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ABSTRACT. Purpose: Deep supervised learning provides an effective approach for developing
robust models for various computer-aided diagnosis tasks. However, there is often
an underlying assumption that the frequencies of the samples between the different
classes of the training dataset are either similar or balanced. In real-world medical
data, the samples of positive classes often occur too infrequently to satisfy this
assumption. Thus, there is an unmet need for deep-learning systems that can auto-
matically identify and adapt to the real-world conditions of imbalanced data.

Approach: We propose a deep Bayesian ensemble learning framework to address
the representation learning problem of long-tailed and out-of-distribution (OOD)
samples when training from medical images. By estimating the relative uncertainties
of the input data, our framework can adapt to imbalanced data for learning general-
izable classifiers. We trained and tested our framework on four public medical
imaging datasets with various imbalance ratios and imaging modalities across three
different learning tasks: semantic medical image segmentation, OOD detection, and
in-domain generalization. We compared the performance of our framework with
those of state-of-the-art comparator methods.

Results: Our proposed framework outperformed the comparator models signifi-
cantly across all performance metrics (pairwise t -test: p < 0.01) in the semantic seg-
mentation of high-resolution CT and MR images as well as in the detection of OOD
samples (p < 0.01), thereby showing significant improvement in handling the asso-
ciated long-tailed data distribution. The results of the in-domain generalization also
indicated that our framework can enhance the prediction of retinal glaucoma, con-
tributing to clinical decision-making processes.

Conclusions: Training of the proposed deep Bayesian ensemble learning frame-
work with dynamic Monte-Carlo dropout and a combination of losses yielded the
best generalization to unseen samples from imbalanced medical imaging datasets
across different learning tasks.
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1 Introduction
Real-world medical imaging data, such as those used for semantic segmentation of multiple
organs and lesions on CT images, tend to have inherently long-tailed distributions with a few
standard classes and many rare (tail) classes. The low number of training samples in the tail
classes makes it challenging to learn optimal classification boundaries in the feature space.
Under such conditions, a deep learning model needs to classify between a few high-frequency
and many low-frequency categories while also being able to generalize based upon instances of
previously infrequently occurring varieties (Fig. 1). We formulate the task of detecting the infre-
quent samples from long-tailed categories as an out-of-distribution (OOD) detection problem.

Possible solutions for handling the long-tailed distribution include modification of the data
distribution1 and adjustment of reasonable costs to reweight class errors.2,3 However, the existing
data-level approaches are prone to overfitting, whereas existing cost-sensitive learning methods
require a careful choice of weights. As discussed by Fort et al.,4 these approaches have not per-
formed well in rare conditions. In the literature, OOD detection usually refers to solving domain
shift or distribution shift problems, and the difficulty of this task depends on how semantically
close the outliers are to the inlier classes. Recently, Winkens et al.5 described experiments
between detecting challenging near-OOD tasks and easy far-OOD tasks.

There has also been considerable attention on modeling uncertainty in a trustworthy manner
in machine-learning and deep learning deployments in healthcare. Predictive uncertainty
estimation6 plays an essential role in reducing uncertainties during both optimization and
decision-making. Bayesian approximation and ensemble learning models are two of the most
successful techniques for estimating uncertainties. This paper introduces a new direction toward
the representation learning of long-tailed and OOD data. Motivated by the recent progress in
uncertainty modeling, we propose an uncertainty-aware estimation framework by quantifying
uncertainties associated with the predicted class probabilities by use of a generative multi-
discriminative framework to address the more challenging problem of detecting near-OOD tasks
or infrequent samples from the long-tailed data distribution. Our method is based on the obser-
vation that rare classes have a higher uncertainty and wider confidence intervals in the prediction
space than do the more frequently occurring classes. Therefore, by incorporating the uncertainty
estimates, we can expand the decision boundaries to the less frequent classes to help the clas-
sifier’s generalization toward unseen conditions. Specifically, we propose to incorporate this
uncertainty in identifying reliable examples using an ensemble of networks and by assigning
the class labels based on a consensus of high-confidence predictions.

The proposed framework consists of a deep generator and multiple deep discriminator net-
works. In the application of semantic segmentation of medical images, the generative probabi-
listic model builds the model based on prior domain knowledge of the appearance and spatial
distribution of the different image patch types. In contrast, the discriminative model directly
learns the relationship between the local features of images and the true label distribution.

