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Abstract. Influences of phase defect structures on extreme ultraviolet (EUV) microscope images were exam-
ined. Phase defects on the bottom of a multilayer (ML) do not always propagate vertically upward to the ML’s top
surface. For this study, two types of masks were prepared. One was an EUV blank with programmed phase
defects made of lines in order to analyze the inclination angle of the phase defects. The other was an EUV mask
that consists of programmed dot type phase defects 80 nm wide and 2.4 nm high with absorber patterns of half-
pitch 88-nm lines-and-spaces. The positions of the phase defects relative to the absorber lines were designed to
be shifted accordingly. Transmission electron microscope observations revealed that the line type phase defects
starting from the bottom surface of the ML propagated toward the ML’s top surface, while inclined toward the
center of the EUV blank. At the distances of 0 and 66 mm from the center of the EUV blank, the inclination angles
varied from 0 to 4 deg. The impacts of the inclination angles on EUV microscope images were significant even
though the positions of the phase defect relative to the absorber line, as measured by a scanning probe micro-

scope, were the same. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or repro-
duction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JMM.13.2.023012]
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1 Introduction

Extreme ultraviolet (EUV) lithography is considered to be
the most promising next-generation lithography after the
point where 193-nm immersion lithography would cease
to deliver smaller features. However, the path toward estab-
lishing the EUV lithography faces many technical difficul-
ties. Issues with insufficient light-source power, particle-
free mask handling, defect-free mask, availability of flat
mask blanks,' and resist material developmentf"7 are
some of those difficulties that need to be resolved. From
the viewpoint of EUV mask fabrication, mask pattern defect
inspection®!% and repair'""* are some of the even more
demanding tasks to be addressed. The reason is that for
the EUV lithography generation, the device pattern feature
size happens to be exceedingly small and calls for higher
repairing accuracy than what has been achieved for optical
lithography.'*~'¢ Regarding the types of defects, the nature of
the pattern defects in the EUV mask is mostly the same as in
the case of optical masks except for those defects that are
classified as reflective multilayer (ML) defects, such as
bump or pit phase defects that propagate through the ML
during their deposition, and are hard to repair.!”
Therefore, to minimize the effect of the phase defect on
the printed images on wafer, two methods are suggested.
One method is to cover the phase defects beneath the
absorber pattern by shifting the location of the device pattern
during the mask patterning.'®-*° The other is to eliminate the
influence of the phase error by simply removing the absorber

*Address all correspondence to: Tsuyoshi Amano, E-mail: tsuyoshi.amano@
eidec.co.jp
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away from the close proximity of the phase defects after fab-
ricating the device pattern.’’ To make these methods suc-
ceed, it would be necessary to be able to pinpoint the
locations of the phase defects and the affected areas.”>*

As for the growth model of the phase defect due to the
bumps on the quartz substrate surface, several transmission
electron microscope (TEM) images of the phase defects indi-
cated that the growth of a phase defect starting as a bump on
the quartz substrate surface does not always propagate in a
vertical direction.”>*® This means that ML surface geometry
measurement of phase defects using scanning probe micro-
scope (SPM) or nonactinic system may not be the right tool
for phase defect mitigation strategy of covering, or compen-
sating for, the phase defects by manipulating the absorber
pattern. Therefore, to understand the influence of the propa-
gation angle of the phase defect on the compensation strat-
egy, a programmed phase defect EUV mask was prepared,
and absorber lines with the phase defects were observed
using SPM and EUV microscope.

2 Experiment

2.1 Preparation of a Programmed Line Type Phase
Defect EUV Blank

A programmed line type phase defect EUV blank (with no
absorber) consists of a Ru-capped Mo/Si ML deposited on a
quartz substrate with seeds on quartz for the creation of line
type phase defects. The ML consisted of a 2.5-nm-thick Ru
film on a 40-bilayer Mo (2.2 nm thick)/Si (4.8 nm thick)
film. To serve as seeds for the phase defects, lines of
100 nm in width, arrayed in 7 X 7 with a pitch of 22 mm,
were fabricated on the quartz substrate. As a first step, a
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Fig.1 (a) Arrangement of the test pattern. (b) lllustrations of the hp 88-nm L/S pattern with dot type phase

defect. (c) Definition of the phase defect position.

photoresist layer was coated on the chrome layer on a quartz
substrate. Next, a set of line patterns were drawn on the
photoresist layer by an electron beam writing system
(EBM-8000, NuFlare Technology Inc., Yokohama, Japan).
Then after developing the photoresist layer, the chrome
layer was etched. As a last step, the quartz substrate was
etched and the chrome layer was removed. After running
through a cleaning process, the patterned substrate was
then coated with a Ru-capped ML. The nonflatness of the
blank before and after the ML coating was below 20 and
800 nm, respectively, and the ML surface was higher in
the center of the EUV blank than in its corners.

