed at wavelengths longer than 700 nm. The cause of
the large variations in the longer wavelength region was not

Table 1 Goodness of fita of regression models in relation to spectral
sensitivity functions.

Spectral sensitivity function R2 RMSD

Unit impulse delta (synthetic) 0.42 (0.90) 1.075 (0.485)

Unit rectangle (synthetic) 0.47 (0.91) 1.001 (0.432)

Real camera’s sensitivities 0.47 (0.92) 1.011 (0.415)

Note: RMSD, root mean square deviation.
aAverage values over 400 to 1000 nm. The number in () is the average
over 400 to 700 nm.

Table 2 Goodness of fitsa of regression models in relation to sample sizes.

Sample size
on training set

All pixels in
plate masks
(MASK):

N ¼ 3;058;576

5% random in
plate masks
(MASK5%)
N ¼ 152;843

All pixels in
colony regions +
random agar

pixels (COLONY)
N ¼ 94;407

5 pixels per
colony + random

agar pixels
(COLONY5p)
N ¼ 6872

Mean spectrum
per colony + random

agar pixels
(COLONYa)
N ¼ 1330

Pixels in extended
colony regions +
random agar

pixels (COLONYd)
N ¼ 692;810

R2 on test set
(N ¼ 156;072)

0.75 (0.94) 0.79 (0.94) 0.31 (0.90) 0.19 (0.87) 0.12 (0.85) 0.57 (0.94)

RMSD on
test set
(N ¼ 156;072)

0.73 (0.36) 0.68 (0.35) 1.18 (0.47) 1.29 (0.52) 1.36 (0.57) 0.94 (0.37)

aAverage values over 400 to 1000 nm. The number in () is the average over 400 to 700 nm.
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studied in this paper. Thus, we only speculated that first, the
simulated RGB values did not contain the spectral informa-
tion in the wavelength and/or second, the variation in the
original data was too large to model with the regression mod-
els. Nonetheless, the first three-order polynomial regression
models were better than the higher-order polynomial models.
The linear regression model showed the best prediction

performance for O26 and O103, whereas the quadratic
(p ¼ 2) polynomial regression model was the best (or
close to the best) for O45, O111, and O121, and the
cubic (p ¼ 3) model was the best for O121 and O145.

Figure 10 shows the mean reflectance spectra obtained
from the colony ROIs on the original and the regressed
hyperspectral images, when the regression models were

Fig. 8 Prediction performance of regression models. p is a polynomial order. With the test set, (a) the
average R2 values were computed for all test samples over all wavelengths, and (b) the average root
mean square deviation values were computed for all test samples at each wavelength.

Fig. 9 Mean reflectance spectra obtained by the regression models for each Shiga toxin-producing
Escherichia coli (STEC) serogroup [(a) O26, (b) O45, (c) O103, (d) O111, (e) O121, and (f) O145)]:
trained with all pixels on plate masks (ROI set MASK) in the training image set and validated on colonies
in the test set.
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Fig. 10 Mean reflectance spectra obtained by the regression models for each STEC serogroup [(a) O26,
(b) O45, (c) O103, (d) O111, (e) O121, and (f) O145)]: trained with colony ROIs and some agar samples
(ROI set COLONY) in the training set and validated on colonies in the test set.

Fig. 11 (a) Color-composite images obtained from reconstructed hyperspectral images and (b) pseudo-
color images derived from the normalized sum of differences between the measured and predicted
hyperspectral images over all wavelengths.
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trained with samples corresponding to the colony ROIs and
background agar (ROI set COLONY) in the training set and
tested with all colony ROIs (1250 colonies with 77,473
pixels) in the test set. As shown in Fig. 10, when the regres-
sion models were trained with the ROI set COLONY
(colony ROIs plus random agar pixels), the overall predic-
tion performance was greatly improved over all wavelengths.
Especially, the large variation at the longer wavelengths seen
in Fig. 9 was reduced. This experiment confirmed that the
camera sensitivity functions were indeed not statistically sig-
nificant, but the difference in same size about how to sample
the data in the training set was statistically significant.

The linear regression model showed the best (or close to
the best) prediction performance in terms of spectral analysis
for all serogroups except O111. Although sampling only
with the ROI set COLONY showed better regression per-
formance than sampling with the entire population in the
training set, the performance of the developed classification
model may or may not be directly correlated with these find-
ings because the classification models including image seg-
mentation and chemometric preprocessing were optimized
with the original hyperspectral images.