The key contributions of this paper can be summarized as follows. 1. We introduce a
Bayesian ensemble generative adversarial network (GAN), which is a new type of adversarial
framework for learning the representation of the long-tailed data distribution and for detecting
OOD samples. 2. We develop and train our framework by incorporating different uncertainty
conditions. 3. We apply a principled approach to integrate Bayesian uncertainty estimates for

Fig. 1 A model should be trained with long-tailed training data such that it can generalize to
unseen-conditions test data.
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learning the class imbalance. 4. We demonstrate that the training of the proposed network with a
dynamic Monte-Carlo (MC) dropout and a combination of losses yields a better generalization of
the learned classifier to unseen samples than without these methods. 5. We demonstrate and
evaluate the application of our proposed model on four public medical imaging datasets for three
tasks considering different image modalities.

2 Related Work
This section describes related work in the area of deep learning approaches for quantifying uncer-
tainties and for learning representations of imbalanced data and OOD samples.

2.1 Deep Learning Methods for Quantifying Uncertainties
In the medical literature, the Bayesian approach and an ensemble of deep learning networks are
the most widely used methods for quantifying uncertainties.7,8 Abdar et al.9 applied an MC drop-
out method called ensemble MC dropout for quantifying uncertainties in skin cancer detection.
Nair et al.10 developed a 3D convolutional neural network model to estimate multiple uncertain-
ties at the voxel level for the task of lesion detection and segmentation in brain images. PU-Net11

combined the conditional variational autoencoder12 and a U-Net13 to capture uncertainties by use
of a downsampled axis-aligned Gaussian prior that was updated through the Kullback–Leibler
divergence of the posterior.

In this paper, we propose to incorporate uncertainty in identifying reliable examples using an
ensemble of networks and by assigning the class labels based on a consensus of high-confidence
predictions.

2.2 Deep Learning Models for Detecting OOD Samples
Hendrycks and Gimpel14 used the maximum predicted class probability by a deep-learning
model as a confidence score that a sample is OOD. Later, an OOD detector for neural networks
(ODIN) model15 was developed to extend this framework by applying an adversarial perturbation
to the input image and by adding a temperature scaling before softmax to increase the difference
between the prediction probabilities of in-distribution and OOD samples. Generalized ODIN16

extended these previous studies by defining an additional output that indicated whether the input
sample belongs to the training distribution or OOD.

In this paper, we address the detection of near-OOD tasks or infrequent samples from the
long-tailed data distribution by formulating the problem with a new uncertainty-aware deep
ensemble framework.

2.3 Handling Imbalanced Data with GANs
We can divide the current approaches for handling class imbalance problems using GANs into
two types of methods: data level and algorithm level. At the data level, GANs are used widely for
internal bias correction by generating or synthesizing training data for the minority classes.17,18

At the algorithm level, conditional GANs are used with modification of the training loss19,20 or
ensemble learning.21 Most of the GAN-based ensemble techniques modify the network archi-
tecture by training generative multi-discriminative networks,22,23 multi-generative discriminative
networks,24 or a cascade of GANs.25,26 For a comprehensive literature survey of GAN-related
algorithms, we refer the reader to Ref. 27.

3 Methods
We propose to develop a deep Bayesian ensemble GAN that learns a balanced representation of
the input data. Our method is based on the observation that tail classes have a higher uncertainty
and wider confidence intervals in the prediction space than the other classes. Therefore, we can
utilize a quantification of the uncertainties to expand the decision boundaries toward less frequent
classes. In this section, we first describe our motivation for using Bayesian uncertainty estimation
and ensemble models. We will then introduce our new loss functions, the ensemble architecture,
and the details of the optimization.
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3.1 Bayesian Uncertainty Estimation
In addition to output predictions, Bayesian models can also estimate uncertainty. Given an input,
the uncertainty approximations correspond to the confidence level for each outcome predicted by
the model. Because the confidence level of predictions is directly associated with class repre-
sentation in the training set, samples from the tail classes of the training set have higher uncer-
tainty. In contrast, the classifier’s confidence levels are low. Therefore, we developed a dynamic
MC dropout to estimate the Bayesian uncertainty. A dropout-based deep network provides an
approximation to the Gaussian process28 that constructs the prior distribution. This distribution is
updated conditionally on the observations, i.e., all the functions consistent with the labels are
retained. In the testing phase, the output is obtained from each of the functions, and the expect-
ation is computed to generate the final prediction. The variance of these outputs gives an uncer-
tainty estimate. In the following sections, we will first provide an overview of the dropout method
and describe the uncertainty computation with our proposed dynamic MC dropout method.

