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Abstract. A small, fixed-wing unmanned aircraft system (UAS) was used to survey a replicated
small plot field experiment designed to estimate sorghum damage caused by an invasive aphid.
Plant stress varied among 40 plots through manipulation of aphid densities. Equipped with a
consumer-grade near-infrared camera, the UAS was flown on a recurring basis over the growing
season. The raw imagery was processed using structure-from-motion to generate normalized
difference vegetation index (NDVI) maps of the fields and three-dimensional point clouds.
NDVI and plant height metrics were averaged on a per plot basis and evaluated for their ability
to identify aphid-induced plant stress. Experimental soil signal filtering was performed on both
metrics, and a method filtering low near-infrared values before NDVI calculation was found to
be the most effective. UAS NDVI was compared with NDVI from sensors onboard a manned
aircraft and a tractor. The correlation results showed dependence on the growth stage. Plot aver-
ages of NDVI and canopy height values were compared with per-plot yield at 14% moisture and
aphid density. The UAS measures of plant height and NDVI were correlated to plot averages of
yield and insect density. Negative correlations between aphid density and NDVI were seen near
the end of the season in the most damaged crops. © The Authors. Published by SPIE under a Creative
Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part
requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.11.026035]

Keywords: crop scouting; multispectral imaging; structure-from-motion; unmanned aircraft
systems; insect damage.

Paper 16598 received Aug. 9, 2016; accepted for publication Jun. 7, 2017; published online Jun.
22, 2017.

1 Introduction

One aspiration of precision agriculture is to minimize costs while maximizing crop yield by
allowing farmers to identify problem areas in the field and deploy mitigation tactics.1 Remote
sensing increases the efficiency of this process by gathering data associated with crop health
quickly and automating processes for crop health visual display and evaluation.2 Satellite
imagery is not collected with the frequency required for precision agriculture, and atmospheric
effects or cloud cover can have dramatic effects on the quality of data produced. Ground-based
(tractor-mounted) sensors achieve high resolution, but operational and data efficiency measures
may be much reduced compared with other approaches. High-resolution imagery is necessary
for more precise data, and unmanned aircraft systems (UAS) are able to fly much lower and can
achieve higher temporal and spatial resolutions than satellite imagery or imagery captured using
manned aircraft.1,3

Over the past decade and into the present, an increasing amount of research has been done on
the use of remote sensing with UAS and other platforms for detecting measures of crop health.
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Typically, the calculation of vegetation indices, such as normalized difference vegetation index
(NDVI), is used to estimate the amount of photosynthetically active radiation absorbed by plants,
which has been found to be a good indicator of overall health.4 The potential of remote sensing
with UAS to predict crop yield and estimate biomass using vegetation indices has been well
explored in the scientific literature. UAS-derived NDVI predicted grain yield in winter
wheat at a high level of accuracy.5 Similarly, UAS-based monitoring of a sunflower crop
found significant linear regressions between NDVI and grain yield as well as biomass and nitro-
gen content.6 Research has also discovered good correlation between NDVI and yield or biomass
in rice7,8 and grain sorghum.9

Using NDVI to estimate crop health can be complicated by the effects of ground that is
visible through gaps in the canopy. Early in a crop’s growth stage, the canopy can be very sparse
and mean NDVI values may be deceptively low due to the amount of soil reflectance included in
the NDVI calculation. Vegetation indices can be tuned to reduce soil background effects. One
study compared multiple soil-adjusted indices with NDVI in an area with low vegetation cover.10

The simplest index is the soil-adjusted vegetation index (SAVI), which uses a correcting factor,
L, an estimated value between 0 and 1 based on the vegetation density.11 More complex indices
such as the transformed SAVI utilize the slope and intercept of an equation (also known as the
soil line) fitted through a plot of red versus near-infrared (NIR) reflectance for various bare soil
conditions. In the study, these indices were not found to outperform soil-unadjusted vegetation
indices at vegetation cover below 30%. Furthermore, the requirement of establishing a soil line
for applying algorithms for soil adjustment can limit its use for the commercial agricultural
applications.

The use of photogrammetric height determination for crops by UAS is not as heavily
researched as the use of vegetation indices, but some studies have been done using three-dimen-
sional (3-D) point clouds to obtain an estimate of crop height and correlate it with yield and
biomass. These point clouds are generated through a photogrammetric technique called struc-
ture-from-motion, or SfM.12 Research introduced by Ref. 13 using terrestrial laser scanning sug-
gests a reasonably accurate method for deriving plant height from the point cloud data is a
difference approach that calculates crop height by taking the difference between a digital surface
model (DSM) of the crop canopy generated from the point cloud and a digital elevation model
(DEM) of the bare-ground surface generated from a secondary data source or from ground points
filtered out of the point cloud. Studies have also applied this approach to derive crop height from
UAS-SfM derived point cloud data.14–16 The combination of vegetation indices and UAS-based
canopy surface models have been shown to estimate biomass in barley and corn more accurately
than vegetation indices alone.15,16 The results from these studies suggest that crop height metrics
can be used as a complement to NDVI and potentially as a surrogate for assessing crop health
under certain conditions.

Small UAS are also becoming increasingly affordable and accessible to the modern farmer
with new regulations permitting more flexible use in different countries, and preprogrammed
flight plans enable nonpilots to easily conduct flights for mapping purposes.1 Powerful software
can automatically stitch raw imagery into orthomosaics and generate point clouds via SfM with
geoferencing based on a ground control point (GCP) network and position information from
onboard GPS stored in each image’s exchangeable image file (EXIF) format data. Consumer-
grade cameras can be modified with a filter to convert a visible channel to an NIR channel,
forgoing the need for more expensive four-band color-infrared cameras. A study17 comparing
field measurements from more advanced multispectral sensors to consumer-grade cameras found
that both types were equivalent under ambient light conditions but that unstable illumination and
angular variation in reflectance in sunny conditions could impact performance for consumer-
grade UAS-mounted cameras. A high percentage of image endlap and sidelap can help reduce
this effect. Reference 17 recommends using at least 75% endlap and 60% sidelap. The algo-
rithms for brightness correction, including a bidirectional reflectance distribution function
(BRDF), are also recommended for creating reflectance maps on which to base NDVI
calculation.17

