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Abstract. The closed-form solution of the so-called statistical multi-
variate calibration model is given in terms of the pure component
spectral signal, the spectral noise, and the signal and noise of the
reference method. The ‘‘statistical’’ calibration model is shown to be
as much grounded on the physics of the pure component spectra as
any of the ‘‘physical’’ models. There are no fundamental differences
between the two approaches since both are merely different attempts
to realize the same basic idea, viz., the spectrometric Wiener filter.
The concept of the application-specific signal-to-noise ratio (SNR) is
introduced, which is a combination of the two SNRs from the refer-
ence and the spectral data. Both are defined and the central impor-
tance of the latter for the assessment and development of spectro-
scopic instruments and methods is explained. Other statistics like the
correlation coefficient, prediction error, slope deficiency, etc., are
functions of the SNR. Spurious correlations and other practically im-
portant issues are discussed in quantitative terms. Most important, it is
shown how to use a priori information about the pure component
spectra and the spectral noise in an optimal way, thereby making the
distinction between statistical and physical calibrations obsolete and
combining the best of both worlds. Companies and research groups
can use this article to realize significant savings in cost and time for
development efforts. © 2002 Society of Photo-Optical Instrumentation Engineers.
[DOI: 10.1117/1.1427051]
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1 Introduction
Biomedical and other optical measurements are often base
on so-called multivariate calibration. For this, an instrument
measures a set of multiple input signals first, e.g., light absor
bance values at different optical wavelengths, and then a
algorithm is used to transform the many input numbers into
one user-desired output number. Multivariate calibration, also
known as~aka! chemometrics, is the process of determining
that algorithm. The most popular calibration method is linear
regression of the so-called ‘‘statistical’’ or ‘‘inverse’’ model.
This approach, however, so far has suffered from lack of un
derstanding of the underlying physics and thus has been co
sidered a statistical or ‘‘soft-modeling’’ tool.

In this article, the closed-form solution of the statistical
calibration model is given as a function of the pure compo-
nent spectral signal, the spectral noise, and the signal an
noise of the reference method. The solution is a fairly com-
plex formula which does, however, provide a wealth of prac-
tical benefits in several ways. First, it can be used to speed u
the convergence against the desired, optimum Wiener filter. I
particular, the effects of spurious correlations and referenc
noise can be eliminated. Second, it can be used to guarant
specificity. Third, it makes the calibration process fully trans-
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parent. Also, all relevant measures of prediction quality c
be shown to be functions of a single basic quantity, viz.,
application-specific signal-to-noise ratio~SNR!.

It turns out that current chemometrics’ practices can
improved in many ways. Practical pieces of ‘‘how-to’’ infor
mation that can be gathered from this article include how
make effective use ofa priori knowledge about the pure com
ponent spectrum and/or the spectral noise; how to interpr
prediction slope smaller than one and how to ‘‘correct’’
how to effectively deal with spurious correlations; how
make conscious decisions about whether or not to utilize
specific correlations; how to build up closed-loop commu
cations between the hardware people and the application
velopers in a company; how to select a ‘‘good’’ waveleng
range; how to define the coordinate system that breaks the
multivariate measurement down into many univariate on
how to effectively rank noise sources; how to measure
quality of a measurement system and quantify progress m
and progress needed; and very importantly, how to reduce
number of expensive calibration experiments.

The chemometrics field encompasses a wide variety of
plications, each with a different set of practical problem
Without any ranking or claim for completeness, this autho
list of encountered calibration problems includes~1! instation-
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On Wiener Filtering and the Physics . . .
arity of spectral response;~2! nonlinearity of spectral re-
sponse;~3! outliers; ~4! ill-posed spectral response;~5! low
spectralSNRx ; ~6! low referenceSNRy ; ~7! unknown shape
of the pure component response spectrum;~8! spurious corre-
lations and/or overfitting;~9! unspecific correlations; and~10!
bad quality of the estimate of the future spectral noise. In this
article we address problems~4!–~10!, and touch upon~3!, but
do not address~1! and~2! at all. The latter means, mathemati-
cally speaking, that it is assumed throughout the article tha
the linear and stationary model, Eq.~1!, is valid. Practically
speaking, it means that the results reported will have a direc
and major impact on many ill-posed measurement applica
tions, where the signals are too small to cause any nonlinea
ity and the samples are stationary, e.g., many biomedical in
frared ~IR! applications; whereas in other applications,
notably those in industrial process control, potential
nonlinearity/instationarity problems first have to be solved be
fore they can reap the full benefit.

@We briefly define nonlinearity and instationarity of spec-
tral response here by citing a paper by Schmitt and Kumar.1

The authors give quantitative expressions for the effective op
tical pathlength in diffuse reflection experiments using fiber
probes. For example, in the case of large fiber separation
Leff>A3mst /4ma r wheremst andma are the transport scat-
tering and absorbance coefficient~mm21! of the sample andr
is the fiber separation~mm!. Thus, the measured ‘‘absor-
bance,’’ 2 logRdiff}Amamst is nonlinear in ma and can be
nonstationary over timewith changes in the scatter coefficient
mst . A hardware design method by which to minimize these
effects is also given by those authors.2 Other practical meth-
ods to minimize nonlinearity and nonstationarity are physica
reduction of the sample variability to the extent that the linear
and stationary approximation, Eq.~1!, becomes valid and
various mathematical data pretreatments, see, e.g., Ref. 3.#

Publications in the fields of statistics, chemometrics, and
time-signal processing were reviewed for this article. The
closed-form solution, Eq.~12!, seems to be new. Many pub-
lications on time-signal processing were found to be not di-
rectly relevant to chemometrics because the electronic noise
usually assumed to be ‘‘white’’~not correlated from one sam-
pling moment in time to the next!, i.e., its covariance matrix is
a ~scaled! identity matrix. In chemometrics, however, the co-
variance matrix of the spectral noise~defined below! is typi-
cally highly structured due to the correlations between wave
lengths. Likewise, many of the publications in the statistics
field are also not directly relevant, because chemometrics is
physical measurement problem, not a problem of finding sta
tistical relationships. The following literature review will fo-
cus on publications with emphasis in two areas:~a! the use of
knowledge about the pure component spectrum in the conte
of ‘‘statistical’’ calibration and~b! the effect of noise in the
spectra, i.e., on theright side variables of the regression
model, Eq.~1!. We start with the latter.

There seems to be no standard method used by statisticia
to deal with noise in the right-side variables, except for the
univariate case.4 The fact that the estimates of the slope coef-
ficients are decreased by right-side noise in both the uni- an
multivariate cases has been known for many years in
statistics,5 however, the effect seems to be of little importance
to most statistical applications. On the other hand, the signa
t
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,

s

t
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processing community has recently developed interest in
thematic and has started to use the total-least-squares
nique as a vehicle to incorporate right-side noise,6 and at least
one contribution by the chemometrics field has been ma7

The chemometrical literature contains a series of papers
the net analyte signal~NAS!, which is defined as that part o
the pure component spectrum that is orthogonal to all ot
spectra.8,9 The NAS concept points in the right direction, i.e
it tries to quantify how much of the pure component spectr
is useful in calibration, but it suffers from a basic insuf
ciency. In a Gedanken experiment, the more spectra are
cluded in the list of ‘‘other spectra,’’ the smaller the NAS wi
get, even if the spectra included have very small amplitud
The severeness of spectral overlap is obviously governed
both the spectral shape and the magnitude of the interfe
component, so NAS is incomplete. It will be shown belo
that NAS is basically identical to the ‘‘classical’’ model, an
the inferiority to the Wiener filter will be interpreted in term
of the assumptions that these approaches implicitly m
about the spectralSNRx . Still, NAS and related concept
have been successfully applied in a number of different ap
cations, including chemometrical calibrations,10,11 estimation
of sinusoidal frequencies in signal processing12 and hyper-
spectral image processing.13

A summary of various empirically proposed measures
SNR in chemometrics has recently been given,14 however,
these definitions focus exclusively on instrument noise in
spectra. It will be shown below that, in order to arrive at t
closed-form solution, the definition of ‘‘spectral noise’’ mu
include both instrument noise and the interfering spectra fr
the other components, and treat them as indistinguisha
Also, the definition of reference ‘‘signal’’ and ‘‘noise’’ mus
be made in the particular way given in Eq.~9! below.