3.2 Dropout
Srivastava et al.29 proposed the dropout method as a regularization term for deep neural networks.
During training, a subnetwork is sampled from the whole network by randomly dropping a set of
neurons, and each neuron is activated with a fixed probability p. The weights are modified at each
neuron by injecting Gaussian noise during training time.

3.3 Dynamic Dropout
Deep neural networks include d layers and parameters that can be modeled as a function fθ,
where θ ¼ fθ1; : : : ; θdg denote the parameters of each layer. By applying a Gaussian distribution
δ ∼ Nð1; σÞ, we can obtain N samples corresponding to the different network configurations

θ̂ that form an ensemble network O ¼ fθ̂i∶i ∈ ½1; N�g, where θ̂i ¼ θ · δ. Given a randomly
sampled mini-batch of N input images fx1; x2; : : : ; xNg, the model configurations are applied
to predict a set of outputs fŷg. The aggregate output is computed by the MC estimate by the first

moment EqðyjxÞ½y�∶y ≈ 1
N Σ

N
i¼1ŷðx; θ̂iÞ. Here q indicates an output distribution that approximates

the intractable posterior distribution of the deep Gaussian process. The uncertainty is estimated
by the second moment VqðyjxÞ½y� through the MC: u ≈ τ−1IC þ 1

N Σ
N
i¼1ŷ

Tŷ − EqðyjxÞ½y�TEqðyjxÞ½y�,
where IC is an identity matrix with C indicating the number of classes, and τ indicates the
normalized class frequencies.

3.4 Ensemble GAN
We use a deep ensemble GAN with a modified dynamic dropout as the ensemble network to
obtain the Bayesian uncertainty estimates. We train an ensemble of the generator and multi-
discriminators to boost the predictive performance and use adversarial training to improve the
algorithm’s robustness. Our framework comprises a single generator G and a set of multi-
discriminator variants. The multi-discriminator variants are used to improve the approximation
of max VðG;DkÞ by providing an enhanced critique to the generator. Here the generator learns
from the feedback, aggregated over the multiple discriminators by

P
K
k¼1 VðG;DkÞ, which forces

the generator G to learn and minimize the prediction error of semantic segmentation through the
ensemble of discriminators. This ultimately encourages G to produce conditional samples with a
minimum error since G needs to fool all the different possible discriminators. Heterogeneity in
the ensemble is achieved by the feedback of eachD (average, maximum, or sum) with a specified
probability at the end of every batch. Therefore, G will only consider the losses of the remaining
discriminators in the ensemble when updating its parameters at each iteration.

3.5 Objective Function
We implemented the proposed Bayesian ensemble GAN with a cohort of four networks. Here a
single generator attempts to minimize the segmentation error based on an ensemble of k other
losses. The generator takes a random vector z and medical images x as input. In contrast, three
discriminators attempt to minimize the error of predicting the segmentation masks produced by
the generator through the multiple losses. Here for a fixed G, function F will receive either sum,
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average, or maximum of k different discriminator losses to the generator through the objective of
minG maxDk

FðVðD1; GÞ; VðD2; GÞ; : : : ; VðDk;GÞÞÞ, which can be formulated as

EQ-TARGET;temp:intralink-;e001;117;711min
G

max
Dk

VðDk;GÞ ¼ Ex;y∼pðx;yÞ½logDkðx; yÞ� þ λkEz∼pðzÞ;y∼pðyÞ½logð1 −DkðGðz; yÞ; yÞÞ�: (1)

4 Experiments

4.1 Dataset
We evaluated the performance of our Bayesian ensemble GAN based on clinical patient data
from the following four publicly available challenge datasets.

4.1.1 Liver tumor segmentation

The liver tumor segmentation (LiTS) benchmark30 of the Medical Image Computing Computer
Assisted Intervention (MICCAI) 2017 conference contains 130 training and 70 test CT cases,
where the patients have different types of liver cancers.31 The challenge was to perform a simul-
taneous semantic segmentation of a large liver with a 1:400 imbalanced class ratio of pixels
representing the liver and the surrounding tissue together with an abnormal target region, with
a 1:1400 imbalanced class ratio between pixels representing the abnormal and normal tissue.