Sorghum, Sorghum bicolor (L.) Moench, is grown throughout much of the world in small
to large acreage production systems. The grain is used for animal feed, human consumption,
and other purposes. Other sorghum varieties are grown for animal forage.18 The crop is also
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increasingly grown for the production of ethanol. In South Texas, where the study here was
conducted, the sugarcane aphid, Melanaphis sacchari (Zehntner) (Hemiptera: Aphididae),
has begun to infest sorghum crops.19 The insect directly disrupts sorghum physiology and photo-
synthesis and also produces large amounts of honeydew that serves as a growth media for black
mold, which also disrupts the plant’s photosynthesis.20 Through this process, insect infestation
may disrupt the spectral response of the plant, potentially allowing remote sensors to detect this
form of plant stress.21 Insect damage has previously been identifiable via multispectral and
hyperspectral reflectance on other types of crops.22 For example, wheat aphid damage has
been identified using benchtop-based spectral measurement of individual leaves.23 Aerial detec-
tion of the insect infestation is a more complicated process. One study on UAS-based detection
of potato beetle infestation found no correlation between plot-scale vegetation indices, but it was
able to detect insect damage using object-based feature extraction.24 A significant negative cor-
relation has been found between plant injury rating due to aphids and NDVI in grain sorghum
fields using an airborne multispectral imaging system.25 Unfortunately, aerial detection of plant
stress may require substantial, large-scale plant stress after the window of deploying a mitigation
measure has passed. Insect detection at the plant level may be capable of detecting damage
before it is too severe to correct, but it may also be inefficient and computationally intense.
There is the additional problem of differentiating between insect disruption of photosynthesis
and other stressors that have a similar impact such as nutrient deficiencies.

The only study of which the authors are aware that used UAS remote sensing to detect insect
stress in sorghum investigated impacts of white grubs.26 The method used an unsupervised clus-
tering approach to segment the field into three zones (decimated, transition, and healthy) based
on the RGB pixel values. The method showed potential but was developed for severely damaged
and readily identifiable stress. Although such a method could be feasible for detection of severe
levels of aphid stress on sorghum, at that point it would be too severe for mitigation.
Furthermore, the study did not assess the utility of NIR vegetation indices or 3-D crop structure
metrics that can be extracted from the UAS acquired imagery; most notably, the study did not
examine UAS for detecting variable levels of aphid stress with its unique challenges.

The purpose of this study is to investigate the utility of a small UAS equipped with a modified
consumer-grade camera for NIR capture to derive NDVI and crop height measures using SfM
photogrammetry for assessment of aphid stress on sorghum grain development. The study area is
a small plot field experiment subjected to highly variable aphid pressure. Pregrowth, midseason,
and late-season flights were conducted; NDVI and crop height metrics were extracted from
acquired imagery, and statistical analysis was performed to assess correlation to aphid presence
and yield estimation. NDVI derived from these flights was also compared with NDVI data col-
lected from a manned aircraft flight conducted midseason as well as NDVI collected late in the
season from a modified ground crop sprayer tractor-mounted with multispectral sensors.
Additionally, the filtering methods for soil signal and lower canopy (height only) were utilized
and compared among one another to provide more informative UAS estimates of mean per-plot
NDVI and canopy height values, respectively.

2 Methodology

2.1 Study Area

The study was conducted at research fields at the Texas A&M AgriLife Research and Extension
Center at Corpus Christi, Texas, USA, during the 2015 growing season. The research complex
consists of several hundred acres where a variety of crop research experiments are conducted.
For this project, the specific study area was an acre field where sorghum was planted at varying
times and sugarcane aphid population densities were manipulated with insecticide (Fig. 1). The
study consisted of two plantings of a grain sorghum hybrid known to be susceptible to the aphid
(DKS 53-67, DeKalb/Monsanto, St. Louis, Missouri). Each planting was planted in its own
section, containing 20 plots. Each plot had four rows of sorghum planted 0.96 m apart from
one another. The plots were 40 feet (12.19 m) long and 12 feet (3.66 m) wide. The early planting
was seeded on April 2, 2015, and the late planting was seeded on May 4, 2015.
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2.2 Field Measurement Surveys

Each week, beginning May 21, 2015, field data were collected from the two center rows of
each four-row plot, including estimated aphid density, plant response to aphid damage, and
growth stage. To estimate aphid density, 20 leaves in each plot were sampled. When counting
aphids, actual counts were only done for leaves with 10 or fewer insects. All estimates above
this level were done in ranges with midpoints within these ranges used as the estimated count:
11 to 25 aphids (18 midpoint), 26 to 50 aphids (38), 51 to 100 aphids (75), 101 to 500 aphids
(300), 501 to 1000 aphids (750), and greater than 1000 aphids per leaf (1500 was used as the
midpoint based on field observations). Plant response was measured on a scale from 1 to 10,
with each number representing a percentage of plants in a plot covered in sooty mold with a
rating of 1 indicating 0% to 10% sooty mold coverage, and increasing at regular intervals to a
rating of 10 indicating 90% to 100% sooty mold coverage. The sorghum growth stage was
noted at the time of each survey: preflowering vegetative stage, denoted by the number of
leaves on the plant (e.g., V7 indicates preflowering plants with seven leaves); approaching
and through flowering period (boot stage through flowering); and a reproductive stage, during
which the grain head begins to develop (milk) and matures (soft to hard dough), until the plant
is ready to harvest.18

At the end of the season, the two center rows of crops of each four-row plot were harvested
and yield data were estimated for each plot. Yield was estimated in kilograms per hectare (kg/ha)
and adjusted to a standard of 14% moisture.18 Aphid infestation and iron chlorosis were the two
main sources of crop damage present in the study area during the summer of 2015. Several aphid
density measures were computed at the end of the season. The most relevant seasonal measure to
this study was the per-plot maximum aphid density, computed as the highest mean number of
aphids per leaf observed over the season. Unusually heavy rainfall during late spring likely had
some impact on aphid population by causing a late arrival of the aphids and therefore lower aphid
populations, especially in the plots planted earlier in the season.

2.3 UAS Surveys

A small, fixed-wing UAS called the eBee (senseFly, Cheseaux-sur-Lausanne, Switzerland)
equipped with a three-band consumer-grade camera modified for NIR was utilized over the fields
at the research center. The UAS has fully autonomous flight that can be programmed to acquire
imagery at a desired flying height, percent image endlap, and percent image sidelap. The system
can fly for a maximum time of ∼50 min on a fully charged battery, dependent on wind con-
ditions and payload weight. For NIR capture, a 12-megapixel Powershot S110 (Canon USA,

Fig. 1 Study area map of sorghum plots. Early- and late-planted plots are highlighted in the
center. Source imagery is a false color composite orthomosaic of images captured on June
10, 2015.
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Melville, New York) was used with a sensor size of 7.6 × 5.7 mm and pixel array of
4048 × 3048, resulting in a pixel pitch size of 1.87 μm. The nominal focal length f was set
at 5.2 mm for flight operations, which equates to a 3.6-cm ground sample distance (GSD)

at 100 m flying height above ground, where GSD ¼ flying height×pixel pitch
f .