In order to simplify the discussion and to assign physi
units to the quantities involved, the biomedical application
infrared blood glucose sensing will be used as an exam
with the glucose concentration measured in units of~mg/dL!
and the infrared spectra measured in units of absorba
~AU!. The discussion, however, is not restricted in any way
glucose sensing or to IR spectroscopy but applies to all m
tichannel measurement systems in which noisy input data
measured and linearly calibrated to produce an output n
ber.

2 Notation
Upper case bold letters denote matrices~e.g., X! and lower
case bold letters denote column vectors~e.g.,b!. The index in
X(m3k) means that the matrix hasm rows andk columns. The
following indices will be used:m is the number of calibration
spectra,k is the number of channels or ‘‘pixels’’ per spectrum
andn is the number of future prediction spectra.XT denotes
the transpose;(XTX)21 an inverse;X1 the Moore–Penrose
inverse;I the identity matrix;1 a vector of ones,(1,1,1,...,)T;
0 a vector of zeros,(0,0,0,...,)T; ibi the Euclidean length of
vectorb; anda[b meansa is equal tob by definition.

Useful terminology for describing calibration and predi
tion errors is introduced schematically in Figure 1 where
straight line has been least squares fitted through the pre
tion scatter plota posteriori. Scatter plots, by convention
show the concentrations measured by the infrared metho
they axis and the ‘‘true’’ concentrations measured by a ref
Journal of Biomedical Optics d January 2002 d Vol. 7 No. 1 131
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Fig. 1 Schematic of a scatter plot with an identity line (dotted) and an
a posteriori least-squares fitted line (solid). In this example, the bias is
45 (arbitrary concentration units) and the slope of the fitted line is 0.7,
with the line rotated around the point where the two means meet.
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ence method on thex axis. The terms are the following.

1. The bias error ~mg/dL! is the difference between the
average predicted concentration and the average refe
ence concentration; the bias, by mathematical defini
tion, is zero for the calibration fit and the goal is to keep
it zero during future predictions.

2. The slope ~unitless! is the slope of thea posteriori
least-squares fitted line and is almost always smalle
than 1, a fact which is referred to asslope deficiency.

3. The slope error ~mg/dL! of a particular prediction
sample is the difference between the identity line and
the bias-correcteda posteriori fitted line at that sam-
ple’s reference concentration value; the slope erro
causes the above-average concentrations to be cons
tently underestimated and vice versa; the slope error o
the whole prediction data set is the root sum of square
~RSS! over all samples.

4. The scatter error ~mg/dL! of a particular prediction
sample is the difference between the predicted value
and thea posteriori line; the scatter error of the whole
prediction data set is the RSS over all samples.

Mathematical definitions for the terms will be given below.
Suffice it to say here that bias, slope, and scatter errors can a
be easily measured individually by fitting thea posterioriline
through a given scatter cloud; that the total prediction error
aka PRESS1/2, is the root sum of squares of the bias, slope,
and scatter errors; and that the slope error decreases and
scatter error increases with an increase of the slope.

3 Theory
Let us assume a set of blood samples is available for calibra
tion. In the calibration experiment,m infrared spectra withk
channels each are measured. Simultaneously, using an esta
132 Journal of Biomedical Optics d January 2002 d Vol. 7 No. 1
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lished clinical analysis reference method, the glucose conc
trations of the blood samples are also determined. The foll
ing linear regression equation is the so-called multivari
‘‘statistical’’ calibration model:

yR5X"b1e, ~1!

whereyR(mxl) is the vector of glucose concentration referenc
~in units of mg/dL!, X(mxk) is the matrix of infrared calibra-
tion spectra~AU!, b(kxl) is the regression vector~mg/dL/AU!,
ande(mxl) is the error vector~mg/dL!. ~The term ‘‘multivari-
ate’’ is commonly used in the chemometric community. Rea
ers from different backgrounds should be aware that the
jority of spectrometric applications are actually bett
described by what they call ‘‘multidimensional’’ or ‘‘multi-
channel’’ measurements, because the input data comes fr
physical measurement and not from a statistical selection
variables.!

The task is to find a solution for the regression vector ob
vectorb which minimizes the length of the error vectore and
performs well in future predictions.

The standard procedure is to, first, mean center the cali
tion data,

X̃[XÀ1~mxl!• x̄T, ~2!

ỹR[yR2 ȳR , ~3!

where x̄T and ȳR denote the mean infrared spectrum and t
mean glucose reference concentration of the calibration
set, respectively; and then, second, to estimateb from the
least-squares~LS! solution,

b̂5X̃1ỹR5~X̃TX̃!21X̃TỹR . ~4!

@Note that Eq.~4! assumesX̃ to have full column rank, which
for (m21).k it will virtually always have because of ran
dom hardware noise in the spectra, and that in practice
full-rank inverse is often replaced by some form of a ran
reduced inverse, i.e., principal component regression~PCR!
or partial least squares~PLS!. We will not concern ourselves
with the type of inverse issue here, but the discussion w
return to it later.# The glucose values of the calibration fit a
then given by

yfit5 ȳR1X̃"b̂, ~5!

and likewise for the future prediction spectraXpred

ypred5 ȳR1~Xpred21~nxl!• x̄T!b̂. ~6!

Everything said so far is good and when applied to a we
designed calibration data set generally produces solut
near the theoretical optimum~described below as the spectro
metric Wiener filter!. Thatoptimum cannot be improved upo
any further, but the method of arriving at it in practice can b
significantly, as also can the interpretation and the decis
making about where one is in the development process
what to do next.

Historically, the assumption has generally been that
whole errore in Eq. ~1! is due to inaccuracies in the glucos
referencesyR whereas the spectraX are assumed to be nois
free in most statistics textbooks. This assumption, howeve
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On Wiener Filtering and the Physics . . .
invalid in many chemometrical applications where the spec
tral signal of interest is often buried underneath much large
interfering spectra. We therefore split the calibration spectra
into the glucose signal and ‘‘spectral noise:’’

X5Xn1y"gT, ~7!

whereXn(mxk)
is the matrix of spectral noise~AU!; g(kxl) the

glucose response spectrum~AU/mg/dL!; andy(mxl) the actual
glucose concentrations in the calibration samples~mg/dL!.
~The response spectrumg is the spectral signal caused by a
change in glucose concentration assuming that everything els
stays constant; as such,g generally depends on the nature of
the sample, e.g., gas vs solid, and the nature of the measur
ment, e.g., transmission vs diffuse reflection.!

After mean centering we have

X̃5X̃n1 ỹ"gT. ~8!

Here, like in many other applications, only a small part ofX̃n

is noise from the instrument hardware and most ofX̃n is spec-
tral interference from other components in the blood, i.e., wa
ter, proteins, etc. From the point of view of glucose measure
ment, however, spectral noise by definition is everything tha
is not glucose. The usefulness of this definition will become
clear in the following.

Next we need to consider the different types of ‘‘errors’’
that can affect the reference valuesyR . Our interest is to
describe the effect of reference noise on the calibration. Sim
ply defining reference noise as, say,yR2y, does not make
sense. Assume that the clinical reference method always me
sured exactly 90% of the true values, i.e.,yR5(0.9)y. As far
as the linear regression is concerned, this would still be per
fect reference, although now even a perfect infrared calibra
tion would be biased,bias5(2)0.1)ȳ, and slope deficient,
slope50.9, with respect to theactual values. Of course,
these errors would not show up on any of the result plots and
in fact, could not be detected unless a second, better, referen
method became available. These systematic reference erro
e
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-

,
e

rs

are actually quite common in practice, not because of fau
reference analyzers, but because of sample issues. Fo
ample, in noninvasive glucose sensing in the skin, the aver
glucose concentration in the probed tissue volume is low
than the concentration in the blood used for the refere
analyses,15 say, (mg/dLtissue)51/2(mg/dLblood). Equation~4!
will automatically adjust for this kind of internal scaling.@As
opposed to another form of scaling, viz., scaling by the use
trivial example of which is a unit change, e.g., plottin
~mmol/L! vs ~mg/dL!.# Wherever the scaling comes from, th
point is we should not call it ‘‘noise.’’ Instead, we need to b
careful and to clearly divide the responsibilities between
reference method and the infrared measurement.

