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Abstract. The field of radiogenomics largely focuses on developing imaging surrogates for
genomic signatures and integrating imaging, genomic, and molecular data to develop combined
personalized biomarkers for characterizing various diseases. Our study aims to highlight the
current state-of-the-art and the role of radiogenomics in cancer research, focusing mainly on
solid tumors, and is broadly divided into four sections. The first section reviews representative
studies that establish the biologic basis of radiomic signatures using gene expression and
molecular profiling information. The second section includes studies that aim to non-invasively
predict molecular subtypes of tumors using radiomic signatures. The third section reviews stud-
ies that evaluate the potential to augment the performance of established prognostic signatures by
combining complementary information encoded by radiomic and genomic signatures derived
from cancer tumors. The fourth section includes studies that focus on ascertaining the biological
significance of radiomic phenotypes. We conclude by discussing current challenges and oppor-
tunities in the field, such as the importance of coordination between imaging device manufac-
turers, regulatory organizations, health care providers, pharmaceutical companies, academic
institutions, and physicians for the effective standardization of the results from radiogenomic
signatures and for the potential use of these findings to improve precision care for cancer
patients. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported
License. Distribution or reproduction of this work in whole or in part requires full attribution of the origi-
nal publication, including its DOI. [DOI: 10.1117/1.JMI.8.3.031907]
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1 Introduction

A primary goal toward precision cancer care is the molecular characterization of disease using
genomic and proteomic technologies.1,2 Although progress is being made, large-scale genome-
based cancer characterization is not yet routinely performed for all cancers due to cost, turnaround
time, and technical complexity.3–5 Additionally, molecular profiling is often limited in accuracy
due to the heterogeneous nature of cancer. For example, in solid tumors, a histopathologic sample
from a biopsied tumor may not fully reflect the anatomic, functional, and physiologic properties
of the entire tumor.6,7 Moreover, the acquisition of tissue samples requires invasive procedures
and repeated tissue sampling may not be feasible during treatment to monitor patient response.8

Medical imaging enables a non-invasive analysis of the functional and physiological proper-
ties of tumors, and the different available modalities are increasingly recognized for containing
high-dimensional mineable data, which in turn can be used to improve medical decision
making.9,10 Imaging can also help in characterizing peritumoral regions, which are not always
surgically removed for molecular characterization11,12 and may convey information related to the
tumor microenvironment.13,14 For example, imaging characteristics of tumors are increasingly
being used to predict gene expression.15 Additionally, recent studies show that the molecular
mechanisms of cancer are associated with specific imaging phenotypes.16 Thus medical imaging,
earlier used primarily as a diagnostic tool, is now emerging as a key player in the field of per-
sonalized medicine for cancer by also providing prognostic and predictive information.17

Radiomics is an emerging field aiming to extract high-throughput quantitative data from
routinely collected medical images.10,18,19 Typical first steps in a radiomic study involve the
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identification and segmentation of a region of interest (ROI). The segmentation may be carried
out manually by human experts, or via semi- or fullyautomated segmentation algorithms.20,21

High-dimensional features subsequently extracted from these tumor regions are generally of two
kinds: semantic and agnostic. Semantic features are mainly morphological features to describe
the size, location, vascularity, spiculation, and necrosis of the lesion. Agnostic features are math-
ematically derived quantitative features, which can be further divided into three types: first-order
statistical outputs (describing values within a single voxel), second-order statistical outputs
(describing relationships between voxels), and higher-order statistical outputs (extracting pat-
terns within an image through filter grids).22 Additionally, deep learning techniques can also
be used to automatically extract high-level descriptive features from the tumor regions.23,24

These extracted radiomic signatures can then be used for a variety of purposes such as tumor
classification and prediction of survival and response to therapy. Studies that find associations
between imaging, genomic, and molecular data fall under the emerging field of radiogenomics.25

These studies aim to discover imaging surrogates for genomic signatures and to develop bio-
markers leveraging the various data types used to characterize disease.26 These multidimensional
biomarkers can then be used to predict survival and response to therapy and can play a crucial
role in therapy personalization.

In this review paper, we aim to provide an overview of the radiogenomics studies conducted
in cohorts of patients with cancer, focusing primarily on brain, breast, and lung carcinomas, to
present a comprehensive perspective of progress within the field. An overview of the techniques
used for the analysis of cancer sites where the radiogenomics field has largely been developed
may assist in the development of related techniques in cancers where research is still in its
nascent phases (Fig. 1).