4.1.2 Combined healthy abdominal organ segmentation

The combined healthy abdominal organ segmentation (CHAOS)32 of the IEEE International
Symposium on Biomedical Imaging 2019 conference consists of abdominal CT and MR images,
where each image slice has been manually segmented by expert radiologists.33 Specifically, it
includes 20 MR and 20 CT abdominal images with five segmentation labels for the liver, spleen,
left kidney, right kidney, and background. We trained our model on a total of 16,266 2D images
with 256 × 256 pixels and tested on 1793 similarly sized 2D images. Here the imbalance ratios
are 1:40, 1:200, 1:400, and 1:400, defined as the number of pixels in the background class to the
number of pixels that belong to the regions of the liver, spleen, and left and right kidneys.

4.1.3 Glaucoma detection

Glaucoma detection34 is a real-world clinical dataset that includes microscopic retina images
from 956 patients with the neuropathic disease glaucoma and from 1401 patients with normal
(healthy) retinas. Each input sample is a single red-green-blue image and we resized all images to
128 × 128. Image augmentation was applied by a combination of crop, horizontal flip, and color
jitter. The dataset is imbalanced with a ratio of 1:30.

4.1.4 REFUGE

REFUGE 202035 was a challenge at the MICCAI 2020 conference, focused on retinal glaucoma
diagnosis. The dataset comprises 800 microscopic retina images with dimensions of 1411 ×
1411 pixels, collected from various clinics. We used this dataset in tandem with the models
trained on the glaucoma detection dataset to evaluate their ability to detect OOD samples using
predicted uncertainties. This approach was adopted because the dataset originated from diverse
sources and countries.

4.2 Implementation and Parameter Configuration
Our framework encompassed a single generator and three discriminators. The generator had a
stacked hourglass network architecture13 that provides a mechanism for repeated bottom-up
and top-down inference, allowing for a re-evaluation of the initial estimates and features across
the whole image. The architecture of the discriminator was akin to that of a Markovian
discriminator36 that is designed to restrict attention to the structure of local image patches.
The discriminator losses included the mean absolute error (lmae), categorical cross-entropy
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(lcce), and Dice loss (lDice). We used the discriminators that had been pretrained with ImageNet
for the initialization of the weights, whereas we trained the generator from scratch using
a Gaussian distribution with a standard deviation of 0.001. The learning rate started from
0.0002 with a mini-batch size of 1. We used the Adam optimizer and set β1 ¼ 0.9 and
β2 ¼ 0.999 with a weight decay of 0.0001. Binary cross-entropy was used as the adversarial
loss. For all datasets, barring REFUGE 2020 used for OOD detection, we applied a threefold
cross-validation to estimate the performance of the trained model, where 80% of the total training
dataset was designated for training, and the remaining 20% was employed for validation.

4.3 Comparator Methods
We compared our Bayesian ensemble GAN against the following methods within our experi-
mental setting.

4.3.1 Conditional GAN

A standard conditional GAN37 was utilized to perform semantic segmentation, using the hyper-
parameters and settings as outlined by Rezaei et al.19

4.3.2 Ensemble GAN

Ensemble GAN is an alternative technique of Bayesian neural network for model uncertainty
and a gold standard of epistemic uncertainty. It aims to reduce the variance and to improve the
generalization performance of a single deep neural network using the diversity of the ensemble.
Each network is trained on the same dataset but with different initial random weights, and
the outputs of the networks are combined by averaging. We trained the conditional GAN with
random initialization of the weights 10 times and reported the average performance.

4.3.3 U-Net

We used the U-Net13 with the same configuration as described by Christ et al.30

4.3.4 MC Dropout

We used dropout28 as a regularizer to quantify the uncertainty of the prediction.

4.3.5 Masksemble

Masksemble38 is an extension of MC dropout with a different approach. Instead of randomly
dropping network components during training like in MC dropout, Masksemble uses a fixed
number of predefined binary masks that are randomly generated before the training.