Bias and slope errors of the reference method with resp
to the actual sample concentrations are the mere responsi
of the reference method. From the point of view of the infr
red calibration, only the scatter of the reference method,
the part of the vectorỹR that is not correlated withỹ, can be
called reference noise. We therefore splitỹR as follows:

ỹR5
ỹ"ỹT

ỹTỹ
ỹR1S I2

ỹ"ỹT

ỹTỹ D ỹR[S~ ỹ1 ỹn!, ~9!

where

S[
ỹTỹR

ỹTỹ
~ the scaling factor between the sample

and the reference concentrations!, and ~10!

ỹn[
1

S S I2
ỹ"ỹT

ỹTỹ D ỹR

~ the reference noise vector in mg/dL!. ~11!

The scaling factorS, like most everything else in calibration
is determined by variances in the concentration signals,
not by their average values. Inserting into Eq.~4! and apply-
ing the Sherman–Morrison formula16 yields
b̂5@~X̃n
T1g"ỹT!~X̃n1 ỹ"gT!#21~X̃n

T1g"ỹT!S~ ỹ1 ỹn!

5SF X̃n
TS I ~mxm!2

ỹ"ỹT

ỹTỹ
D X̃n1S g1

X̃n
Tỹ

ỹTỹ
D ~ ỹTỹ!S g1

X̃n
Tỹ

ỹTỹ
D TG21S g1

X̃n
Tỹ1X̃n

Tỹn

ỹTỹ
D ~ ỹTỹ!

5

SF X̃n
TS I 2

ỹ"ỹT

ỹTỹ
D X̃nG21S g1

X̃n
Tỹ

ỹTỹ
D ~ ỹTỹ!

11~ ỹTỹ!S g1
X̃n

Tỹ

ỹTỹ
D TF X̃n

TS I2
ỹ"ỹT

ỹTỹ
D X̃nG21S g1

X̃n
Tỹ

ỹTỹ
D 1...

SS I ~kxk!2

F X̃n
TS I2

ỹ• ỹT

ỹTỹ
D X̃nG21

~ ỹTỹ!S g1
X̃n

Tỹ

ỹTỹ
D •S g1

X̃n
Tỹ

ỹTỹ
D T

11~ ỹTỹ!S g1
X̃n

Tỹ

ỹTỹ
D TF X̃n

TS I2
ỹ"ỹT

ỹTỹ
D X̃nG21S g1

X̃n
Tỹ

ỹTỹ
D D F X̃n

TS I2
ỹ"ỹT

ỹTỹ
D X̃nG21

X̃n
Tỹn .

~12!
Journal of Biomedical Optics d January 2002 d Vol. 7 No. 1 133
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Equation~12! is the main result of this article and it describes
the dependence of theb vector on the glucose signalỹ"gT, the

spectral noiseX̃n , the reference concentrations and their

noise, ỹR5S( ỹ1 ỹn), and the spurious ‘‘correlations’’X̃n
Tỹ.

Notice that the effect of the reference noise on the calibration

in the second summand viaX̃n
Tỹn , is usually completely

dominated by the effects of the spurious correlationsX̃n
Tỹ.

Electrical engineers may already recognize the similarities be
tween Eq.~12! and the famous Wiener or ‘‘matched’’ filter
used in time-signal processing applications, e.g., in cellula
phones.

4 Fine-tuning the Theory
Equation~12! looks complicated because it contains all the
adverse effects that the user is trying to get rid of in his
calibration experiment. If we now make the assumptions tha
the user has succeeded in sampling a calibration data set

which, first, the effect of the reference noise is zero,X̃n
Tỹn

50 ~this assumption will be made throughout the rest of the
article!; and second, the effect of spurious correlations is zero

X̃n
Tỹ50. @The discussion will return to spurious correlations

later. It can be seen below that spurious correlations can easi
be built back in into all formulas, cf., e.g., to Eq.~30!, but for
simplicity of discussion we throw them out here.# Then Eq.
~12! shrinks to

b̂5S
~X̃n

TX̃n!21g~ ỹTỹ!

11~ ỹTỹ!gT~X̃n
TX̃n!21g

, ~13!

which is the spectrometric incarnation of the celebrated
Wiener filter. That is, the solution, Eq.~13!, minimizes, first,
the least-squares error of the calibration fit and, second, to th

extent that( ỹTỹ)/m and (X̃n
TX̃n)/m represent the~co-! vari-

ances of the future spectral signal and noise, respectively, als
the mean-square prediction error of the future spectra.17

The Wiener filter is optimal among allb vectors in the
mean-square error~MSE! sense. Wiener filtering has been ex-
tensively used for many decades and in various technical dis
ciplines, mostly time-signal processing. Spectroscopic appli
cations are different from the mainstream in one importan
point. In time-signal processing, e.g., when detecting the
height of an incoming pulse signal, the impulse response~b
vector! of an electronic Wiener filter is basically determined
by the shape of the pulse signal~g!, because the amplitude of
the electronic noise is usually small and its covariance is

‘‘flat,’’ i.e., uniform and uncorrelatedX̃n
TX̃n /m5s2I . On the

other hand, in spectrometry the principal reason why peopl
use multivariate techniques is because their pure compone
signal is buried underneath a large amplitude of spectral nois
which, in combination with the fact that the spectral noise is
not flat, means that the shape of theb vector is dominated by
the covariance structure~eigenfactors! of the spectral noise
andnot by the signalg. This situation has two consequences.
First, it makes interpretation of theb-vector result itself much
harder~see Sec. 6!. And, second, in the past it reduced the
Wiener filter to an abstract concept rather than a real-world
procedure. The fact that Eq.~4! converges against the Wiener
filter when the number of calibration samples increases ha
134 Journal of Biomedical Optics d January 2002 d Vol. 7 No. 1
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been repeatedly mentioned in the chemometric literature;18,19

however, because Eq.~12! was not available, means for th
direct insertion ofa priori physical knowledge about the spe
tra were not available.

We now proceed by defining the spectral signal-to-no
ratio of the calibration data set as

SNRx[A~ ỹTỹ!gT~X̃n
TX̃n!21g. ~14!

SNRx is application specific, i.e., it is different for glucos
than it is for, say, cholesterol.SNRx is very different from the
various types of ‘‘hardware SNRs’’ that are typically in uni
of @dc V/root mean square~rms! V# or ~dc AU/rms AU!,
where dc means an average value, and which typically re
values of 10 000~80 dB! or higher. Values forSNRx , on the
other hand, are much lower. In biomedical applicatio
SNRx510 is fabulous and many reference methods are ju
little aboveSNRx55. ~The main reason for the low values
that the concentrations in the body do not change much
begin with. The important consequences for the developm
of new biomedical methods will be discussed further belo!

Inserting Eq.~13! for b̂ back into Eq.~5! for the fitted
glucose values yields

ỹfit[yfit2 ȳR5~X̃n1 ỹ"gT!•S
~X̃n

TX̃n!21g~ ỹTỹ!

11~ ỹTỹ!gT~X̃n
TX̃n!21g

5SS SNRx
2

11SNRx
2

ỹ1
X̃n~X̃n

TX̃n!21g~ ỹTỹ!