2.2 Preparation of a Programmed Dot Type Phase
Defect EUV Mask

To investigate the influence of the phase defect on EUV
microscope images, a programmed phase defect EUV
mask was prepared. Figure 1(a) shows the mask design.
Dots on quartz substrate and the absorber patterns of half-
pitch (hp) 88-nm L/S were arrayed in block A (at the center
of the mask) and block B (66 mm away from the block A).
The fabrication processes of the dot type phase defects are
same as the line type phase defects. The positions of the
phase defects relative to the absorber lines were designed
to be shifted in a prescribed fashion as shown in Fig. 1(b).
The position of the phase defect was defined as 0 nm
when the center of the phase defect coincided with the center
of the absorber line. The right side of the absorber line was
defined as plus direction as shown in Fig. 1(c). The dimen-
sions and the positions of the phase defects at the mask
surface were measured using an SPM (L-Trace II, Hitachi
High-Tech Science Corp., Tokyo, Japan).

2.3 Imaging Conditions and Data Analysis

Figure 2 illustrates the imaging optics of the EUV micro-
scope developed by Tohoku University?’ that was utilized
in this study. The EUV light was sourced from a beam
line BL3 of the NewSUBARU synchrotron facility at the
University of Hyogo. The outer and inner numerical aper-
tures of the illumination optics were 0.25 and 0.14, respec-
tively. The coherence factor of the illumination light was
about 0.01 because the synchrotron source size is very
low. The incident angle of the EUV light to the EUV
mask was 11 deg, and the angle between the plane of inci-
dence and line pattern direction was approximately 20 deg.
The exposure time to take an image was set at 30 s. To reduce
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the influence of the speckle noise on the EUV microscope
image, nine images of the same pattern were taken and
superimposed.

Figures 3(a) and 3(b) show the schematic models of an
EUV mask and an EUV microscope image of the mask,
respectively. When a phase defect is not adequately covered
by the absorber line, image intensity of the L/S pattern varies
depending on the phase defect position. Figure 3(c) shows
the intensity profile of the EUV microscope image along
a line A-A’ drawn across the L/S pattern containing the
defect. Here, Iy, Iaps, and Ipgp stand for the intensities
of the reflected lights from the space pattern without the
phase defect, line pattern, and space pattern with the
phase defect, respectively. The normalized intensity was
calculated by the following equations:

I= (]DEF_IABS)/(IML_IABS)~ (D

3 Results and Discussions

3.1 Analysis of the Phase Defect Structure

According to our previous work, the path of a pit type phase
defect propagating from the bottom of an ML and ending at
the top is inclined toward the center of the mask.”
Furthermore, the inclination angle increases in proportion
to the distance from the center of the mask. In this section,
to determine the increasing angle of inclination, and to
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Fig. 2 Schematic model of the extreme ultraviolet (EUV) microscope
optics.
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Fig. 4 (a) Arrangement of the test pattern. (b) Direction of the phase defect observation. (c) Cross-sec-
tional TEM images and calculated inclined angles of the phase defects.

determine the angles of the line type phase defects, a set of
line type phase defects in blocks 1, 2, 3, 4, and 5 [Fig. 4(a)]
were prepared for TEM observation. Figure 4(b) describes
the schematic view of the TEM observation direction.
Each TEM observation sample was cut perpendicularly to
the line type phase defect using a focused ion beam. The
TEM images and the inclination angles of the phase defects
are shown in Fig. 4(c). The inclination angle was defined as
the angle between a vertical line from the quartz substrate
surface and a line connecting the center of the line pattern
on the quartz substrate with the center of the raised surface
of the ML. These TEM images clearly show that the phase
defect’s propagation through the ML is inclined toward the
center of the EUV blank. The relationship between the incli-
nation angles of the phase defects and the distances of the
phase defects from the center of the EUV blank is summa-
rized in Fig. 5. Then from this information, the inclination
angles of the phase defects in block B [Fig. 1(a)] were esti-
mated to be 4 deg.

3.2 Measurement of the Phase Defects Using SPM

The profiles and sizes of the phase defects evaluated in this
study were measured using SPM. Figures 6(a) and 6(b)
represent the SPM image and cross-sectional profiles of
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the dot type phase defect on the ML. The measured dimen-
sion of the phase defect on the ML was 80.0 nm in full-width
at half-maximum and 2.4 nm in height.