4.3.6 BatchEnsemble

BatchEnsemble39 leverages low-rank matrices to efficiently construct an ensemble by expanding
the layer weights. The method decomposes the weight matrix of a network layer into a matrix that
is shared among all members of the ensemble and an individual rank-1 matrix per member. These
matrices are then combined using the Hadamard product for expanding the base network into
an ensemble.

4.4 Task-Specific Evaluations
We conducted experiments across three distinct learning tasks, each with specific objectives.
1. Evaluating the predictive performance of models on in-domain datasets: We conducted experi-
ments on both semantic segmentation and image classification, aiming to obtain high predictive
scores alongside low uncertainty scores. 2. Examining the ability of the models to generalize
from in-domain to OOD datasets; this was achieved through the OOD detection task, where
we targeted high uncertainty scores. 3. Estimating the level of uncertainty demonstrated by the
models on OOD datasets, with a specific focus on achieving high uncertainty scores.

Rezaei et al.: Bayesian uncertainty estimation for detection of long-tailed. . .
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We evaluated and compared the performance of the proposed framework and that of the
comparator models using several performance metrics. For the semantic segmentation task, these
included average symmetric surface distance (ASSD), F1 score, precision, and recall. For the
image classification task, we used F1 score, expected calibration error (ECE), and negative
log-likelihood.

4.4.1 Semantic segmentation

We evaluated the performance of a model in the task of semantic segmentation using two distinct
datasets, namely LiTS and CHAOS. The LiTS dataset was selected to evaluate the model’s
capability to simultaneously segment the entire liver and very small lesions in the liver.
Furthermore, in the LiTS dataset, lesions with a diameter of 10 mm or more are classified
as large, whereas lesions with a diameter of <10 mm are classified as small. Given the imbal-
anced pixel distribution, the segmentation of the small lesions poses a challenge. On the other
hand, our objective of using CHAOS segmentation was to test the model’s ability for multi-organ
semantic segmentation.

4.4.2 In-domain generalization

We evaluated the in-domain generalization performance of a model by measuring its ability to
make accurate predictions on a test set of the dataset from which the training sets were derived.
Specifically, we analyzed the F1 score based on the in-distribution test set.

4.4.3 Out-of-distribution detection

In an OOD detection task, the goal was to identify whether a given input falls within the same
distribution as the training data or not. In other words, the aim was to detect whether the input came
from the same distribution that the model was trained on, or if it came from an unseen distribution.
For this task, we used REFUGE 2020 as an unseen dataset, where the samples were obtained using
a different patient population and medical equipment than those of the training dataset.

5 Results
In this section, we present a comparative analysis of the performance of our Bayesian ensemble
GAN with the comparator models, i.e., the Conditional GAN, U-Net, and the deep ensemble
GANs, across the three different learning tasks: semantic segmentation (Sec. 5.1), in-domain
generalization (Sec. 5.2), and OOD detection (Sec. 5.3).

5.1 Semantic Segmentation
We analyzed the accuracy of the aforementioned models on the imbalanced liver tumor segmen-
tation dataset, characterized by an imbalance of labels between large organs and very small
lesions. As shown by our results on the LiTS dataset in Table 1 and Fig. 2, our proposed
Bayesian ensemble GAN provides a promising approach for semantic segmentation. Based
on the results obtained in Table 1, our approach achieved significantly higher performance than
those of the other methods, such as deep ensemble GANs. For each performance metric, a pair-
wise t-test on the difference in the scores between the Bayesian ensemble GAN and each com-
parator model showed that the difference in performance was statistically significant (p < 0.01).

Table 2 and Fig. 3 show the comparative performance of our Bayesian ensemble GAN and
the three comparator models on the semantic segmentation of the CHAOS dataset. They show
that our method outperforms the three comparator models in predicting semantic segmentation of
CHAOS dataset. The quantitative results in Table 2 show that our Bayesian ensemble GAN out-
performed the other models in all scores, demonstrating the effectiveness of the proposed method
in the semantic segmentation task involving imaging datasets with imbalanced labels. For each
performance metric, a pairwise t-test on the difference in the scores between the Bayesian ensem-
ble GAN and each comparator model showed that the difference in performance was statistically
significant (p < 0.001).