11SNRx
2 D , ~15!

where the factorSNRx
2/(11SNRx

2) in the first term explains
the slope deficiency caused by the spectral noise and the
ond term is the scatter error caused by the spectral noise.

spectral noiseX̃n , which appears on the right side of Eq.~1!,
pulls down the magnitude of theb vector whereas the refer
ence noise does not. In fact,ỹn does not even appear in Eq
~15! which is a fascinating result in itself because it mea
that a goodinfrared method can be better than the referen
method, i.e., iS ỹ2 ỹfiti can be smaller thaniS ỹ2 ỹRi , pro-
vided that theSNRx is high and a good calibration experime

with X̃n
Tỹn50 and X̃n

Tỹ50 is performed. Of course, the fac
that the secondary~infrared! method is better than the primar
~reference! method cannot be proven unless a second, be
reference becomes available.

For the sake of simplified discussion, Eq.~15! has been,
and subsequent formulas will be, written for the calibrati

case and not for the case of independent predictionsX̃pred. Of
course, there is a world of difference between calibration a
prediction, but this difference is not amenable to conc
mathematical description. The intentions of this article a
believed to be better served by the relatively concise formu
derived for the calibration fit because these formulas are p
ably more helpful in discussing the prediction case than

mathematically more cumbersome formulas containingX̃pred.
After all, calibration and prediction results are the same in
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On Wiener Filtering and the Physics . . .
probability limit ~meaning, forlarge numbers of calibration
and prediction spectra! if the calibration and prediction spec-
tra are measured in identical ways~meaning, if the calibration
and prediction spectra come from the same underlying distri
bution!. In practice, there are many reasons why the calibra
tion and prediction spectra may not be measured in identica
ways but the goal is that they are. The most important reaso
for differences in practice is probably the potential for long-
term drift in the instrument and/or sample, causing a ‘‘slowly
increasing bias’’ in the predictions.~Notice that the distinction
between bias error and scatter error is a purely practical ma
ter and that a mayfly and a Galapagos turtle would have dif
ferent opinions on the subject.! Bias will not get much cover-
age in this article, however, it is important to realize that, in
ill-posed systems in particular, control of bias is a problem
second to none and often constitutes the ultimate engineerin
challenge. To repeat, long-term independent prediction perfor
mance is the goal and here we will use the calibration cas
only as a vehicle to talk about this goal.

Two more definitions are needed. The signal-to-noise ratio
of the reference method is

SNRy[A ỹT
• ỹ

ỹn
T
• ỹn

, ~16!

and the total SNR of the calibration data set is

SNR[A SNRx
2 SNRy

2

11SNRx
21SNRy

2. ~17!

Now, then, when we measure the slope what we do is plo
( ỹfit1 ỹR) vs ( ỹR1 ỹR) and LS fit a straight line through the
scatter cloud. Here, the reference noiseỹn enters back into the
picture because, even though theb vector is not affected byỹn

by virtue of the assumedX̃n
Tỹn50, after some lengthy algebra

the measured slope comes out to be

slope[
ỹfit

T ỹR

ỹR
TỹR

5
SNRx

2

11SNRx
2

SNRy
2

11SNRy
2 5

SNR2

11SNR2.

~18!

So the slope is pulled down twice. First, the spectral noiseX̃n
pulls down theb vector and thereby the predictions and, sec-
ond, the reference noiseỹn decreases the slope at the time at
which the line is fitted in the scatter plot.

The correlation coefficient between the predicted and the
reference concentrations is

r[
ỹfit

T ỹR

A~ ỹfit
T ỹfit!~ ỹR

TỹR!
5A SNRx

2

11SNRx
2

SNRy
2

11SNRy
2

5A SNR2

11SNR2. ~19!

The infrared method is responsible forSNRx , the reference
method is responsible forSNRy , and the calibration is left to
cope with both, SNR. Equation~19! corresponds to the ex-
pectedr 25r x

2r y
2 where r x

2[SNRx
2/(11SNRx

2) and the same
for r y

2. Correlation coefficient and SNR are synonymous con-
cepts that measure the same thing. The use of SNR is pr
l

-

g

-

ferred by this author, however, because it is easier to interp
One can ‘‘feel’’ the huge difference amongSNR51, 10, and
100 whereasr 50.71, 0.995, and 0.99995 is much harder
interpret. Also, the term ‘‘signal-to-noise ratio’’ is a consta
reminder of the fact that the quality of a calibration depen
on both the signal and noise, and that simple comparis
between calibrations are fair only at identical signal lev
AỹTỹ.

The slope error is

slope error[A~ ỹR2slopeỹR!T~ ỹR2slopeỹR!

5AỹR
TỹR

11SNRx
21SNRy

2

11SNRx
21SNRy

21SNRx
2 SNRy

2

5AỹR
TỹR

1

11SNR2. ~20!

Slope error is always present but becomes evident only w
the SNR is worse than about 5. In the extreme case in wh
the SNR approaches 0, the slope has to turn to zero bec
the best the Wiener filter is left to do is to predict the fl
average,ȳR .

The scatter error is

scatter error[A~ ỹfit2slope ỹR!T~ ỹfit2slope ỹR!

5AỹR
TỹR

SNRx

11SNRx
2

SNRy

11SNRy
2

3A11SNRx
21SNRy

2

5AỹR
TỹR

SNR

11SNR2. ~21!

The total prediction error, aka PRESS1/2, is ~assuming zero
bias!

PRESS1/25A~ ỹfit2 ỹR!T~ ỹfit2 ỹR!

5Aslope error21scatter error2

5AỹR
TỹRA 11SNRx

21SNRy
2

11SNRx
21SNRy

21SNRx
2 SNRy

2

5AỹR
TỹR

1

A11SNR2
, ~22!

and is the minimum RSS prediction error that can be achie
for a given SNR, i.e., it is the Wiener filter result. The Wien
filter achieves its optimality by trading off scatter versus slo
error in a RSS-optimum way. In some applications, howev
it is reasonable to require a prediction slope of one even w
the SNR is low, because the price paid in increased PRES1/2

is considered worth the improved accuracy when measurin
the low and high ends of the concentration range. In situati
in which slope compensation is an issue, theb vector can
simply be multiplied by ascalar.1, which can be defined a
the user’s discretion. The multiplication will, of course, di
turb the optimality of the Wiener filter; e.g., the ‘‘100%-slop
corrected’’ prediction error,
Journal of Biomedical Optics d January 2002 d Vol. 7 No. 1 135
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PRESSslope51
1/2 [AS ỹfit

slope
2 ỹRD TS ỹfit

slope
2 ỹRD

5AỹR
TỹR

A11SNRx
21SNRy

2

SNRxSNRy
5AỹR

TỹR

1

SNR
,

~23!

is larger than the Wiener filter result. Equation~23! is an
intuitive result, saying that the total noise in the calibration
data set is the scatter around the 100%-slope-corrected, a
identity, line. Of course, there is no such thing as a ‘‘correct’’
slope. The physics of the pure component spectra and th
spectral noise are manifested in theshapeof theb vector, not
in its magnitude. By default, so to speak, the slope is at the
Wiener value, but, in general, users are free to find their own
best trade-off between the mean-square prediction error an
end-of-range accuracy. In the following, we will therefore ap-
ply the term ‘‘Wiener filter’’ loosely to both the original and
its slope-corrected versions. Fortunately, slope correction be
comes an issue only when theSNR,5.

Because the user is free to correct for slope deficiency a
his own discretion, PRESS1/2 is not a unique measure of cali-
bration quality. On the other hand, the correlation coefficien
and SNR are unique measures of calibration quality becaus
the user changing the slope does not affect them.

The total SNR of a given data set can be measured in
number of ways using Eqs.~18!–~23!. Which one to use is a
matter of convenience and depends on the situation, howeve
some caution is advised because some situations are trick
For example, the calibration spectra are often more exten
sively averaged than the later prediction spectra. This is com
monly done to reduce spectral noise in the calibration data se
and to trick the Wiener filter into producing higher slopes. In
this situation, where the calibration SNR is actually different
from the prediction SNR, a reasonable choice might be to us
the prediction slope to measure the calibration SNR and to us
the prediction correlation coefficient to measure the prediction
SNR.