Fig. 1 The basic steps in a radiogenomic study. Step 1: the tumor region is segmented and
rendered as a 3D volume. Step 2: high-throughput radiomic features are extracted from the
segmented tumor volume. Step 3: various feature types (clinical, radiomic, and genomic) are
combined to develop a radiogenomic signature. Step 4(a): analysis of the correlations between
radiomic phenotypes and genotypes to discover biologically significant radiomic signatures.
Step 4(b): use of radiogenomic model to predict survival.
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The studies in the field of radiogenomics can be broadly divided into four overarching
themes: identifying correlations between radiomic signatures and gene expression patterns, lev-
eraging radiomic signatures to predict molecular subtypes of disease, combining radiogenomic
models for patient outcome prediction, and identifying correlations between radiomic signatures
and biological pathways. In the following sections, we review studies representing the state-of-
the-art from these broad themes and conclude with what we believe are the current challenges as
well as the opportunities for cancer radiogenomics research.

2 Correlations between Radiomic Signatures and Gene Expression
Status

Studies exploring the correlation between radiomic signatures and gene expression status largely
aim to understand the biologic basis of radiomic signatures using gene expression and molecular
profile information. These studies may also aim to identify non-invasive radiomic biomarkers as
surrogates for established genomic, prognostic, and predictive biomarkers. Significant correla-
tions between radiomic features and expression patterns of target genes are established in the
studies included below.

Beyond conventional radiomic signatures, relationships between deep learning techniques
and genomic and molecular profile information have also been explored in studies of brain can-
cers. Deep learning techniques were used to extract 20 morphological features from contrast-
enhanced and peritumoral edema regions and to establish a relationship between gene expression
and imaging features. A neural network pretrained with an autoencoder and dropout had lower
errors than linear regression in predicting tumor morphology features by an average of 16.98%
mean absolute percent error and 0.0114 mean absolute error.27 Over the past few years, periostin
(POSTN), a gene involved in cell survival and angiogenesis, has emerged as a marker for tumor
progression and as a novel therapeutic agent in various types of human cancers. Causality
between POSTN expression levels and radiomic signatures derived from magnetic resonance
(MR) images and orthotopic xenografts (OX) was determined using a unique combination of
skull stripping, brain-tissue focused normalization, and patient-specific normalization. Radiomic
GLCM-based features predicted POSTN expression status in patients with an area under the
curve (AUC) of 0.77 and in OX with an AUC of 0.92.28 In another study, 29 GBM patients
were identified in the TCGA database that had corresponding MR imaging available through
the TCIA and had overlapping mutations in either TP53, PTEN, or EGFR. Significant radiomic
features for the three genotypes (TP53, PTEN, and EGFR mutated tumors) were identified.
Consensus cluster analysis demonstrated similar correlation matrices for TP53 mutant versus
wildtype radiomic texture features as for the corresponding gene expression results.29 Zinn et al.
developed a clinically applicable analytical imaging method termed as “radiome sequencing”
using patient data from TCGA/MD Anderson datasets. They derived 4800 MRI-derived texture
features per tumor. A patient-specific genomic probability map was derived. Correlation between
the imaging signature and EGFR amplification (AUC ¼ 0.86, p < 0.0001), O6-methylguanine-
DNA-methyltransferase methylation/expression (AUC ¼ 0.92) and glioblastoma molecular sub-
groups (AUC ¼ 0.88) was derived.30 In a study involving 22 GMB patients, semiautomatic tumor
segmentation and feature extraction methods from MR images were used. Feature vectors were
used to predict GBM phenotypes based on the nearest neighbor (NN) classifier (AUC ¼ 0.76).31

An MR imaging, messenger RNA (mRNA), and copy number variation (CNV) radiogenomic
association map has led to the identification of MR traits associated with high-grade glioma bio-
markers. Integration of MR imaging, mRNA, and CNV data resulted in the identification of indi-
vidual genes and loci with correlated mRNA and CNV changes that are significantly associated
with imaging features. Thirty-four unique genes were identified as being significantly correlated
with at least one of the six imaging features.32

EGFR mutation status is becoming widely recognized as a useful biomarker for planning
targeted therapy regimens in lung cancer patients. As such, many radiogenomic studies have
focused on examining associations between radiogenomic signatures and EGFR mutation status.
EGFR+, EGFR− and KRAS+ tumors were found to drive distinct radiographic phenotypes in
a study with lung adenocarcinoma patients. The authors developed a radiogenomic signature
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consisting of features quantifying tumor intensity, texture, and shape features as well as wavelet
and Laplacian of Gaussian features. This signature successfully discriminated between EGFRþ
and EGFR− cases (AUC ¼ 0.69) and between KRASþ and KRAS− cases (AUC ¼ 0.63).15