The camera is capable of storing images in RAW and JPEG formats and is modified to cap-
ture imagery in three bands of the electromagnetic spectrum: green (500 to 575 nm), red (575 to
650 nm), and NIR (800 to 900 nm). A filter was applied to the blue sensor on the original camera
to pick up wavelengths in the NIR, and the camera is programmed to autocapture imagery trig-
gered by the onboard navigation and processor control system of the UAS platform.

Four UAS flights were conducted over the summer to capture preseason conditions, mid-
season conditions, and end-season conditions. Flights targeted, on average, 75% lateral and
80% endlap in image overlap. The first flight took place on May 1, 2015, just after planting
and before the early planted sorghum had begun to emerge. This flight was conducted at a
lower altitude using an RGB camera for the sole purpose of deriving a high-resolution base-
line DEM of the pregrowth, bare-ground surface to estimate crop heights detailed further
below. Two midseason growth flights using the NIR camera occurred on June 10 and
June 23, 2015. The final flight was flown on July 29, 2015, just before harvest (Table 1).
The flights covered a total area of roughly 40 hectares per flight; however, only the imagery
acquired over the test field and surrounding area was further analyzed for this study.
Programmed flying heights for each NIR survey were adjusted dependent on wind conditions
to maximize flight coverage and stability given UAS endurance limitations. Adjustments in
flying height above ground level resulted in a maximum difference in GSD of approximately
5 mm between the June 10 and July 29, 2015, flights (Table 1). This is considered a neg-
ligible difference in GSD and did not warrant reprocessing to a uniform GSD for the needs of
this study.

Georeferencing of the acquired imagery is critical. Without proper ground control, the raw
positional accuracy of the acquired imagery stemming solely from geotagging by the UAS plat-
form’s onboard single-channel nondifferential GPS is roughly 1 to 5 m. To ensure high geodetic
positional accuracy, six GCPs were placed at the four corners and two midpoints on either side of
the survey area. Georeferencing was accurate within 1 to 5 cm horizontally and vertically. All
flights were processed with the local State Plane Coordinate System, in this case, NAD83 Texas
South meters, as the horizontal output coordinate system, and NAVD88 converted from ellipsoid
heights using Geoid12b as the vertical output coordinate system.

Table 1 UAS flight information including point cloud density and spacing. Flying height is above
ground level.

Flight 1 Flight 2 Flight 3 Flight 4

Date May 1, 2015 June 10, 2015 June 23, 2015 July 29, 2015

Flying height (m) 62 96 91 82

Camera model
and bands

Canon IXUS
127 HS (R-G-B)

Canon PowerShot
S110 (R-G-NIR)

Canon PowerShot
S110 (R-G-NIR)

Canon PowerShot
S110 (R-G-NIR)

Image array (pixel) 4608 × 3456 4048 × 3048 4048 × 3048 4048 × 3048

GSD (cm) 2.05 3.03 2.90 2.54

Early planting growth stage Bare ground Stage V8 Flag/boot stage Full bloom,
leaves dead

Late planting growth stage Bare ground Stage V6/V7 Stage V7/V8 Full bloom,
leaves dead

Point density (points∕m2) 220.59 97.64 79.74 60.03

Point spacing (m) 0.07 0.10 0.11 0.13
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2.4 Image Processing and Metric Extraction

2.4.1 Photogrammetric processing

Over 250 raw images were captured in each of the four flights covering the entire mapped area
including the study site. These were transferred to a hard drive for postprocessing. Following
each flight, the raw image data set was processed using SfM photogrammetry. Traditional photo-
grammetry requires metric cameras precisely calibrated. However, metric cameras are expensive
and not conducive for widespread use of small UAS for surveying and mapping applications. In
contrast, SfM photogrammetry exploits information from multiple overlapping images to extract
3-D object information and negate the need for precise camera calibration. There are many
SfM-based commercial and open-source software solutions for processing of UAS collected
imagery for mapping purposes. In this work, Pix4Dmapper Pro (Pix4D SA, 1015 Lausanne,
Switzerland) was utilized to process the imagery. The basic SfM processing workflow is sum-
marized as follows:27

1. Find corresponding features (key points) from all overlapping images using a feature-
matching algorithm, such as a variant of the scale invariant feature transform (SIFT).
SIFT is a well-known computer vision algorithm that allows for feature detection regard-
less of scale, camera rotations, camera perspectives, and changes in illumination.28

2. Key points as well as approximate values of the image geoposition provided by the UAS
autopilot (onboard GPS) are input into a bundle block adjustment to reconstruct the exact
position and orientation of the camera for each image. This process also simultaneously
calibrates the camera for lens distortion and other intrinsic parameters. Input of GCPs
can be done here and results readjusted.

3. Based on this reconstruction, the matching points are verified and their 3-D coordinates
calculated. Densification of the sparse point cloud is then performed to increase the point
density. The resultant set of 3-D points is used to generate a triangulated irregular net-
work (TIN) and obtain a DSM.

4. The DSM is then used to project every image pixel and to calculate a geometrically
corrected (orthorectified) image mosaic with uniform scale.

Standard geospatial data outputs from the UAS-SfM processing workflow are a 3-D point
cloud, DSM, and orthomosaic. Here, these outputs were used to generate two main products for
each flight: reflectance maps from which to extract NDVI and crop height maps. GIS analysis
was then used to extract mean NDVI and crop height values from this data by averaging the
values within polygons created for each data row in each plot. More details on these products are
provided below. Figure 2 summarizes the image processing workflow.