Unfortunately,SNRx andSNRy cannot beindividually de-
termined from a single calibration experiment because th
calibration is only affected by their combined total, SNR.~By
the way, exchanging thex andy axes of the scatter plot pro-
ducesslopex2vs2y[1.! For many applications, multiple cali-
bration experiments do not help either becauseSNRx and
SNRy scale identically with the signal. One trick that can be
used to overcome this situation is to perform two calibrations
with different signal levels, and to intentionally degrade the
SNRy of one. This is, in fact, exactly what happens with many
of the ‘‘wet chemical’’ reference methods anyway, which are
typically dominated by multiplicative errors, i.e., small con-
centrations are measured with small errors and large conce
trations are measured with large errors. Assume that two cal
bration data sets have been collected under virtually identica
spectroscopic conditions, that one happens to have signifi
cantly more signalAỹR

TỹR/m than the other, and that still the
two SNRs come out to be the same. The typical explanatio
for this is that SNR>SNRy,SNRx and SNRy

5constant(AỹR
TỹR).

The results of Sec. 4 are summarized in Figure 2, which
shows the other statistics to be highly nonlinear functions o
136 Journal of Biomedical Optics d January 2002 d Vol. 7 No. 1
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the SNR that suddenly ‘‘come out the noise’’ at and abo
SNR51. The Monte-Carlo generated example scatter plots
Figure 3 demonstrate the rapid and quite dramatic impro
ment in the visual appearance of a scatter plot once the S
improves to above 1. The range from approximatelySNR
5(0.5) to 2 is called the ‘‘cliff’’ by this author. Operating in
this region is a tiring experience for the technical staff
many companies.

5 Discussion
A number of practically important issues that typically com
up in the practice of applying multivariate calibration tec
niques to spectroscopic data are discussed next. It is ho

Fig. 2 Calibration statistics as a function of the SNR: prediction slope
(>), correlation coefficient (n), slope error (3), scatter error (+),
PRESS1/25Aslope error2+scatter error2 (s), and slope corrected
PRESSslope=1

1/2 (h). The errors are all normalized by dividing by AỹR
T ỹR.

Fig. 3 Monte-Carlo generated example demonstrating the strong ef-
fect of the SNR on the visual appearance of the scatter plot: SNR = (A)
0.25, (B) 0.5, (C) 1, (D) 2, (E) 4, and (F) 8. A posteriori LS-fitted lines
(solid), identity lines (dashed). Bias and reference noise set to zero in
this simlation.
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On Wiener Filtering and the Physics . . .
that here in Sec. 5 elucidating many of the consequences, an
opportunities, hidden in the mathematical sections above wil
help.

5.1 Physics Behind the ‘‘Statistical’’ Model
The Wiener filter solution, Eq.~13!, of the statistical model,
Eq. ~1!, makes perfect physical sense. To illustrate in a firs
example, assume that the scaling factor isS51 and the rms
spectral noise is flat, i.e., uniform on all pixels and not corre-

lated between any two pixels(X̃n
TX̃n)/m[sx

2I (kxk) (AU2!.
Then define the rms signal as( ỹTỹ)/m5sy

2 ~mg/dL!2. Equa-
tion ~13! then reads

b̂5
sy

2

sx
2

g

11sy
2~gTsx

22g!
@~mg/dL!/AU#, ~24!

where the shape of theb vector isidentical to the shape of the
pure glucose response spectrum. As a second example, co
sider the limit of disappearing spectral noise. Using Eq.~24!
and lettingsx

2→0, we have the ideal,

b̂→ g

gTg
@~mg/dL!/AU#. ~25!

The reason that the shape of realb vectors does not look like
the infrared glucose spectrum is that the real spectral noise
not uniform and is correlated between pixels. To conclude tha
‘‘statistical’’ models are not ‘‘physical’’ is wrong. In fact,
there is no fundamental difference at all because both ap
proaches even follow the same basic idea, viz., to find the
direction of maximumSNRx . Consider a third example,
where two wavelengths are used to measure an ‘‘analytical
absorption band at wavelengthl1 in the presence of large
baseline variations. Here, wavelengthl2 is selected next to

the absorption band and the spectral noise is(X̃n
TX̃n)/m

5sx
2(1 1

1 1) and the response spectrum isg5(0
g). Inserting into

Eq. ~13! yields the Wiener filter

b̂5

1

4 S sy

sx
D 2

g

11
1

4 S sy

sx
D 2

g2
S 11

21D , ~26!

which, except for the slope correction, is identical to the ex-
pected physical result. Both statistical and physical models tr
to point theirb vectors away from the direction of maximum
signal ~g! and into the direction of maximumSNRx . The
basic difference is that the statistical models use an actua

measurement of the spectral noise,X̃n
TX̃n , as presented in the

calibration data set, whereas the physical models rely on hu
man intuition to describe the spectral noise. The two produc
virtually identical results in simple cases. When it comes to
spectroscopy of complex samples, e.g., near-IR, spectroscop
however, human intuition can no longer compete.

5.2 Is There a Better Way for Multivariate
Calibration?
Yes, one can help the statistical model converge against th
Wiener filter faster. The ways in which to inserta priori
knowledge are numerous and application specific, but the cor
statement of this article is this: One can combine differen
d

n-

s

-

l

-

y,

e

pieces ofa priori physical knowledge about the spectra wi
any available measured data to estimate the pure-compo
spectral signal and spectral noise separately, and then c
pute the Wiener filter ‘‘manually’’ by plugging the results int
Eq. ~13! ~see Sec. 6!. The effects of spurious correlations an
reference noise are eliminated right off the bat and the qua
of the estimate of the Wiener filter is limited only by th
quality of the initial estimates of the spectral signal and noi
Specificity can be guaranteed because the spectral signatu
the signal~g! is under user control. Important trade-off dec
sions concerning calibration transfer or long-term stability c
be made by adjusting the estimate of the spectral noise~e.g.,
whether or not to include instrument-to-instrument noise!. In

a fortunate case in which bothg and (X̃n
TX̃n)/m are known,

collection of further calibration spectra is not necessary at
and users can directly compute the Wiener filter@and if de-
sired slope adjust it according to the expected( ỹTỹ)/m in the
application#. In a more typical case, spectral noise is n
known and calibration samples will still have to be collect
to estimate the spectral noise, however,reference analyses are
not necessary as soon as the slope ofg is known.

Wheng is not known, then there are still multiple ways b
which to improve the quality of the estimate but now they a
not as obvious~e.g., one can incorporatea priori knowledge
about the spectral regions in whichg does not have any
bands!. We defer to later publications, however, we do want
mention that cases in which a good traditional calibration
available as a ‘‘starting ground’’ are especially fruitful to wo
with.

We also mention in passing that, mathematically,g does
not have to be apure component response spectrum to app
Wiener filtering. Any mixture spectrum~whose scaled mix-
ture concentration might be of interest for some reason! could
be used as well. This situation is more common in proce
control applications; e.g., when measuring the concentra
of latex in paper coatings, the response spectrum of the l
depends on its composition and thus on the manufacturer

5.3 Is There an Optimum Wavelength Range?
No, mathematically there is no ‘‘optimum’’l range because

wider is always better/equal. This is becauseX̃n
TXn is a posi-

tive semidefinite matrix, andSNRx will therefore always in-
crease or at least stay equal when the number of channe
increased.~The same reason why calibration results alwa
get better/equal with increasing numbers ofl channels or
PLS/PCR ranks.! So the practical challenge is to find the mo
SNRx bang for the least hardware bucks. Equation~14! can be
favourably used in the search of a ‘‘good’’ subset of wav
length channels.