Texture features extracted from pretreatment CT and FDG PET-CT images were used to develop
multivariate logistic regression models to predict EGFR mutations. Linear discrimination analy-
sis was used to rank each texture feature individually in terms of its discriminatory importance.
Logistic regression was used as a machine learning model to discriminate between EGFRmutant
and wild type tumors with AUC, sensitivity, specificity, and accuracy of 0.87, 0.76, 0.66, and
0.71, respectively.33 Grossman et al. analyzed two independent cohorts of 262 North American
and 89 European patients with lung cancer and found associations between radiomic imaging
features, molecular pathways, and clinical factors. Intratumor heterogeneity features predicted
activity of RNA polymerase transcription (AUC ¼ 0.62, p ¼ 0.03) and intensity dispersion was
predictive of the autodegradation pathway of a ubiquitin ligase (AUC ¼ 0.69).34 In another
study involving 404 NSCLC patients (243 training and 161 validation), radiomics features were
extracted from preoperational non-contrast CT images of the tumor region. Correlations between
EGFR mutation status and candidate predictors were assessed using the MWU test. The radio-
mic signature performed better at predicting EGFR mutation status (AUC ¼ 0.798) as compared
to models built with clinical factors and conventional CT morphological features.35 Radiomic
signatures were used to predict PD-L1 expression levels in a study performed with 399 NSCLC
patients. Tumor regions were segmented from CT, PET, and PET/CT images and 24 radiomic
features describing the tumor region were used to build the radiomic signature. For PD-L1 expres-
sion levels over 1%, the AUCs for the prediction accuracy were 0.86, 0.62, and 0.85 from the CT,
PET, and PET/CT signatures, respectively.36 Gevaert et al. performed a radiogenomics analysis
using 180 radiomic features derived from CT and PET/CT scans of 26 NSCLC patients. They
found 243 statistically significant pairwise correlations between image features and metagenes.
The prediction of metagenes in terms of the image features achieved an AUC between 0.59 and
0.84.37

The studies included in this section showed the correlations between radiomic signatures
and gene expression status by demonstrating the use of radiomic signature in predicting tumor
morphology, distinguishing GBM phenotypes, discriminating EGFRþ, EGFR− and KRASþ
tumors, and differentiating specific PDL1 subtypes.

A summary of these studies can be found in Table 1.

Table 1 Studies analyzing correlations between radiomic signatures and gene expression status.

Disease
Image
modality

Number of
patients Outcome Results Study

GBM MRI 528 A supervised deep neural
network pretrained with
an autoencoder predicted
tumor morphology
features better than a
linear regression model

Mean absolute error in
prediction = 0.0114

Ref. 27

GBM MRI 93 patients and
40 orthotopic
xenografts (OX)

Assessment of causality
between radiomic texture
features from patients and
xenografts and POSTN
levels

AUC for causality: 0.77 in
patients and 0.92 in OX

Ref. 28

GBM MRI 29 Correlation cluster
analysis demonstrated
similar correlation
matrices for TP53 mutant
versus wildtype radiomic
texture features as for the
corresponding gene
expression results

The gene expression
profiles and heatmaps for
mutational versus WT
defining gene expression
profiles (P < 0.05)
demonstrate a similar
pattern as for genotype
defining radiomic feature
sets

Ref. 29
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Table 1 (Continued).

Disease
Image
modality

Number of
patients Outcome Results Study

GBM MRI Automated pipeline
with 4800 MRI
features derived
from tumor regions
acquired from
databases common
to TCIA and TCGA

Correlation established
between imaging
signatures and the
following: EGFR
amplification, O6-
methylguanine-DNA-
methyltransferase
methylation/expression,
GBM molecular
subgroups

AUC for correlation of
imaging signature with:

Ref. 30

1. EGFR amplification:
0.86

2. O6-methylguanine-
DNA-methyltransferase-
methlyation: 0.92

3. GBM molecular
subgroups: 0.88

GBM MRI 22 GBM phenotypes
distinguished based on
the texture feature GLCM

AUC for phenotype
discrimination = 0.76

Ref. 31

GBM MRI 142 Construction of an
EGFRvIII imaging
signature characterizing
tumor heterogeneity