2.4.2 NDVI extraction

When computing a band ratio index such as NDVI, the interest is in the variation of reflectance of
the terrain across the different bands. However, the pixel value in the raw imagery and derived
orthomosaics are influenced by both the variation in illumination and sensor response. Regarding
illumination, the spectral signature of available incoming light can vary within a scene due to
atmospheric conditions, sun-view geometry, and shadow of the plants, among other factors.
Additionally, the total amount of irradiance can vary due to changing conditions such as moving
clouds, time of day, or seasonal variation (e.g., winter versus summer). This effect can be esti-
mated and corrected using radiometric calibration targets placed within the scene with known
albedo properties for the wavelength bands of interest captured by the specific sensor or camera.
Adjusting for variability in the amount of irradiance can also be performed using an upward
looking sensor mounted on the UAS or on the ground. Radiometric calibration is important
when the objective is to obtain absolute or stable NDVI measurements for comparison across
surveys conducted at different times, which are likely subjected to different spectral illumination
conditions. It is generally not as important for NDVI computation within a given flight due to the
normalization of the formula and assuming stable illumination conditions; however, variability
in local illumination during a flight can potentially impact NDVI in addition to surface
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reflectance. In regard to sensor effects on pixel brightness, such factors include sensor sensitivity
to different wavelengths, ISO/aperture/shutter speed settings, optical vignetting effects (variabil-
ity in amount of received light on the sensor due to lens and sensor geometry with edges having
less brightness), gamma corrections, spectral overlap, and other factors.

It is important to mention that the above factors do not fully account for the reflectance
function of a target as viewed by a sensor. For a complete characterization, one would need to
look at the BRDF for a given illumination and viewing geometry. In practice, this is not feasible,
particularly for small UAS surveys with numerous images, and it is not necessary. Simplified
corrections for brightness variability due to illumination and sensor effects provide useful results
for deriving vegetation indices.17 Furthermore, high image overlap from the UAS flight enables
weighted pixel averaging to help compensate for differences in viewing geometry.

For this work, reflectance maps were created in Pix4D to correct sensor effects on pixel
brightness from image to image and generate a more spatially stabilized NDVI value for a
given flight. Raw imagery was captured in 16-bit TIFF format and represented linear encoded
values that were not smoothed. To generate a reflectance map, the processing software uses
parameters present in the EXIF data of the images to correct for some of the factors mentioned
above that may vary from image to image including ISO sensitivity, aperture setting, shutter
speed, and vignetting. Although radiometric calibration may have reduced a small degree of
variability due to the spectral signature of illumination during the flight, it was determined
to not be necessary for the purposes of this study. The objective here is to compare relative
NDVI values over the study plots for a given flight extracted directly from the sensor using
a standard UAS-SfM processing workflow common to most applications. Furthermore, each
UAS flight targeted similar times of day with consistent illumination conditions to minimize
variability within and across flights.

Three separate reflectance maps were created for each band captured by the sensor—red,
green, and NIR. An NDVI map was then generated using a raster calculation based on the

Fig. 2 SfM image processing workflow used to generate NDVI and crop height maps.

Stanton et al.: Unmanned aircraft system-derived crop height. . .

Journal of Applied Remote Sensing 026035-7 Apr–Jun 2017 • Vol. 11(2)



well-known band ratio formula:4 NDVI ¼ NIR−red
NIRþred

. NDVI maps were generated for each flight
except the bare-ground flight on May 1, 2015.

Three sets of NDVI values were obtained for each flight. The first method used no soil signal
filtering; the second method filtered out low NDVI values that might correspond to ground (soil)
pixels; and the third method utilized a raster calculation to remove NIR band values below a
percentage of the maximum NIR reflectance value before calculating NDVI. For the second
method, NDVI values below 0.50 were excluded from the per-plot averages. This threshold
will exclude bare ground but may exclude some unhealthy plants as well. The third method
excludes pixels with low NIR reflectance values that fall below a certain percentage (threshold)
of the maximum NIR reflectance. These maximum values are evaluated as being the peak values
found in the entire field reflectance map, which varies with each flight. Finding this threshold
requires manual examination by iteratively increasing the percentage cutoff value while assess-
ing how many “mostly soil” pixels are removed and “mostly vegetation” pixels are retained.
Differences in ambient conditions (e.g., sunlight and atmosphere), imaging geometry (e.g., cam-
era perspective and overlap), and reflectance of the soil and vegetation influence the choice of an
effective threshold for each flight. For the June 10 and July 29, 2015, flights, NIR values below
25% of maximum NIR reflectance were excluded. For the June 23, 2015, flight, the threshold
was 50% of maximum NIR reflectance. Figure 3 shows NDVI maps for all three NIR camera
flights. NDVI values were extracted from the NDVI maps and scaled to the plot level metrics
using pairs of row polygons as explained in Sec. 2.5.

Fig. 3 Colorized crop height and NDVI map products generated by the processes described in
Fig. 2. (a), (b), and (c) images are from imagery collected on June 10, June 23, and July 29, 2015,
respectively. Crop height and NDVI maps for imagery collected on May 1, 2015, is not included
because this flight used an RGB camera to generate a bare-earth DEM. Row polygons are delin-
eated in the NDVI maps on the right side.
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2.4.3 Crop height extraction

Each pixel within the study area had an overlap of at least five images and flights targeted low
wind conditions to reduce parallax from moving vegetation. This allowed for robust and dense
generation of 3-D point cloud data over the sorghum plots (see Table 1). A noise filtering
algorithm was applied after point clouds were generated to reduce spurious points. This algo-
rithm finds points that are isolated or have three or fewer other points within a 3 × 3 × 3 grid of
cells. Points that have three or fewer other points in their surrounding 3 × 3 × 3 grid (with the
respective point in the center cell) are removed. Cell size was set at 25 cm to compensate for
average point density and to ensure a reasonable buffer above which we do not expect isolated
points.

Points within each SfM photogrammetric point cloud were triangulated using a Delaunay
triangulation to create a seamless TIN. The TIN was then rasterized into a DSM using linear
spatial interpolation based on the TIN’s triangular facets. Because the average point spacing
across flights is around 0.1 m (see Table 1), a step size of 0.1 m was used to obtain the highest
usable resolution and ensure a consistent resolution from flight to flight for crop height extrac-
tion. Recall that the May 1, 2015, flight was conducted during pregrowth with the ground
exposed. This flight was used to generate a bare-earth DEM for computing crop height.
Raster calculations were used to differentiate the mid- and late-season flights from the DEM
derived from the May 1, 2015, flight to provide an estimate of crop height (see Fig. 3).