But there is also the basic limitation hidden in the wo
‘‘semi’’ above, viz., the limited information content of th
spectrum itself. Additionall channels can only improve th
SNRx if the addedl channels either contain new glucos
features, or contain spectral noise that is correlated with
~still uncorrelated! spectral noise in thel areas of the ‘‘old’’
glucose features, or both. This theoretical limit can be relev
in practice.@In the example, Eq.~26!, we saw how theSNRx
can be improved by includingl regions with zero glucose
signal, viz., by subtracting out noises that are correlated
tween pixels.#
Journal of Biomedical Optics d January 2002 d Vol. 7 No. 1 137
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Marbach
Spectral noiseX̃n generally consists of three independent
parts: sample noise, sampling noise, and instrument noise.
Sample noise is from spectral interference by the other com
ponents in the sample, sampling noise is from variations in
the sample handling, and instrument noise is from the hard
ware. Whereas the first two are typically correlated between
pixels ~broad spectral features!, the last one is typically not.
Since it cannot be subtracted out between pixels, the signa
vector gA( ỹTỹ)/m must peak out over the rms instrument
noise floor ~AU! if the calibration is to stand any chance.
Adding more and more pixels that do not contain glucose
signals does not help the instrument noise situation.

5.4 Orthogonalization into Many Univariate
Regressions and Visualization
With regard to the statement that ‘‘spectrum interpretation is
only an afterthought in the NIR,’’20 unfortunately, this is true
to a large extent. Probably the best way to tackle the visual
ization problem is to think of the multidimensional regression
problem as a multitude of one-dimensional regression prob
lems by using the singular value decomposition of spectra
noise,

X̃n5U"S"VT5~u1 u2 ,...,uk!F s1

s2

�

sk

G
3@v1 v2 ,...,vk#

T, ~27!

as the coordinate system. Here, theui and vi are the eigen-
vectors in the time and spectral domains, respectively, ranke

in order of s1>s2>...>sk . By defining gv[VTg and b̂v

[VTb̂, Eqs.~13! and~14! can be written in orthogonal form,

b̂v5S
S22gv~ ỹTỹ!

11~ ỹTỹ!gv
TS22gv

, ~28!

and

SNRx5A~ ỹTỹ!gv
TS22gv

5A~ ỹTỹ!S gv1
2

s1
2 1

gv2
2

s2
2 1...1

gvk
2

sk
2 D , ~29!

whereSNRx,i[A( ỹTỹ)(gv i
2 /si

2) is the SNRx in the direction
of the i th eigenvector. The infrared measurement of blood
glucose is called ‘‘ill posed’’ because the glucose signal
AỹTỹ•igi is smaller than many of the larger singular valuessi

of spectral noise. This means, first, that theSNRx found in the
data must come from the ‘‘smaller’’ eigenfactors, and, second
that the naked eye cannot see any glucose features in th
spectra.~In this article, the terms larger and smaller eigenfac-
tors are used to refer to the eigenfactors of spectral noise wit
larger and smaller eigenvalues, respectively.! In practice,
some visualization can be recovered by using the following

simple procedure. Compute the SVD of the measuredX̃
[X̃n1 ỹ•gT; then compute the correlation coefficients of the
resultant time eigenvectors with the glucose reference conce
trationsỹR . The eigenfactors with the largest correlation co-
efficients will dominate the prediction results and their spec-
138 Journal of Biomedical Optics d January 2002 d Vol. 7 No. 1
l

e

-

tral eigenvectors should resemble the glucose spectrum~if the
calibration is not seriously affected by spurious correlation!.
The resemblance will be modest because of the algebraic
straints on the eigenvectors, but the peaks will be at the r
place and will have the right sign and magnitude. Since
SNRx,i ’s in Eq. ~29! add up in squares the resultingSNRx is
usually dominated by only a few spectral directions.

We point out here that a multivariate measurement can
ill posed regardless of whether or not the associated ma
inversion is ‘‘ill conditioned.’’ The two concepts are differen
Statisticians interested in parameter estimation use the co
tion number but this measure is largely irrelevant in chem
metrics where the goal is prediction. For example, a calib
tion matrix made up of near-IR spectra of liquid sampl
measured atDl50.1 nmspectral resolution will be very ill
conditioned but just as well posed, or even slightly bet
posed, than a matrix containing the same samples meas
at, say,Dl510 nm.

5.5 Small Spectral Signals Can Still Have High SNRx
(and Vice Versa)
The concepts ofSNRx and ill posedness go hand in hand b
arenot identical. Theoretically, e.g., the 20th eigenfactor o
noninvasive glucose measurement system could carry a
high SNRx,i510 ~just an example!; this system would be able
to predict with a perfectSNRx>10 yet still it would be very
ill posed, because the calibration would need to ‘‘dig awa
19 larger eigenfactors of spectral noise to get to theSNRx . In
reality, near-IR noninvasive glucose sensing belongs to
tough class of problems that are both ill posed and have
SNRx . As far as the hardware is concerned, the enginee
has to solve two problems: the system noise must be redu
to the point where some of the smaller eigenfactors can
liver the neededSNRx and spectral noise in the larger eige
factors must be prevented from ever spilling down into t
smaller, high-SNRx eigenfactors. The capability to do the la
ter is one of the important characteristics that distinguishe
good piece of hardware.

5.6 Number of Calibration Samples
The important question of how many independent calibrat
samples are needed is governed by many practical issues
cluding spurious correlations/overfitting, quality of the stat
tical estimate of the spectral noise, and ‘‘riding the cliff
These issues are discussed next. We point out that for
statistical tests can also be performed~e.g., based on those i
Ref. 21! but here we will focus on the more practical aspe
instead.

5.7 Spurious Correlations/Overfitting
As discussed above, if the spectral signalg is known, then the
best way to eliminate spurious correlations is to have the u
himself define what the spectral signal is and what the spec
noise is and then insert these estimates into Eq.~13!. Any
physicala priori knowledge available about the spectral si
nal and spectral noise can be combined with any meas
ments available, and used directly to estimate the optim
Wienerb vector. The danger of spurious correlations is co
pletely avoided. An example of this ‘‘direct’’ way of estima
ing the Wiener filter will be given below. Still, spurious co
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On Wiener Filtering and the Physics . . .
relations continue to be a challenge in situations in whichg is
not known and this case will be discussed next.

Equation ~12! says that, if iX̃n
Tỹ/( ỹTỹ)i!igi , then the

calibration is guaranteed not to be affected. This indicates
catch-22 situation: in order toprove that a calibration is not
affected,g must be known. In the past, what was sometimes
done to prove specificitya posterioriwas to plot the measured

X̃TỹR ~or a scaled version of it called the property-correlation
spectrum22! and compare it to the shape of the known glucose
spectrum. If the two looked alike, then the calibration was
judged good.~Mathematically, this procedure is not com-
pletely correct because the spurious correlation spectrum
could happen to be exactly parallel tog; however, apart from
being very unlikely, this result would not change the shape o
the b vector, only its magnitude, which is subject to slope
correction by the user anyway. In practice, what is feared
about spurious correlations is changes to theshapeof the b
vector, not in its magnitude.! In the case of infrared blood
glucose analysis and typical-size calibration data sets(m
5100...300), this ‘‘visual test’’ typically ended positive on
mid-IR spectra but generally negative on near-IR spectra
What was the conclusion when the test failed? None, incon
clusive. The visual test is sufficient but is not necessary. Th
necessary and sufficient condition for spurious correlations t
be negligible is that theSNRxsp

with spurious correlations is
only insignificantly larger than theSNRx from the true signal
alone or, mathematically speaking,

SNRxsp
[AỹTỹS g1

X̃n
Tỹ

ỹTỹ
D TF X̃n

TS I2
ỹ"ỹT

ỹTỹ D X̃nG21S g1
X̃n

Tỹ

ỹTỹ
D

>AỹTỹ"gT~X̃n
TX̃n!21g5SNRx. ~30!

What matters to calibration isSNRx , which is equivalent to
correlation, not covariance. For example, given a data set wit
a tiny glucose signal of, say, 10mAU rms with SNR52 and
a huge humidity effect of 10 mAU rms withSNR50.2, theb
vector will still lock onto the glucose information almost ex-
clusively, leaving the predictions virtually unaffected by hu-
midity. An example of this behavior will be given below.