Distinctive ability of imaging
signature (AUC ¼ 0.88)

Ref. 32

Lung
cancer

CT 763 (353
training and
352 validation)

Radiomic signature
capturing tumor
heterogeneity is
successful in
discriminating EGFRþ,
EGFR− tumors, and
EGFRþ, KRASþ tumors

EGFRþ, EGFR−
(AUC ¼ 0.69); EGFRþ,
KRASþ (AUC ¼ 0.63)

Ref. 15

Lung
cancer

CT 149 Adenocarcinoma with
wild-type EGFR was sig-
nificantly associated with
imaging signatures cor-
responding to larger and
irregularly shaped tumors

Correlation between EGFR
wild type gene expression
and radiomic signature
(p value ¼ 0.01)

Ref. 33

Lung
cancer

CT 351 Radiomic signature of
intratumor heterogeneity
predicted the activity of
RNA polymerase tran-
scription and signature of
intensity dispersion was
predictive of the autode-
gradation pathway of a
ubiquitin ligase

Prediction of: Ref. 34
1. Activity of RNA

polymerase
(AUC ¼ 0.62)

2. Autodegradation
pathway of a ubiquitin
ligase (AUC ¼ 0.69)

Lung
cancer

CT 404 (243
training and
161 validation
cohorts)

Integrated model with
radiomics signature and
clinical features used to
differentiate EGFR
mutation status

AUC for validation cohort =
0.818

Ref. 35

Lung
cancer

CT, PET,
and
PET/CT

399 Radiomic models built
with features from CT,
PET, and PET/CT images
used to differentiate
specific PD-L1 subtypes

For PD-L1 expression
levels over 1%, AUCs for
differentiating PDL1
subtypes using signatures
from the following image
types are:

Ref. 36

1. CT: 0.86
2. PET: 0.62
3. PET/CT: 0.85

Lung
cancer

CT 26 Statistically significant
pairwise correlations
established between
image features and
metagenes

Correlation coefficient
varies from 0.59 to 0.83

Ref. 37

Singh, Chitalia, and Kontos: Radiogenomics in brain, breast, and lung cancer: opportunities and challenges

Journal of Medical Imaging 031907-5 May∕Jun 2021 • Vol. 8(3)



3 Radiomic Signatures Used for Classification of Molecular Subtypes

Studies describing how radiomic signatures can be used to classify tumors based on their
molecular subtypes are included below. These studies aim to non-invasively predict molecular
subtypes to guide personalized decision making, especially for therapy selection and monitoring.

Lu et al. used MR phenotypes of patients diagnosed with glioblastoma and lower grade glio-
mas to classify five molecular subtypes based on isocitrate dehydrogenase (IDH) and 1p∕19q
genotypes with an AUC of 0.82.38 High-throughput features from T1-weighted, T2-weighted
MR, and FLAIR images of 103 LrGG (lower grade glioma) patients (73: training and 30: val-
idation) were extracted and SVM models were used to find optimal features for IDH and TP53
mutation detection. ANOVA and chi-square test were applied on clinical characteristics to con-
firm whether significant differences exist between three molecular subtypes. The highest AUC
for detection of IDH and TP53 mutation was 0.87 for the validation cohort. The stratified accu-
racies of the three subtypes were 0.73, 0.72, and 0.70, respectively.39 Rathore et al. applied a
radiomics approach to multiparametric MRI of de novo glioblastoma patients (n ¼ 208 discov-
ery and n ¼ 53 replication cohorts). They discovered three distinct and reproducible imaging
subtypes of glioblastoma with differential clinical outcome and underlying molecular character-
istics, including IDH1 and EGFRvIII.40

Leithner et al. analyzed CE-MR images of 143 (91 training and 52 validation) breast cancer
patients (luminal A, luminal B, and triple-negative subtypes). Radiomic features were extracted
from the manually segmented tumor region and linear discriminant analysis followed by k-NN
classification was used for separation of receptor status and molecular subtypes. The perfor-
mance on the validation set was luminal Aversus luminal B (AUC ¼ 0.79) and luminal B versus
triple negative (AUC ¼ 0.77).41 In a study of the preoperative MR images from 275 breast
cancer patients, 56 radiomic features were extracted from tumor region. Surrogate markers
(ER, PR, and HER2) were used to categorize tumors by molecular subtype: ER∕PRþ,
HER2− (luminal A); ER∕PRþ, HER2þ (HER2); ER∕PR∕HER2− (basal). The imaging fea-
tures were shown to be associated with luminal A (p ¼ 0.0007) and luminal B (p ¼ 0.0063)
molecular subtypes.42 Saha et al. analyzed preoperative images of a set of 922 invasive breast
cancer patients (461 each in the training and validation cohorts). Machine-learning models built
using radiomic features were used to predict the following molecular subtypes: luminal A
(AUC ¼ 0.697) and triple negative breast cancer (AUC ¼ 0.654).43