Rezaei et al.: Bayesian uncertainty estimation for detection of long-tailed. . .
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5.2 In-Domain Generalization
Glaucoma is one of the leading reasons of irreversible blindness. Early detection of glaucomatous
structural damage has an important impact on treatment. However, the detection of glaucomatous
changes is a challenging task in the field of ophthalmology. We evaluated the performance of our
Bayesian ensemble GAN and the competitor models on the task of diagnosing glaucoma and

Table 1 Comparative performance of the four models in the semantic segmentation of the LiTS
dataset.

ASSD F1 Precision Recall

Mean� std p-value Mean� std p-value Mean� std p-value Mean� std p-value

Bayesian
ensemble GAN

6.1� 0.2 — 96.2� 0.2 — 94.5� 0.1 — 91.1� 0.2 —

Ensemble GAN 6.2� 0.1 0.008 95.3� 0.4 0.0021 94.2� 0.3 0.0024 89.1� 0.6 0.0037

Conditional GAN 10.8� 1.2 <0.0001 88.2� 2.4 <0.0001 90.1� 1.1 <0.0001 79.0� 1.0 <0.0001

U-Net 14.7� 0.6 <0.0001 82.1� 1.1 <0.0001 86.4� 0.9 <0.0001 71.1� 0.5 <0.0001

Note: The best scores are highlighted in bold.

Fig. 2 Semantic segmentation results for the LiTS dataset: (a) input image, (b) ground truth image,
and (c) prediction by the Bayesian ensemble GAN.

Table 2 Comparative performance of the four models in the semantic segmentation of the
CHAOS dataset.

ASSD F1 Precision Recall

Mean� std p-value Mean� std p-value Mean� std p-value Mean� std p-value

Bayesian
ensemble GAN

2.4� 0.1 — 97.3� 0.1 — 97.6� 0.3 — 93.0� 0.3 —

Ensemble GAN 2.9� 0.2 0.00070 96.1� 1.1 0.00017 97.1� 0.7 0.00021 90.5� 0.5 0.00011

Conditional GAN 12.1� 0.6 <0.0001 84.9� 2.5 <0.0001 85.5� 1.0 <0.0001 69.3� 0.9 <0.0001

U-Net 11.02� 2.3 <0.0001 83.2� 3.7 <0.0001 86.0� 1.4 <0.0001 70.5� 1.2 <0.0001

Note: The best scores are highlighted in bold.
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quantifying the uncertainty associated with the prediction. Table 3 shows that our Bayesian
ensemble GAN method achieved the best classification performance in terms of F1 score and
the second-best result in terms of the expected calibration of error. A pairwise t-test on the differ-
ence in the F1 scores between the Bayesian ensemble GAN and each competitor model showed
that the difference in performance was statistically significant (p < 0.001). In general, the results
demonstrate that ensemble approaches, such as Masksemble, ensemble GAN, BatchEnsemble,
and our Bayesian ensemble GAN model, contribute to a high performance of in-domain gen-
eralization for accurate diabetic retinopathy diagnosis.

5.3 OOD Detection
Domain shift often occurs in medical datasets where detecting OOD samples is an important task
in clinical diagnosis. Model uncertainty can be used for OOD detection. For this experiment,
we regarded the retinal glaucoma detection dataset34 (Fig. 4) as the within-distribution samples
and performed OOD detection with the REFUGE dataset35 (Fig. 5). Table 4 displays the
performance metric of area under the receiver operating characteristic (AUROC) scores for
the models showing that the Bayesian ensemble GAN outperformed all the comparator models.
A pairwise t-test on the difference in the best AUROC scores between the Bayesian ensemble
GAN and each comparator model showed that the difference in the performance was statistically
significant (p < 0.01).

Fig. 3 Semantic segmentation results: (a) input image, (b) ground truth image, and (c) prediction
by the Bayesian ensemble GAN on the CHAOS dataset for liver, spleen, and kidney, shown in dark
blue, light blue, and orange, respectively.

Table 3 Classification performance for glaucoma images.