Figure 11(a) shows RGB color-composite images
obtained from the reconstructed hyperspectral images, and
Fig. 11(b) shows pseudo-color images derived from the nor-
malized sum of differences between the measured and pre-
dicted hyperspectral images over all wavelengths, both using
the linear regression model trained with all pixels in the plate
masks. The normalized sums of reflectance differences at
each image pixel were mapped to a color according to a
scale between 0 (small error: blue at the bottom of the color
bar) and 1 (large error: red at the top of the color bar). The
regression errors were more prominent at the colonies. The
centers of the colonies tended to produce more regression
model errors. From Fig. 11(b), it was implied that the spectra
of the O145 colonies were the most difficult to predict using
the regression model.

3.4 STEC Classification Results
The performance of the pathogen classification algorithm
was measured in terms of overall classification accuracy. The

performance of the classification algorithm depended greatly
on the characteristics of the samples to train, which was
similar to the case of the regression models mentioned in
this paper. Due to this issue, three different ROI sets, includ-
ing MASK (all pixels on plate masks), COLONYa (mean
spectra plus random agar pixels), and COLONY5p (five pix-
els near the colony center), were compared for the perfor-
mance evaluation of the classifier. The linear regression
model was used for the reconstruction of hyperspectral
images and trained with the ROI set MASK (all samples) in
the training set. The linear regression model was applied to
predict (i.e., reconstruct) hyperspectral images from the color
images in both training and test sets. The classification algo-
rithm was retrained with the reconstructed hyperspectral
images in the training set. For validation, the classification
algorithm was applied to all pixels of the ROI set MASK in
both original and reconstructed hyperspectral images and
validated on colony ROIs for performance assessment.
Table 3 shows the overall classification accuracy of the clas-
sification algorithm trained with three different sets of sam-
ples in the training dataset.

The training accuracy varied from 66 to 99%, where the
best performance was achieved by the classification model
trained with all pixels in the colony ROIs (99%), whereas
the best test performance was achieved by the model trained
with mean colony spectra (92.3%). When compared with the
results from the original hyperspectral images, the classifica-
tion accuracy based on the reconstructed hyperspectral
images varied more greatly than the case of the original
images. One reason is because the classification algorithm
was not optimized with the reconstructed hyperspectral
images. It is known that there are very subtle spectral differ-
ences among different STEC classes. Therefore, any small
error in reconstruction may have caused unexpected large
errors and variations in classification results. Nonetheless,
the reason for this large variation in performance needs to be
studied in the future. Also, the classification algorithm devel-
oped with the original hyperspectral images may not be opti-
mal for the reconstructed hyperspectral images. Therefore, a
new hyperspectral image classification algorithm for STEC
detection may need to be developed in the context of differ-
ent regression models in the future.

4 Conclusions
This study showed a potential of the use of RGB color to
reconstruct hyperspectral data and its application to classifi-
cation of non-O157 STEC colonies on agar media using a
hyperspectral image classification algorithm. Contrary to
the most previous work using color charts or targets with
known spectra, the current work used the hyperspectral
images of the actual targets (microbial colonies on agar
media) to obtain the spectra of the real targets of interest for
reconstructing the spectra from color images by polynomial
multivariate least-squares regression. A limitation of the cur-
rent study was the use of simulated color images for recon-
structing hyperspectral images by the regression analysis.
Polynomial multivariate least-squares regression models
using up to the fifth-order polynomial were evaluated in
relation to the camera’s spectral sensitivity functions and
sample sizes. The regression performance measured by GOF
measures (coefficient of determination and RMSD) was
similar among the linear, quadratic, and cubic polynomial

Table 3 Overall classification accuracy of classification models
observed at the colony level.

Reconstructed
hyperspectral

images by linear
regression

Original
hyperspectral

images

Training
(%)

Test
(%)

Training
(%)

Test
(%)

All pixels in regions
of interest (ROIs)
(MASK)

99.0 73.2 99.6 97.8

5 pixels per ROI
(COLONY5p)

65.7 65.7 92.7 98.2

Mean spectrum per
ROI (COLONYa)

87.0 92.3 98.9 99.0
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regression models. The effect of different spectral sensitiv-
ities on the regression performance was not statistically sig-
nificant, but that of different sample sizes was statistically
significant. The spectra in the wavelengths shorter than
700 nm were better predicted by the regression models, but
the spectra at the wavelengths longer than 700 nm were not
well predicted. The analysis of mean reflectance spectra
revealed the potential of linear, quadratic, and cubic regres-
sion models. The classification algorithm trained with the
reconstructed hyperspectral images achieved up to 92% clas-
sification accuracy, whereas the same algorithm with the
original hyperspectral images achieved 99% classification
accuracy. The classification results indicated that the GOF
measures were not directly matched with the classification
accuracy, which needs to be further investigated later. In con-
clusion, although there were mixing results and still unan-
swered questions, there is still room for improvement of
hyperspectral image regression and classification accuracy
for non-O157 STEC detection using a color camera.
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