The studies included in this section demonstrated the use of radiomic signatures in the clas-
sification of molecular subtypes. Radiomic signatures were used to classify IDH and 1p∕19q
status of gliomas, detect TP53 mutation, distinguish between luminal A, luminal B, and triple
negative molecular subtypes. These studies suggest the ability for non-invasive representations
of molecular phenotypes using radiomic data.

A summary of these studies can be found in Table 2.

4 Combined Radiogenomic Models for Outcome Prediction

Studies describing how the combination of radiomic and genomic features can improve the per-
formance of predictive models are included below. These studies aim to evaluate the potentially
augmented prognostic performance of combining complementary information encoded in radio-
mic and genomic data. A novel set of image texture features were computed from the joint intensity
matrices (JIMs) of GBM regions in CE T1-weighted images and FLAIR sequences. JIM features
in necrotic 176 and edema subregions were shown to be associated with survival (AUC 0.68 to
0.70). Combining JIMs, GLCM, and gene expression features improved the AUC value (0.78).44

Ashraf et al. analyzed dynamic contrast enhanced (DCE) MR images of 56 women (mean
age, 55.6 years and age range, 37 to 74 years) diagnosed with estrogen receptor-positive breast
cancer. In this study, a multiparametric imaging phenotype vector was extracted for each tumor
using quantitative morphologic, kinetic, and spatial heterogeneity features. Multivariate linear
regression was performed to test associations between DCE MR imaging features and tumor
recurrence likelihood. There was a moderate correlation (P < 0.001) between DCE MR imaging
features and the recurrence score. Four dominant imaging phenotypes were detected, with two
including only low- and medium-risk tumors.45 A similar study was conducted in which tumor
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size and enhancement texture, identified as good representatives of tumor heterogeneity, were
combined with other radiomic features including size, shape, margin morphology, enhancement
texture, and kinetic assessment to create a radiomic signature. This signature was then used to
distinguish between good and poor prognosis, yielding AUC values of 0.88, 0.76, 0.68, and 0.55
for MammaPrint, Oncotype DX, PAM50 risks of relapse based on subtype and PAM50 risk of
relapse based on subtype and proliferation, respectively.46 Tamez-Pena et al. calculated radiomic
features quantifying tumor shape and texture to build models for predicting recurrence scores
estimated using OncotypeDX and PAM50 gene expression microarrays. The model achieved
AUCs of 0.83 and 0.78 for OncotypeDX and PAM50, respectively. The study indicates that
molecular-based recurrence risk and breast cancer subtypes have observable radiographic
phenotypes.47 Metabolic radiomic patterns of locally advanced breast cancer have also been
shown to be associated with Ki67 expression and achievement of pCR to NAC and risk of
recurrence.48

Nishino et al. performed a study involving EGFR mutant pulmonary adenocarcinoma
patients given first line of treatment of Erlotinib or Gefitinib. They found 8-week CT tumor
volume decrease to be an important biomarker for predicting overall survival when fitted as
a continuous variable in a Cox model (P ¼ 0.01).49 A screen of 24 CT image features was per-
formed on 172 NSCLC patients, followed by random forest variable selection incorporating the
CT features plus six clinical-pathologic covariates to identify a biomarker associated with shorter
(progression-free survival) PFS after therapy with ALK inhibitor criaotinib. Tumors with a dis-
organized vessel pattern had a shorter PFS with crizotinib therapy than tumors without this trait
(11.4 versus 20.2 months, p ¼ 0.041).50

Table 2 Studies analyzing correlations between radiomic signatures and molecular subtypes.