The resulting crop surface models were further processed in three methods, similar to the
NDVI extraction methods. The first method was not filtered for soil or lower canopy. The second
method filtered out values under 0.5 m, and the third method filtered values under 0.25 m.
Filtering out low values ensures that only the upper leaves of the canopy are included in the
per-plot mean height values. To filter the low values, pixels below a certain threshold were
set to null. These null values were not included in the per-plot averages. Crop height values
were extracted from the crop height maps and scaled to the plot level metrics using pairs of
row polygons as explained below.

2.5 Spatial Analysis

Each of the 40 plots was recreated in a GIS shapefile after the second UAS flight. To further
minimize error sources from soil between the rows, a polygon was created for each row, centered
on the plants. Only two rows were created per plot to generate NDVI and crop height statistics
for the two rows where field data were collected during the growing season. All row polygons
were uniform in size: 10 m in length and 1.8 m in width (see Fig. 3).

Each pixel in a raster contains a value for that area in the field. Each pair of data row polygons
contains 1200 pixels. Each pixel corresponds to an area in the field of about 3 × 3 cm. Zonal
statistics were compiled for each plot to include the range, mean, standard deviation, minimum
and maximum NDVI, and crop height values in the area within the data row polygons. Means
and standard deviations were collected for each measure and filtering method.

2.6 Surveys with Other Platforms

On June 25, 2015, a manned aerial survey was flown over the sorghum crops and mean NDVI
was extracted on a per-plot basis. Imagery was obtained using a DuncanTech (Auburn,
California) MS3100 color-infrared digital camera mounted in a camera hole on the fuselage
of a Cessna 172 aircraft. This flight was conducted at an altitude of about 900 m and the
GSD of the imagery was about 21 cm. Mean NDVI was calculated for each plot across all
four rows, based on a 500-pixel sampling (50 × 10 pixels) in the center of each plot.

On July 29, 2015, a modified ground crop sprayer tractor (Spider, Lee Co. Inc., Idalou,
Texas) was driven through the sorghum crops. A set of two multispectral sensors
(GreenSeeker, Trimble Navigation Limited, Sunnyvale, California) was mounted to a support
bar (boom) attached to the front end of the platform. Sensors were spaced at 0.96 m (i.e., one
sensor per row) and captured between 6 and 11 NDVI readings per plot across all four rows. The
footprint of the sensor was 5 × 60 cm, with a viewing angle of (32 deg) and operating height of

Stanton et al.: Unmanned aircraft system-derived crop height. . .

Journal of Applied Remote Sensing 026035-9 Apr–Jun 2017 • Vol. 11(2)



0.8 to 1.2 m. The average NDVI values were calculated for each plot. Platform ground speed
during data collection averaged 1.9 km h−1. Spatial location and ground speed of the platform
were recorded by a GPS receiver (AgGPS 162, Trimble Navigation Limited, Sunnyvale,
California) throughout the data collection process. A hydraulic cylinder was installed vertically
on the center of the tractor front boom to allow for changes in sensor height to account for crop
growth.

2.7 Statistical Analysis

Field data, including maximum aphid density, plant response (degree of damage to the plants
caused by aphid infestation), and end-of-season yield were compared with UAS-derived NDVI
and crop height using Pearson’s correlation analysis of all pairings of field data and UAS-derived
data. UAS-derived per-plot NDVI values were also compared with NDVI values extracted from
the manned flight and the tractor-mounted phenotyping system. For significant correlations, the
form of the relationship was explored using univariate linear regression.29

To compare the soil signal filtering methods for NDVI and crop height extraction, a variance-
to-mean ratio (VMR) was computed for each plot using each filtering method. The VMR, also
known as the index of dispersion, is computed by dividing the square of the variance by the
mean. These ratios were averaged across the late planting to find a mean ratio for each flight
and each filtering method. Statistical analysis was performed using the statistical analysis system
software suite.28

3 Results

3.1 Comparison between Different Soil Signal Filtering Methods

VMRs in NDVI were compared among the three flights for the late planting [Fig. 4(a)]. The late
planting had the most visible ground between the plants and filtering for low values had the most
impact on the mean NDVI for this planting. The most effective removal in most cases was using
filtering of low NIR values with filtering at 25% of max NIR reflectance for the June 10 and July
29, 2015, flights and 50% for the June 23, 2015, flight. Removing values with low NIR reflec-
tance proved to be about as effective as removing low NDVI values. While the final flight shows
a lower VMR for method 2 with filtering at an NDVI value of 0.5, there remained an unaccept-
able amount of unhealthy vegetation removed with this method. A lower NDVI threshold may
remedy this problem.

Soil signal filtering was most beneficial in situations where the most soil was visible. Without
filtering out soil, a plot’s NDVI will appear very low despite the plants being apparently healthy.
This is evident on the June 10, 2015, flight. At this point, the plants were young and the canopy
was sparse and fairly uniform among all plots in the late planting. As observed in Fig. 4(a), the
VMR for the June 10, 2015, flight is very similar for both the NIR and NDVI filtering methods
and much lower than VMR without filtering. This result suggests that these methods are inter-
changeable for plots with sparse canopies. During the denser canopy of the June 23, 2015, flight,
NIR filtering still showed the lowest VMR. Therefore, for the purposes of comparing NDVI to
field data, we chose filtered NIR reflectance to extract NDVI.

VMRs were also compared among three methods in measuring mean crop height for the three
flights in the late planting [Fig. 4(b)]. The first method used no soil signal filtering. The second
filtered out values below 0.5 m in the DSM, and the third filtered values below 0.25 m. The
estimated canopy height (based on field observations) ranged from about 0.6 to 1.0 m.

The third method of filtering values below 0.25 m effectively removed soil, but it included
lower leaves that were visible through gaps in the canopy. The most effective filtering method
was the second method of filtering values below 0.5 m. This removes not only soil but also the
lower leaves of the plants to provide a more accurate estimation of mean canopy height. Method
2 had the lowest VMRs, and the difference was most noticeable in the flights over sparse can-
opies. Therefore, method 2 was used to estimate canopy height for examining correlations
between crop height and field data.
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3.2 Comparison between Tractor-Mounted, Manned Aerial, and Unmanned
Aerial Surveys

Imagery from the manned flight was not corrected for brightness; therefore, NDVI values appear
low compared with those gathered by the UAS. The normalization of the NDVI calculation,
however, ensures that relative NDVI measurements are comparable across platforms. The
manned aerial flight was conducted 2 days after the June 23, 2015, UAS flight. NDVI per-
plot values extracted from the manned flight data correlated very strongly with the UAS-derived
NDVI in the early planting (p < 0.0001, Table 2). A positive linear relationship was detected
with higher NDVI values obtained from the UAS NDVI extraction that included soil signal filter-
ing (slope ¼ 1.6, R2 ¼ 0.91, Fig. 5). In the late planting, however, no significant correlation was
detected. This is likely due to differing methods of NDVI extraction. While the polygon method
employed with the UAS-derived NDVI extraction kept soil between the rows from being
included in mean NDVI, the manned flight utilized a method that included soil, causing
large variations between per-plot mean values. This explanation is further substantiated by com-
paring the unfiltered UAS-derived NDVI to the manned aerial survey, which showed an
improved positive correlation (r ¼ 0.532, p ¼ 0.0340, Table 2).