Equation~30! is a nice piece of background information
but, wheng is not known, it does not provide a practical way
in which to deal with spurious correlations. Therefore, if noa
priori information about the spectral signalg is available, then
the only reliable way to safeguard against spurious correla
tions is to perform extensive randomized calibration experi-
ments in the ‘‘traditional’’ way, i.e., via Eq.~4!. In practice,
the proof of the method then comes gradually over time when
multiple such randomized experiments performed in a devel
opment program consistently deliver identical lookingb vec-
tors, with the SNR coming from the same spectral eigenvec
tors.

The core of the spurious correlation problem with tradi-
tional calibrations usually is that some of the larger time
eigenvectors of the spectral noise are not rapidly fluctuating
aka ‘‘random’’ functions of time but are slowly undulating
drifts ~slow on a human scale!. If the characteristic time con-
stant of a slow process is, say, 3 h, then independent sampl
can only be measured at.3 h intervals~Nyquist’s sampling
theorem!. Slow spectral noises therefore need extra attention
to decorrelate them fromỹR . The best way is to randomizeỹR
s

and this is standard procedure in virtually allin vitro experi-
ments. In some applications, e.g., noninvasive glucose s
ing, effective randomization requires long calibration time p
riods on the order of several weeks. The minimum tim
required can be estimated as follows. Assume the true-si
SNRx is 2. In order to minimize the effect of spurious signa
the false-SNRx from spurious signal alone is required to b
smaller than, say, 0.4. Say that there are five slow time p
cesses in the spectral noise that each could correlate s
ously. Say we require that each process only correlates
SNRx of 0.4/A550.179which is equivalent tor 50.176.In
statistics books23 it is said that in order to achieveur u
,0.176between two sets of random numbers with 95% pro
ability, the number of random pairs needs to be larger th
;120. Thus, the calibration experiment should collect at le
120 independentcalibration samples.

In the example above, 120 samples were enough to b
the spurious correlations to the slow spectral processes, w
typically reside in the larger eigenfactors, but 120 may or m
not be enough to also diminish the effect ofoverfitting. This
term is loosely used in the chemometrical literature to d
scribe spurious correlations in thesmaller, noisy-looking
eigenfactors~as opposed to the statistical literature, where
same term is used to describe the inclusion of too many v
ables in a statistical model!. The spurious correlation in eac
small eigenfactor may be small, but many of them can add
A standard rule of thumb used in statistics to control over
ting is to use at least five or six times as many samples
variables, and the same rule is also recommended as stan
practice for chemometrics~where variables are defined as e
ther wavelengths or PLS/PCR factors!.24 Following this rule
will actually do two things. First, spurious correlations to th
instrument noise aka overfitting is reduced and, second,
quality of the statistical estimate of the covariance matrix
spectral noise is improved~see Sec. 5.8!. A practical way to
check for overfitting is described in connection with Figu
8~b!. If overfitting is a problem, then PLS or PCR can be us
advantageously to cut out affected eigenfactors. PLS or P
should not be relied on excessively in this regard, howev
because the appearance of spurious correlations in the sm
eigenfactors usually also indicates bad quality of the estim
of the true spectral noise, in which case the only way to p
ceed is to increase the number of calibration samples.

5.8 Quality of the Statistical Estimate of Spectral
Noise
In the special case of the true covariance matrix being fr

uniform, uncorrelated noise, i.e.(X̃n
TX̃n)/m→sx

2I (kxk) for m
→`, there is a simple graphical ‘‘eigenvalue flatness test’’
the quality of the statistical estimate. Plotting the eigenval

of (X̃n
TX̃n)/m for a finite number of samplesm yields a sloped

trace of eigenvalues, instead of the ideal flat one. Thus,
higher the number of calibration samples, the flatter the eig
value trace of the instrument noise floor sampled, which i
graphical expression of the 53 rule mentioned above. The
flatness test can be used as a practical guideline for the n
ber of calibration samples required in real data sets. Us
MATLAB notation, try plot(1:k,svd(randn(m,k))/sqrt(m))
with different values ofm to find your own tolerance level for
flatness. Fortunately, flatness of thesmaller eigenvalues can
Journal of Biomedical Optics d January 2002 d Vol. 7 No. 1 139
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often be improved by repeated measurements. For example,
the previous example, performing 120 measurement sessio
with three repeats each will yield 360 independent measure
ments of the fast instrument noises in the smaller eigenvalue
whereas, of course, there will still be only 120 independen
realizations of the slow spectral processes in the larger eigen
values. A more accurate description of how many independen
samples it takes to estimate the eigenfactors of a particula
multidimensional measurement system in a statistically reli
able way is given in Anderson’s theorem.25

5.9 Cross-Validation
The issue of cross-validation, e.g., ‘‘leave-one-out’’ cross-
validation, is closely related to the issue of spurious correla
tion. Whether the cross-validation results are useful or use
less, i.e., do or do not resemble independent predictions
depends on whether or not the reduced-subset calibrations a
affected by spurious correlations and whether or not the lef
out and predicted spectra can take direct advantage of the
spurious correlations. By far the most notorious example o
cross-validation run amok is the oral glucose tolerance tes
~OGTT! used for noninvasive blood glucose calibration. In
such an OGTT, a diabetic patient drinks sugar syrup causin
his glucose concentration to go up and, after insulin injection
back down again. The whole exercise may last 8 h and may
result in hundreds of skin spectra~infrared or other! collected
during that time period. What we have is~i! a multitude of
slow spectral processes well above the instrument noise floo
sampled with fewer than 10 independent samples~Nyquist!;
~ii ! fewer than 10 independent samples ofỹR ~Nyquist!; and
~iii ! left out and predicted spectra that can take full advantag
of any spurious correlations. Single-day OGTT cross-
validation will produce nice looking scatter plots that ‘‘pre-
dict’’ virtually any ỹR time profile under the sun. In the hands
of an inexperienced user and without the background of a
prior good calibration experiment, OGTT results are generally
worthless. On the other hand, and concluding this discussio
with one positive remark about cross-validation, for experi-
ments in which the sequence of samples is fully randomized
e.g., in manyin vitro studies, cross-validation results can be
close to truly independent prediction results, with the excep
tion of bias, of course.

5.10 Riding the Cliff
There is another effect, called ‘‘riding the cliff’’ by this au-
thor, which is not as well known as spurious correlations bu
is the second most-frequent reason for wild goose chase R&
efforts. Riding the cliff occurs whenever the true SNR is in
the region of the cliff~cf. Figure 2! and small changes in the
calibration SNR—due to the large appertaining changes in th
visual appearance of the scatter plots—trigger a series o
wrong conclusions, always one step behind the latest resu
Anything that affects the sampled calibration SNR can caus
this effect, e.g., spurious correlations, but it is often over-
looked how easily the effect can be set off even in seemingly
‘‘innocent’’ situations. Glucose is not a good example here,
and we will use hemoglobin instead. Hemoglobin is a typical
biomedical analyte that varies very little between patients an
within a patient over time. The normal physiological range is
from about 12 to 16 g/dL yielding signals of about1g/dL rms
140 Journal of Biomedical Optics d January 2002 d Vol. 7 No. 1
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around an average of 14 g/dL. Assume that the calibra
signal can be increased to, say, 1.5 g/dL rms by selecting m
patients from the ends of the concentration range and tha
development effort has achieved a promisingSNR51.5 at
that signal level. Further assume that the development pro
works by conducting a series of randomized calibration
periments with, say, 20 patients each.@Hemoglobin has large
absorbance signals in the visible so systems can use very
wavelengths.# Even if spurious correlations are assumed to
negligible, the laws of statistics will still work against th
company because of the low number of calibration samp
Say that the signal level can be reproduced at that value of
g/dL rms from experiment to experiment. The standard dev
tion of noise, however, will vary160.32 g/dL rms just by
random chance~95% confidence limit! meaning that the SNR
sampled in any experiment can vary anywhere from 1.1
2.2, causing dramatic differences in the appearance of
scatter plot.~Above, we used the rule of thumb that the sta
dard deviation of the standard deviation is100%/A2m of the
true standard deviation, wherem is the number of the inde-
pendent samples.! A lot of management decisions, includin
PR and HR decisions, can be as random as the noise
caused them. It should be noted here that the cur
standard24 calls for a minimum of 24 calibration samples an
the point here is that 24 is too low when the SNR of t
application is in the cliff.