Disease
Image
modality

Number
of

patients Outcome Results Study

Glioma MRI 214 Three-level machine learning
model based on multimodal MR
radiomics used to classify IDH and
1p∕19q status of gliomas

AUC for detection of: Ref. 38
IDH: 0.922
1p∕19q: 0.975

Glioma MRI 103 Support vector machine-based
recursive feature elimination
(SVM-RFE) adopted to find
optimal feature for IDH and TP53
mutation detection

AUC for detection of: Ref. 39
IDH: 0.792
TP53:0.869

GBM MRI 261 Discovered three distinct and
reproducible imaging subtypes of
GBM with differential clinical
outcome, including IDH1, O6-
methylguanine DNA
methyltransferase, and EGFRvIII

Analysis found subtype-specific
radiogenomic signatures of
EGFRvIII-mutated tumors,
provided an in vivo portrait of
phenotypic heterogeneity in GBM
and pointed to the need for
precision diagnostics

Ref. 40

Breast
cancer

CE-MRI 143 Radiomic signature used to
distinguish between luminal A,
luminal B and triple negative
molecular subtypes

AUC for: Ref. 41
Luminal A versus B (0.794)
Luminal B versus triple negative
(0.771)

Breast
cancer

MRI 275 Multivariate analysis was used to
determine associations between
radiomic signature and luminal A,
luminal B molecular subtypes

Correlation between imaging and
luminal A (p ¼ 0.0007), luminal B
(p ¼ 0.0063)

Ref. 42

Breast
cancer

MRI 922 ML-based models used to predict:
tumor surrogate molecular
subtype, oestrogen receptor,
progesterone receptor, and human
EGF status

AUC for prediction of: Ref. 43
Luminal A (0.697)
Triple-negative breast cancer
(0.654)
ER status (0.649)
PR status (0.622)
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The studies included in this section demonstrated the use of combined radiogenomic models
for outcome prediction. Radiogenomic phenotypes were used to classify tumors at low versus
high risk of recurrence, predict Oncotype DX and PAM50 recurrence scores, discriminate
ALKþ tumors with shorter progression-free survival. These studies suggest the augmented prog-
nostic and predictive performance of leveraging the complementary information provided by
radiomic and genomic data.

A summary of these studies can be found in Table 3.

5 Radiomic Signatures Correlated with Biological Pathways

Finding associations between radiomic signatures and biological pathways can help ascertain the
biological significance of radiomic phenotypes and improve our understanding of what each
radiomic phenotype represents. Studies describing how radiomic signatures can be correlated
with biological pathways are included below. Yeh et al. established correlations between

Table 3 Studies related to the survival prediction performance of radiogenomic models.

Disease
Image
modality

Number
of

patients Outcome Results Study

GBM MRI 73 Texture features computed
from the JIMs of GBM
subregions are combined
with GLCM and gene
expression features are used
to build a radiogenomics
signature that classifies
patients into short or long
survival groups

Classification accuracy
AUC ¼ 0.78

Ref. 44

Breast
cancer

DCE-MRI 56 Multiparametric imaging
phenotype vector extracted
from tumor regions was used
to classify tumors at low
versus medium versus high
risk of recurrence

Classification accuracy
AUC ¼ 0.82

Ref. 45

Breast
cancer

MRI 84 MR imaging phenotype used
to evaluate risk of recurrence
relative to multigene assay
classifications

Prediction accuracy
AUC: MammaPrint-0.88

Ref. 46

Oncotype DX: 0.76
PAM50: 0.68

Breast
cancer

Digital
mammograms

71 Radiogenomics signature
used to predict Oncotype DX
and PAM50 recurrence
scores

Prediction accuracy
AUC:

Ref. 47

Oncotype DX: 0.83
PAM50: 0.78

Breast
cancer

FDG-PET/CT 73 Metabolic radiomic signature
is associated with Ki67
expression achievement of
pathologic complete
response NAC and risk of
recurrence

Metabolic radiomics patterns
of LABC are associated with
Ki67 expression (statistically
significant p value < 0.01)

Ref. 48

NSCLC CT 44 Association between 8-week
tumor volume decrease and
survival

Association with overall
survival (Cox model
p value-0.01)

Ref. 49

NSCLC CT 172 Radiogenomic biomarker
used to discriminate ALKþ
from non-ALK tumors and
identify patients with a
shorter PFS