The tractor-mounted phenotyping system measured NDVI the same day as the July 29, 2015,
UAS flight. The NDVI values derived from the phenotyping system correlated strongly in the
late planting (p < 1 × 10−4, Table 2), but no significant correlation was found in the early plant-
ing. The linear regression model showed a positive relationship and comparable values, except
that the range of the UAS NDVI values was wider than those of the phenotyping system NDVI
(slope ¼ 0.67, R2 ¼ 0.71, Fig. 5). Unlike the manned flight, the phenotyping system did not
correlate well with any of the soil signal filtering methods for the early planting. The phenotyp-
ing system only calculates NDVI from a few points per plot along the centerline of the row, but
the points are necessarily centered on plants spaced along the row. Because fewer points are used
to calculate mean NDVI, an outlying point can greatly shift the mean, compared with a platform

Fig. 4 Comparison between VMRs in late planting among three methods of soil signal filtering for
(a) mean NDVI and (b) mean crop height.
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Table 2 Pearson’s correlation coefficients as well as p values for NDVI comparison among trac-
tor-mounted, manned aerial, and unmanned aerial surveys. Method 2, low NDVI filtered; method
3, low NIR filtered.

NDVIMND
a NDVIGND

b

Early Late Early Late

NDVIUAS (unfiltered) 0.971 0.532 0.123 0.869

p value 1.20 × 10−12 0.034 0.604 1.25 × 10−5

NDVIUAS (method 2) 0.971 0.393 0.164 0.833

p value 1.23 × 10−12 0.132 0.491 6.19 × 10−5

NDVIUAS (method 3) 0.955 0.181 0.135 0.844

p value 6.50 × 10−11 0.503 0.570 3.92 × 10−5

aThe manned aerial flight conducted 2 days after the June 23, 2015, UAS flight.
bThe tractor-mounted phenotyping system measured NDVI the same day as the July 29, 2015, UAS flight.

Fig. 5 Linear regression models comparing different platforms. (a) Comparison of UAS-derived
NDVI to manned flight-derived NDVI in the early planting on June 23, 2015. (b) Comparison of
UAS-derived NDVI to ground rig-derived NDVI in the late planting on July 29, 2015. Shading rep-
resents the 95% confidence interval of the regression.
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gathering up to 1200 points. Table 2 provides complete Pearson’s correlation coefficients as well
as p values for NDVI comparison between tractor-mounted, manned aerial, and unmanned aerial
surveys, where NDVIUAS, NDVIMND, and NDVIGND represent the UAS-derived NDVI based on
the soil signal filtering methods [Fig. 4(a)], manned aircraft-derived NDVI, and phenotyping
system measured NDVI, respectively.

3.3 UAS-Derived Measures and Field Measures Comparison

The late planting showed the highest variability in plant stress due to aphid damage and had the
highest aphid density for the season, cumulating in a significant relationship between NDVI and
maximum aphid density during the July 29, 2015, late season flight (Fig. 6). For this flight,
NDVI values ranged from 0.49 to 0.66 in the late planting and as aphid density increased,
NDVI values decreased (r ¼ −0.63, p < 0.01). Maximum aphid density also correlated nega-
tively with mean crop height in the late season flight (Fig. 6), but the strength of correlation was
less than that of NDVI (r ¼ −0.485, p ¼ 0.0571). The NDVI values from the July 29, 2015,
flight in the late planting had a very low positive correlation with yield (p ¼ 0.0720, Fig. 6).
Mean crop height showed a similar trend with a weaker correlation to yield relative to NDVI
(Fig. 6). The strength of the relationship between UAS-derived crop height and UAS-derived
NDVI was strongly dependent on the stage of growth, with the weakest correlation observed for
the end-of-season July flight. Plant response was generally low and did not appear to correlate
with any UAS-derived measures of plant health. Pearson’s correlation coefficients of UAS-
derived metrics and field measurements for both plantings in all flights are given in Table 3.

Fig. 6 Linear regression charts comparing yield and aphid density to UAS-derived NDVI and crop
height in the late planting for the July 29, 2015, flight. Shading represents the 95% confidence
interval of the regression.
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4 Discussion

The late planting had the largest aphid populations and produced the most variability in plant
stress. As shown in Table 3, the maximum aphid density metric and its relationship to UAS-
derived NDVI were most relevant during the end-of-season flight (July 29, 2015), exhibiting a
negative correlation relative to other flight dates (for both late and early planting crops), sug-
gesting that aphid activity has to be extensive before it is reflected in NDVI values. As observed
in Fig. 6, R2 values for UAS-derived NDVI in relation to aphid stress and yield are low but are
informative (all regressions were significant) and likely representative of the variability in the
system. The inherent variability in the system was apparent in the aphid/yield relationship
(R2 ¼ 0.35) used to calculate thresholds for tolerable aphid activity based on the field
data.30 The UAS-derived NDVI/yield relationship (R2 ¼ 0.21, Fig. 6) was likely hampered
by the same variability. Given the apparent within-plot variability of NDVI and crop height
measurements (see Fig. 3), future field observations should include hyperspatial (within-
plot) georeferenced data to match the resolution of the UAS-derived metrics.

UAS-derived NDVI was the more informative variable, based on strength of linear relation-
ship, compared with UAS-derived crop height when exploring their use as surrogate measures
for aphid density and yield (see Fig. 6). This disparity in performance between the two metrics
was more substantial for aphid density than yield. When comparing the correlation between
UAS-derived NDVI and crop height, the strength of the relationship was dependent on the
stage of growth (see Table 3). The weak height/NDVI correlation was only seen at the end
of the season in the late planting. This is because the leaves of plants are mostly dead or
dying, altering the NIR reflectance and resulting in low NDVI, regardless of plant height.