# member (M)

F1 (%) (↑) ECE (↓)

2 5 10 p-value 2 5 10

Single 84.4 0.00030 0.084

Ensemble GAN 85.6� 0.2 85.8� 0.2 86.3� 0.3 <0.0001 0.041� 0.002 0.078� 0.002 0.064� 0.003

MC dropout 67.0� 0.2 79.3� 0.6 81.7� 0.5 <0.0001 0.052� 0.001 0.055� 0.010 0.050� 0.018

Masksemble 82.7� 0.5 82.0� 0.4 81.7� 1.1 <0.0001 0.064� 0.004 0.049� 0.007 0.061� 0.012

BatchEnsemble 84.5� 0.1 86.5� 0.1 87.1� 0.2 <0.0001 0.035� 0.003 0.071� 0.002 0.066� 0.002

Bayesian
ensemble GAN

86.3� 0.1 86.9� 0.1 87.8� 0.1 — 0.062� 0.001 0.068� 0.002 0.040� 0.001

Note: The best scores are highlighted in bold.
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6 Discussion
The development and training of machine learning algorithms are often based on the assumption
that the frequencies of samples in different classes of the training dataset are similar. However,
real-world medical imaging data tend to have long-tailed distributions where many classes are
represented by rarely occurring samples. The low number of training samples in such tail classes
makes it challenging to learn optimal classification boundaries in the feature space. Existing

Fig. 4 Example images from the glaucoma detection dataset that we used for training.
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approaches to address this class-imbalance problem suffer from overfitting or the need for
a careful choice of the classifier weights. The deep Bayesian ensemble learning model that
we proposed in this paper is based on the observation that rare classes have higher uncertainties
and wider confidence intervals in the prediction space than the more frequently occurring classes.
By incorporating these uncertainty estimates into the prediction model, we can expand the deci-
sion boundaries to the less frequent classes and thus help the classifier to generalize toward the
rare and unseen conditions. Using this principle, our method is able to learn the representation of
the long-tailed data distribution more efficiently and thus detect the OOD samples more accu-
rately than existing approaches.

We evaluated our method in terms of three imaging tasks. The semantic segmentation task
evaluated the ability of our method to perform representation learning of the long-tailed distri-
bution. The in-domain generalization task evaluated the ability of the method to make accurate
predictions on the same population from which the training dataset was derived. The OOD detec-
tion task evaluated the ability of the method to make accurate predictions on a different pop-
ulation than that from which the training dataset was derived. Our results based on evaluations of
four different publicly available challenge datasets show that our proposed deep Bayesian ensem-
ble learning model significantly outperformed the state-of-the-art comparator models across all
of the performance metrics in these three tasks.

The high performance of our method can be attributed in part to the use of pretrained dis-
criminators, where the dual output of the generator was passed as both global and local feature
vectors to the three individual discriminators. The local features provide detailed information on

Fig. 5 Example images from the REFUGE dataset that we used for OOD detection.

Table 4 OOD detection for glaucoma images.

# Member

AUROC (%) (↑)

2 5 10 p-value

Single 68.42 0.0071

Ensemble GAN 76.89� 0.1 77.98� 01 78.06� 0.1 <0.0001

MC dropout 68.03� 0.3 69.79� 0.2 72.22� 0.2 <0.0001

Masksemble 71.22� 0.5 72.04� 1.1 70.95� 1.4 <0.0001

BatchEnsemble 74.38� 0.1 72.61� 0.3 75.04� 1.0 <0.0001

Bayesian ensemble GAN 77.02� 0.1 77.92� 0.2 79.43� 0.1 —

Note: The best score is highlighted in bold.
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the edges of the input images, whereas the global features provide high-level information.
Moreover, having two adversarial losses for both global and local discriminators, combined with
the binary cross-entropy loss of the generative model, resulted in better recognition and smoother
segmentation boundaries than those derived from only one adversarial loss.

Although our deep Bayesian ensemble learning model offers several advantages and
demonstrates good performance over existing methods, it has some limitations. The model was
implemented by use of GANs, the training of which is computationally expensive and time-
consuming, especially for large datasets. Also storing multiple models can be memory-intensive,
especially if the models are large. These limitations provide topics for future work.

7 Conclusions
We introduced a method for the representation learning of the long-tailed distributions and
OOD samples in medical imaging data. Based on the observation that rare classes have high
uncertainty in the prediction space, we incorporated the uncertainty in identifying reliable
examples using Bayesian approximation and ensemble classifiers to assign the class labels based
on a consensus of high-confidence predictions. Our experimental results show that the training
of the proposed deep Bayesian ensemble learning framework with dynamic MC dropout and
a combination of losses yielded a better generalization of the learned classifier to unseen samples
in the tasks of semantic segmentation, in-domain generalization, and OOD detection than what
was obtained with state-of-the-art comparator models.
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