Discriminatory power
AUC ¼ 0.894

Ref. 50
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radiomic morphology features and various biologic pathways including replication, prolifera-
tion, immune signaling, extracellular signaling, metabolic, catabolic, JAK/STAT, and VEGF
pathways.51 Certain clinical and imaging features derived from ALK/ROS1/RET fusion-positive
lung adenocarcinoma patients were found to be good discriminators of fusion-positive and
fusion- negative lung adenocarcinomas. A total of 539 pathologically confirmed lung adenocar-
cinomas were included in the study. The fusion-positive tumor prediction model was a combi-
nation of younger age, advanced tumor stage, solid tumor on CT, higher values for SUVmax and
tumor mass, lower values for kurtosis, and inverse variance on 3-voxel distance than those of
fusion-negative tumors (sensitivity and specificity, 0.73 and 0.70, respectively).52 Radiogenomic
correlations were established between semantic image features and metagenes in NSCLC
patients, which was also representative of canonical molecular pathways. A cohort of 113
patients with preoperative CT data and tumor tissue was used for the study. The authors recorded
87 semantic image features. Next, total RNAwas extracted from the tissue and analyzed. RNA
sequencing analysis resulted in 10 metagenes that capture a variety of molecular pathways,
including the epidermal growth factor (EGF) pathway. A radiogenomic map was created with
32 statistically significant correlations between semantic image features and metagenes.53

The studies included in this section analyzed the correlations between radiomic features and
biological pathways. Radiomic signatures were shown to be significantly correlated with breast
cancer gene sets, used to discriminate fusion-positive tumors, predict autodegradation pathway
of a ubiquitin ligase. These studies suggest that understanding the biologic and molecular under-
pinnings of radiomic features can allow for a non-invasive understanding of tumor behavior.

A summary of these studies can be found in Table 4.

6 Opportunities and Challenges for Radiogenomics

Medical imaging can provide a non-invasive approach for tumor characterization and is routinely
acquired throughout patient care. Additionally, it can capture characteristics of both the whole-
tumor and the surrounding peritumoral area as opposed to analyses performed on biopsied tissue
alone, which can often be limited by tumor sampling. Radiomic features derived from tumor
images, when combined with cellular and molecular pathway information derived from gene
expression assays, can offer a well-rounded characterization of the tumor region. Such combined
analyses can advance personalized medicine across a variety of cancer types.

Imaging features extracted from tumor regions of interest are influenced by a variety of fac-
tors. The changes in scanner acquisition protocol parameters, such as resolution, slice thickness,
reconstruction kernel, field-of-view, or other factors including patient movement during
imaging, changes in treatment, and varying image acquisition protocols across institutions can
all affect the resulting extracted features. This poses a challenge to feature robustness and

Table 4 Studies analyzing correlations between radiomic features and biological pathways.

Disease
Image
modality

Number
of

patients Outcome Results Study

Breast
cancer

DCE-
MR

47 Automated, quantitative radiomics
platform used on breast MR
imaging for inferring underlying
activity of clinically relevant gene
pathways derived from RNA
sequencing of invasive breast
cancers

Tumors with higher expression
levels of JAK/STAT and VEGF
pathways had more intratumor
heterogeneity. Metabolic and
catabolic pathways also had
associations with image-based
features

Ref. 51

Lung
cancer

CT and
PET

539 Radiomic signature used to
discriminate fusion-positive tumors

Discriminatory ability AUC ¼ 0.73 Ref. 52

NSCLC CT 113 Radiogenomics map links
semantic image features to
metagenes

32 significant pairwise
associations between quantitative
image features and metagenes