Based on the correlations shown in Table 3, UAS-derived NDVI was not found to be a good
indicator of plant response for evaluation of sooty mold coverage caused by aphid infestation.
This is likely because sooty mold mainly affects the lower leaves of the plants, which are not as
visible to the UAS, at least at the altitudes flown here. The worst plant response levels reflect a
41% to 50% level of sooty mold coverage, so it is possible that more sooty mold coverage would
affect canopy leaves and therefore be reflected in mean NDVI values. Only three plots were rated
this high on plant response scale over the season, and these had mean NDVI values similar to
plots with an 11% to 40% level. Plots evaluated at a 0% to 10% level of plant response generally
had higher mean NDVI values, but this may have been because of the insect damage impacting
the physiology and therefore the spectral response of the plant rather than a direct impact of the
sooty mold on visible spectral response.

By comparing NDVI measurements by different platforms, it was found that NDVI was
strongly correlated between UAS measurements and other platforms, depending on plant growth
stage and soil signal filtering methods. This dependence is observed in Table 2. Despite differences
in resolution, flying height, and NDVI extraction methods, manned and unmanned aerial surveys

Table 3 Pearson’s correlation coefficients for UAS-derived metrics (height and NDVI) in early and
late plantings.

June 10,
2015: late

June 10,
2015: early

June 23,
2015: late

June 23,
2015: early

July 29,
2015: late

July 29,
2015: early

NDVI range 0.58 to 0.69 0.53 to 0.81 0.74 to 0.81 0.70 to 0.80 0.49 to 0.66 0.60 to 0.67

NDVI/yield −0.123 0.800*** −0.290 0.68** 0.462 0.010

Height/yield 0.020 0.763*** 0.136 0.672* 0.412 0.388

NDVI/height 0.891*** 0.970*** 0.482 0.759** 0.429 0.037

NDVI/aphid
density

0.138 0.379 0.351 0.215 −0.631* −0.289

NDVI/plant
response

N/A N/A −0.094 0.439 −0.216 −0.280

Note: Significant probabilities of each correlation are shown with an asterisk: * p < 0.01, ** p < 0.001, ***

p < 0.0001. No asterisk indicates no significant correlation at p > 0.01 level.
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were interchangeable in terms of evaluating plant health based on the sensors utilized. The modi-
fied sprayer tractor experiment was more difficult to compare with the UAS survey. While this
platform using tractors is readily available to growers, the number of points collected and position-
ing of the sensors may, in some cases, lead to incorrect assumptions of crop health for the entire
plot due to outlying points affecting mean values. Furthermore, differences in the footprint of the
GreenSeeker (5 cm × 60 cm) relative to the UAS camera’s per-pixel GSD and differences in view-
ing angle may also play some role in the reduced correlations observed (see Table 2). An appro-
priate soil signal filter and noise removal method for the GreenSeeker may improve results in
sparser vegetation. However, the difficulty in comparing both sensors may stem more from
the differences in the red and NIR bandwidths used by each sensor. GreenSeeker centers around
660 and 770 nm for red and NIR, respectively, whereas the Canon S110 NIR equipped on the UAS
centers around 625 and 850 nm, respectively, with a broader bandwidth. Another important factor,
which may be the most important, is that the GreenSeeker is an active sensor that generates its own
light source. This sensor has been thoroughly tested by the scientific community and is relatively
unaffected by light conditions.31,32 In contrast, the UAS remote sensing approach is more impacted
by light conditions due to scene to scene variation in ambient lighting, viewing angle relative to the
terrain, and altitude (see Sec. 2.4.2).

Soil signal filtering for NDVI is only necessary when the canopy is sparse [see Fig. 4(a)], and
even then a polygon method of filtering ground between rows may be sufficient. NIR reflectance
is typically much lower in soil than in vegetation, even unhealthy vegetation, and filtering out
low NIR reflectance may be more effective than filtering out low NDVI values. However, deter-
mining a threshold for removal will, in general, be more variable than selecting a low NDVI
threshold. Low NIR removal may be a simpler way of filtering soil than an SAVI because it
does not require a soil line or an estimated correcting factor. One concern when filtering
low NIR reflectance or NDVI values is the possibility of filtering out mold that may be covering
the leaves of the canopy. For this study, it does not appear that sooty mold was dense enough to
impact NDVI measurements, but higher plant response levels (70% to 100%) may require spe-
cial care to keep these low NDVI values from being excluded. Among the soil signal filtering
methods, the difference between NDVI values was rarely dramatic enough to recommend one
method over the other.

Filtering soil and lower canopy signal for estimating crop height proved to be more necessary
than soil signal filtering for NDVI [see Fig. 4(b)]. “Sparky” crops such as corn and sorghum tend
to produce lower mean crop heights if the ground signal is not filtered.14 Lower leaves on sor-
ghum plants are easily visible within gaps in the canopy, so filtering out these lower leaves
provides a more accurate estimation of canopy height and therefore a better indication of
crop health. Selecting a height threshold should be dependent on field observations and
plant growth stage. This threshold could increase as the season goes on. Alternative approaches
employed for estimating crop heights from UAS-derived point cloud data include percentile
heights (e.g., 95%) or a mean height based on a centerline width that follows the apex of
the crop.14,33–37 These can operate on either the UAS-SfM point cloud or generated crop surface
model. In comparison to our method, a measure such as a 95-percentile height may provide a
more plot representative average flag leaf crop height or apex crop height. However, that does not
necessarily mean that such a metric would be more indicative of aphid stress or yield as exam-
ined here. Our method uses a tuned height threshold to segment lower canopy and then applies a
mean value extracted from cells within fitted polygons to each plot row; as such, it is comparable
to a percentile height metric. Because we are averaging our hyperspatial UAS-derived metrics
across a plot to correlate with field observations, we would not expect to see a major difference in
the correlation patterns observed using an alternative percentile height metric. For example, we
expect those plots with a higher average crop height based on our method to have, in general, a
higher average 95-percentile height.

Determining a best metric for crop height in relation to ground truth data was beyond the
scope of this study as our focus here was on assessing UAS-derived NDVI and mean plant height
as indicators of aphid stress. The approach for measurement of sorghum height implemented in
the field consists of picking three plants within a two-row plot, measuring the height from ground
to flag leaf or apex using a height rod stick, and reporting an average for the three plants. The
plant locations are not georeferenced, and the field observer is supposed to pick plants that are a

Stanton et al.: Unmanned aircraft system-derived crop height. . .