The phase defect positions relative to the absorber lines
were also measured using SPM. To evaluate the influence
of the inclination angles of the phase defects on the EUV
microscope images, the same position of the phase defect rel-
ative to the absorber line needed to be identified in both block
A and block B. Calculating from the total thickness of the ML

Inclination angle of the
phase defect (deg)

f f f

0 22 44 66 88
Distance from the center of the blank (mm)

o

Fig. 5 Inclination angle of the phase defect as a function of the dis-
tance of the phase defects from the center of the blank.
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Fig. 6 (a) Scanning probe microscope (SPM) image of the dot type
phase defect on the ML. (b) Cross-sectional profile of (a).

and the inclination angle of the phase defect in block B, the
phase defect position shifts about 20 nm toward the center of
the mask in relation to the position of the dot on the quartz
substrate. Figure 7(a) represents a test pattern which, by the
help of SPM, enables us to measure the positional shift of the
phase defect relative to the absorber pattern. The test pattern
consists of a square-shaped absorber hole 1 X 1 ym in size
and a phase defect in the center of the hole. On the mask

Phase defect

pattern data, the center of the square hole was aligned
with the center of the phase defect. After running through
the fabrication process of the programmed phase defect
mask, the test patterns in the blocks A and B were measured
using SPM. Figure 7(b) shows the cross-sectional profiles of
the test pattern in blocks A and B. The measured positional
shift of the phase defect in block B was 19.9 nm, which cor-
responded to 4 deg of the inclination angle. This result agreed
well with the result described in Sec. 3.1.

The SPM measurement sites in block B were selected by
taking into consideration the positional shift of the phase
defects. Figure 8 represents the SPM profiles of the hp
88-nm L/S pattern with dot type phase defect 80 nm in
size and 2.4 nm in height prepared for EUV microscope
observation. In both blocks A and B, the measured phase
defect positions were 0, 8, 56, 88, and 160 nm.

3.3 Observation of the Phase Defects Using EUV
Microscope

The L/S patterns with various positions of the phase defect
shown in Fig. 8 were observed using the EUV microscope.
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Fig. 7 (a) Design of the test pattern. (b) Cross-sectional profiles along the line X-X'.
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Fig. 8 SPM images of the programmed phase defect EUV mask and the measured defect positions.
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Fig. 9 (a) EUV microscope images and intensity profiles of the programmed phase defect EUV mask.
(b) Normalized light intensity of the space pattern image as a function of the defect position.

Figure 9(a) shows the EUV microscope images and their
intensity profiles. The intensity fluctuations observed in
the images are due to speckle pattern effect occurring
with the utilization of a synchrotron EUV source that has
a high spatial coherence. These fluctuations are not mask
defect.”” However, the captured images clearly indicate
the intensity loss of the EUV light from the space pattern
due to the presence of the phase defects. In these cases,
the locations of the phase defects were defined as 56, 88,
and 160 nm in position. The influence of the phase defect
position on the intensity loss of the EUV light was calculated
in accordance with Eq. (1). Figure 9(b) represents the nor-
malized light intensity of the space pattern affected by the
phase defect as a function of the phase defect position.
For both blocks A and B, the maximum drop value of 0.4
was observed at the position of 88 nm; and the intensity
differences between blocks A and B were negligibly small
at the position of 56 and 160 nm. On the other hand, the
impact of the inclination angle on the intensity loss of the
EUV light was significant when the phase defect location
was 8 nm in position. This phenomenon is the effect of
the positional shift of the effective defect position caused
by the inclination angle. The effective defect position shifts
about 1 nm/ deg to the inclined direction compared with the
vertical grown one.”

After running through the mask patterning process,
removing of the absorber pattern away from the proximity
of the phase defect is recommended as an effective way
to eliminate the influence of the phase defect on wafer print-
ing image. The decision on the removing area is based on the
information of SPM image. However, this study showed that
SPM is not a perfect method to pinpoint the actual phase
defect position because the phase defect does not always
propagate vertically through the ML. On the other hand, a
EUV microscope has potential to pinpoint the actual position
and affected area by the phase defect.

4 Summary and Conclusion

The fact that a phase defect does not always propagate in a
vertical direction from the bottom surface of the ML to the
ML’s top surface makes it necessary to examine the effect of
the phase defect structures on an EUV microscope image of a
mask pattern. To prepare the mask with various inclination
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angles, line patterns were fabricated on the surface of a
quartz substrate using a standard mask patterning process.
Also, the patterned quartz substrate was then coated with
an ML for the purpose of analyzing the phase defect propa-
gation through it. The propagation of the phase defect
through the ML was then observed by TEM. An inclination
angle of 4 deg was observed at a distance of 66 mm from the
center of the EUV blank. Next a programmed dot type phase
defect EUV mask was fabricated for the EUV microscope
observation. The EUV mask consisted of hp 88-nm L/S pat-
terns, and programmed phase defect 80 nm wide and 2.4 nm
high. Finally, the relative positions of the phase defects and
absorber patterns were measured by SPM, and an inclination
angle dependency of the phase defect impact on the EUV
microscope images was clearly observed. The EUV micro-
scope could identify the positional shift of the effective phase
defect position caused by the inclined propagation through
the ML.
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