Ref. 53
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reproducibility. Recent studies have explored feature reproducibility and robustness across
heterogeneous data. A unique computed tomography data cohort of same-day repeated scans
allowed for image reconstruction of each scan at six imaging settings, varying slice thicknesses
(1.25, 2.5, and 5 mm) and reconstruction algorithms (sharp and smooth). Using this, two experi-
ments were performed: using repeat scans reconstructed at identical imaging settings (six set-
tings in total) and using repeat scans reconstructed at the same slice thickness with different
algorithms (three settings in total). Interchanging smooth and sharp reconstruction algorithms
were found to reduce feature reproducibility.54 In another reproducibility study, CT scans were
obtained at different dose levels, section thicknesses, kernels, and reconstruction algorithm
settings.55 Only intensity, shape, and texture radiomic features were found to be reproducible
across the settings. A radiomics model for the prediction of EGFR mutation status was devel-
oped by selecting the optimal standard of care CT image from the following four combinations:
two slice thicknesses (thin: 1 mm and thick: 5 mm) and two convolution kernels.56 Significant
differences in the survival prediction model performance were observed in the features obtained
from thick and thin CT slices. Hassan et al. investigated the impact of pitch, dose, and recon-
struction kernel on CT radiomic features and introduced correction factors (NPS peak fraction
and ROI maximum intensity) to reduce feature variability introduced by reconstruction kernels.
Percentage improvements in robustness of 19 features were in the range of 30% to 78% after
corrections.57 In another study performed to investigate the effect of variability in x-ray tube
current on quantitative CT radiomic features, the credence cartridge radiomics phantom was
scanned 12 times, varying the tube current while keeping the other parameters constant. The
study concluded that variable x-ray tube current is unlikely to have a large effect on radiomic
features extracted from CT images of texture objects such as tumors.58 Ger et al. combined PET
scans of a Hoffman brain phantom acquired from GE Discovery 710, Siemens mCT, and Philips
Vereos scanners in their study. A standard-protocol scan was acquired and then each parameter
that could be changed was altered individually. To determine the impact of each parameter on the
reliability of each radiomic feature, the ICC (intraclass correlation coefficient) was computed.
When the pixel size was resampled prior to feature extraction, all features had good reliability
(ICC > 0.75) for the field of view and matrix size. They concluded that caution must be used
when combining patients scanned on equipment from different vendors.59 Another study aimed
to assess the agreement among radiomic features when computed by several groups using differ-
ent software packages under very tightly controlled conditions.60 Nine common quantitative
imaging features were selected for the comparison. The coefficient of variation (CV) was calcu-
lated across software packages for each feature on each object. Five of the nine features showed
excellent agreement with CV <1%. The study highlights the value of feature definition stand-
ardization. Lo et al. investigated the effects of dose level and reconstruction method on density
and texture-based features computed from lung CT nodules. A measure Q was introduced, to
assess the stability of features across different conditions. Histogram mean was found to be the
most robust feature in the study. The authors concluded that variation in density and texture
features should be considered if a variety of dose and reconstruction conditions are being used.61

The studies mentioned above show the need to account for heterogeneity in image acquisition
parameters to build robust radiogenomic signatures. Publicly available datasets, such as those
common to TCIA and TCGA, can be used as validation sets in examining the effect of normali-
zation of differences in radiomic features arising from variation in image acquisition parameters
on the radiogenomic signatures built from them.

Coordination between imaging device manufacturers, regulatory organizations, health care
providers, academic institutions, biopharmaceutical companies, and practicing physicians is
important for effective validation and standardization of the results of radiogenomic studies.62

Following this vision, the National Cancer Institute initiated the quantitative imaging network
(QIN) aimed to evaluate imaging methods measuring response to cancer therapy. QIN aims to
create teams of oncologists, radiologists, medical physicists, and computer and informatics sci-
entists partnered with industry representatives to develop retrospective and prospective databases
with clinical outcome data. The intent is to evaluate and optimize current quantitative imaging
methods and to develop newer methods to measure the response to drug and radiation therapy.63

The overall goal is to create an array of imaging platforms for different targeted organ systems
and extend them to academic and industry-based researchers for evaluation of their techniques.
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Following this goal, quantitative imaging biomarker alliance was established at the annual
Radiological Society of North America session in 2007.64 This initiative seeks to combine stake-
holders such as national regulatory agencies to collectively determine validation methods for
imaging biomarkers. A similar step was taken by The Imaging Biomarker Standardization
Initiative, which validated consensus-based reference values for 169 radiomics features, thus
enabling calibration and verification of various radiomics software.65 Once a quantitative im-
aging biomarker has been accepted by the community, it may then be utilized to generate more
convincing study results. Although these initiatives have been developed for radiomics analysis,
applying them to standardize imaging signatures employed in radiogenomics analyses can help
determine their applicability to radiogenomics studies in the future.

In closing, we summarize the major takeaways from our review of the literature in the field of
radiogenomics. The field of radiogenomics holds a lot of promise. Radiogenomic studies can
help toward understanding the biologic basis of radiomic phenotypes by leveraging gene expres-
sion and molecular profile information. They may also show correlations between radiomic sig-
natures, biological pathways, and gene expression status and help establish radiomic biomarkers
as surrogates for genomic prognostic biomarkers. As shown in previous studies, radiomics and
genomics features improve the performance of survival prediction models in combination with
clinical information. The need to account for heterogeneity in image acquisition parameters to
build robust radiomic signatures is increasingly being recognized. The development of a robust
radiomic signature will further contribute to the robustness of the radiogenomic analysis per-
formed using them. Coordination between clinicians, researchers, and manufacturers will play
a major role in setting up a standard study pipeline. As such, consistent, meaningful, and accurate
interpretations of patient data derived from genomic, proteomic, and radiomic analyses can
improve patient care toward the goal of precision medicine.
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