Journal of Applied Remote Sensing 026035-15 Apr–Jun 2017 • Vol. 11(2)



representative average for the two center rows of a plot. This is a highly tedious and subjective
process. Given the subjectivity and sparsity of this approach, we believe the UAS-SfM obser-
vations provide a much more detailed and accurate representation of crop height in the study
area. This claim is supported by other studies in the literature that show the potential of UAS-
based photogrammetric approaches for crop growth monitoring and phenotyping.33–36

Furthermore, UAS provides orders of magnitude increase in data collection efficiency at the
field-scale relative to manual ground observation approaches. For example, the UAS-SfM
approach can provide “plant level” crop height measurements across entire fields at daily inter-
vals (see Fig. 3). This detailed information could be used to track crop evolution and potential
degradation in growth rates as a function of aphid stress. This information could be applied at the
plant, plot, and field level to track spreading and other factors.

UAS-based SfM photogrammetry to derive 3-D point cloud data represents an alternative to
airborne lidar. Although a comparison of airborne lidar and UAS-SfM is beyond the scope of
discussion, it is important to emphasize some key differences among the methods. Lidar is a
pulsed ranging technique whereas SfM is photogrammetric and relies on accurate image-to-
image key point correspondence and collinearity to reconstruct the 3-D scene. As such, it gen-
erates what is called a first (or single) return textured point cloud whereas modern linear mode
airborne lidar systems provide multiple return detection capability. This multireturn capability
has enabled lidar to be widely applied to forestry because it allows for canopy and below canopy
measurement. However, the potential benefits of multireturn lidar data over relatively short veg-
etation such as sorghum depend on the range resolution of the lidar system, which is a factor of
the laser pulse width and receiver dead time, among others. Lidar systems with very short pulse
widths and small beam divergence are needed for penetrating small gaps in shorter crops to
derive useful multiple return information of the crop canopy. Furthermore, SfM methods are
image-based and therefore susceptible to false parallax induced from moving vegetation between
overlapping images (such as from wind) and to poor feature correspondence in areas where the
scene is highly uniform (such as some agricultural fields with dense crops). This can sometimes
result in sparse or noisy point cloud data over vegetation dependent on weather conditions and
vegetation structure.38 This can be negated, as was done here, by flying during low wind con-
ditions and filtering point cloud noise. A major advantage of SfM is the potential of acquiring
hyperspatial resolution point cloud data. Compared with traditional airborne lidar conducted at
high altitudes, sampling densities can go from submeter to subcentimeter for UAS-SfM using
low flying heights and high-resolution cameras. Alternatively, small UAS-borne lidar is becom-
ing more prevalent and can enable sampling densities comparable to UAS-SfM dependent on
flying height and scan characteristics.

5 Conclusions

Results from this study show that a small UAS equipped with a modified consumer-grade camera
for NIR capture can be utilized to derive informative NDVI and crop height metrics using a
standard SfM processing workflow for purposes of monitoring aphid stress on sorghum
grain development. Aphid density was experimentally manipulated while other factors that
may affect plant stress were minimized when possible (e.g., use of fertilizer and herbicides
per regional standards) or were likely homogeneous across the small plots (e.g., plant water
stress associated with rainfall pattern). Early in the growing season, aphid density, in general,
positively correlated to UAS-derived NDVI due to limited impact on plant stress detectable by
the sensor, although a significantly strong linear relationship was not constituted. As aphid pop-
ulations increased and the season progressed, results showed that plant stress as indicated by
lower NDVI values (e.g., 0.49 to 0.66 in the late planting) was detected later in the season cor-
relating to the increased stress and reduced yield. More specifically, the aphid density of late
planting reached a high negative correlation to NDVI (r ¼ −0.631) on July 29, 2015, and a lower
negative correlation in the early planting (r ¼ −0.289) (see Table 3 and Fig. 6). Therefore, the
relationship supports an interpretation that lower NDVI values are indicative of higher aphid
densities. It further supports the conclusion that the effectiveness of the UAS approach presented
here was limited to later in the season when aphid activity was more extensive.
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Similar patterns were observed between increased stress and lower average UAS-derived
crop height, but UAS-derived NDVI provided a stronger relationship (see Fig. 6). This pattern
also held when comparing yield relationships. Although mean crop height correlated with NDVI
during midseason flights, results from this study suggest that it is not a replaceable surrogate for
NDVI. The two are likely better used in complement. Results further suggest that mean NDVI is
more sensitive and thereby a better indicator at the plot level to growing levels of aphid pressure
compared with a mean crop height metric.

The variability of the relationships between UAS-derived metrics (crop height and NDVI)
and field measurements (aphid density, yield, and plant response) explored in this study sub-
stantiate that precision agriculture for pest monitoring using UAS multispectral imaging com-
bined with SfM processing provides great potential as well as complications. Multiple UAS-
based measurements or combining UAS-based measurements with selected ground observations
may help reduce this variability and better differentiate stresses.39 Results do, however, suggest
that automated classification algorithms can be developed using simple measures of NDVI and
crop height derived from UAS-SfM mapping approaches to discriminate with reasonable accu-
racy zones of crop damage or stunted growth at late season stress levels apparent in this data set.
More research is warranted to determine if more moderate levels of aphid infestation are capable
of being detected by NDVI or crop height earlier in the season. Similarly, examination of other
vegetation indices beyond NDVI for aphid stress detection could reveal added value to the UAS
approach presented here as could employing more advanced pattern recognition methods.

Comparison of NDVI measures from the manned aerial and tractor platforms based on the
sensors examined showed strong correlation to UAS-derived NDVI, depending on plant growth
stage and soil signal filtering methods (see Table 3 and Fig. 5). NDVI extracted from the manned
and unmanned aerial surveys proved more interchangeable for purposes of evaluating plant
health compared with the tractor-mounted NDVI approach. Practical considerations, such as
cost, flying time, and data granularity, are more likely to determine which platform is used
for a given situation. The benefit of small UAS is its capability to efficiently acquire NDVI
measurements at much higher spatial resolutions and temporal frequencies at field scale.

Finally, this work explored the relation between NDVI and crop heights averaged across plots
to enable comparison with field measurement data. Future experimental design should look at
field measurement support to enable assessment of UAS-derived NDVI and other metrics at the
individual plant level for aphid stress detection to take full advantage of the hyperspatial res-
olution of the data. Similarly, UAS studies should be designed to examine the spatial-temporal
distribution of aphid stress as it evolves at the field scale.
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