5.11 Unspecific Correlations
A very important issue is what this author calls ‘‘unspeci
correlations,’’ as opposed to spurious ones. Mathematica
the two can be considered identical, but practically theyare
different. Whereas spurious correlations change rando
from experiment to experiment, unspecific correlations
physically unspecific but statisticallyreproducible. Again,
glucose is not a good example here, and we will use albu
instead. Imagine the task of calibrating anin vitro IR spectro-
scopic blood analyzer to albumin. Albumin does not va
much within a patient over time so the rms calibration sign
has to come from patient-to-patient variations in the calib
tion set. However, the patient-to-patient variation of album
correlates well with that of total protein(r .0.9), and this
correlation is statistically reproducible from data set to d
set. In the traditional way of statistical calibration, the alg
rithm is therefore never told to only use albumin’s pure co
ponent spectrum as a ‘‘signal,’’ and to shrink theb vector in
the subspace affected by the other proteins’ absorbance
tures because they are ‘‘noise;’’ instead, the traditional so
tion utilizes absorbance features from the other proteins

predict albumin. We quantify this by rewriting Eq.~8! as X̃
5(X̃nn1 ỹ2g2

T)1 ỹ1g1
T , where ỹ1g1

T is the spectral signal of
the analyte of interest~albumin! and the term in parenthesis i
the spectral noise, now consisting ofỹ2g2

T ~the sum of the

other proteins! and X̃nn ~the spectral noise from all othe
things!. We define the correlation coefficientr 12

5 ỹ2
Tỹ1 /A( ỹ1

Tỹ1)( ỹ2
Tỹ2) and assume that the spurious corre

tions are zero, i.e.,X̃nn
T ỹ150 and X̃nn

T ỹ250, and that the ef-

fects from the reference noise are zero, i.e.,X̃nn
T ỹn150 and

( ỹ2g2
T)Tỹn150. Inserting into Eq.~12!,



b̂5

S @X̃nn
T X̃nn1~ ỹ2

Tỹ2!~12r 12
2 !g2g2

T#21S g11g2r 12Aỹ2
Tỹ2

ỹ1
Tỹ1

D ~ ỹ1
Tỹ1!

ỹ2
Tỹ2

T
ỹ2

Tỹ2

~31!
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Tỹ1!S g11g2r 12A

ỹ1
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shows that unspecific correlationscannot be avoided in the
traditional method of calibration wheneverr 12

2 .0 because the
correlated part of the other proteins will be added to the signa
and subtracted from the noise. In order to produce a chem
cally specific calibration for albumin, the direct way of cali-
bration must be employed, i.e., the spectral signal and th
spectral noise must be estimated separately and the Wien
filter computed manually, withr 12 set to zero. Incidentally, the
fact that the glucose concentration in diabetic patients unde
goes such violent and rapid swings is actually akeypositive
point from a calibration point of view because it allows the
construction of chemically specific calibrations even when the
shape of the glucose response spectrum is unknown. In man
other applications, the issues in the future will be the follow-
ing: Now that the math is spelled out and conscious decision
about the use of unspecific correlations can be made, will th
various customers and regulatory agencies continue to be rel
tively forgiving for the use of unspecific correlations? Some
intense discussions about the meaning of that phrase, ‘‘spe
cific in this application,’’ can be expected in the future.

5.12 Which is Better, PLS or PCR?
There is no difference in quality between PLS and PCR. Any
calibration is only as good as the SNR in the data, and that i
what the algorithms use when they predict at their ‘‘optimal’’
ranks. Arguments are often construed that one is better tha
the other in terms of the number of factors necessary to buil
up a goodb vector, but the relevance of that is very limited.
Eliminating a PLS or PCR factor from the inversion is equiva-
lent to defining theSNRx in that spectral direction as zero.
This can make perfect physical sense and can help the sol
tion to become closer to the Wiener result, e.g., overfitting can
be reduced by eliminating smaller eigenfactors that are know
to represent nothing but electronic noise. The fact is, howeve
that elimination of factors does not help the hardware people
The Wienerb vector is what it is, and hardware will be
needed to measure at all the pixels that span theb vector, with
the SNR theb vector needs, whether or not somebody applies
PLS or PCR. Setting the noise to zero in some mathematica
subspace does not make the noise go away in reality.@Inci-
dentally, all equations in this article also apply to rank-
reduced inverses, e.g., when only the first PLS factors ar
used for inversion. In this case, the data in the complementar
subspace~the unused factors! have to be thought of as effec-
tively set to zero.#

5.13 Data Pretreatment
Data pretreatment methods are often claimed to improve th
quality of calibration but in practice rarely do unless the mea-
surement suffers from serious nonlinearity and/or nonstation
arity problems, which many industrial process control appli-
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cations do.1,3 To repeat, the only thing that counts whe
solving Eq. ~1! is the SNR, so the only pretreatments th
have value are those that improve the SNR. When the data
linear and stationary, then there is no point in applying a
more linear math to the spectra like first or second derivati
or other spectral filtering methods, because by definition t
cannot improve upon what the optimum spectral filter a
Wiener filter will find in the data anyway. Like with PCR- o
PLS-factor selection discussed above, there is limited use
vehicle to inserta priori knowledge into the calibration and
help the solution move closer to the Wiener result, but
result can never be better than what would have come fr
good calibration anyway. On the other hand, pretreatm
methods that do more than just linear math on the spectra
potentially improve the SNR, e.g., the familiar spectral ba
line correction methods~reduction of spectral noise in th
larger eigenfactors!.

5.14 Limitation Due to SNRy

This limitation is best explained by using an example. B
medical applications can be especially tough for many r
sons. One important reason is that SNRs are typically limi
by a lack of signal, because the concentrations in the hum
body hardly vary around their physiological averages to be
with. Established biomedical reference methods theref
work at SNRs of typically around 5, which is well above, b
also not too far from, the cliff. If the goal is to develop a ne
method with, say,SNR54, compared to a reference metho
which suppliesSNRy55 to the new calibration, then the new
method itself must measure with anSNRx56.8 @Eq. ~17!#. In
other words, the closer the reference method pushes one t
cliff the harder it is to not fall down. This means that in man
biomedical applications there is hardly any room left for lo
ing correlation to the reference because of sample or samp
issues.

5.15 ‘‘Classical’’ Model
Any calibration method can be interpreted as an attemp
estimate the Wiener filter by looking at the mathematical d
tails and analyzing what assumptions are implicitly ma
about the spectral signal and spectral noise which, w
plugged into Eq.~13!, give the particular method’s predictio
results. Consider the so-called classical model,

x̃pred[~g K!S ỹ
c̃D1 r̃ , ~32!

where x̃pred(kxl)
is the column vector of new spectrum to b

predicted~AU!, K5@k1 k2 ,...,kR# (kxR) is the matrix of inter-
fering spectra or spectral effects~AU/mg/dL!, c̃(Rxl) is the
vector of concentrations of the interferents~mg/dL!, r̃ (kxl) is
Journal of Biomedical Optics d January 2002 d Vol. 7 No. 1 141
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the vector of residuals of the spectral fit~AU!, and, as before,
g ~AU/mg/dL!, the glucose response spectrum andỹ ~mg/dL!
the sought-after~scalar! glucose concentration ofx̃pred. For
consistency in notation, Eq.~32! has been written in mean-
centered form~where the mean spectrum is defined by the
user! but this is not vital and could be dropped in the follow-
ing discussion. The classical model is basically Beer’s law in
matrix notation. We assume here thata priori physical knowl-
edge about the response spectra of the interfering componen
and other spectral effects, e.g., baseline variations, is avai
able. Prediction ofx̃pred means that Eq.~32! is solved in a
least-squares sense, yielding an estimate of the entire comp
sition b ỹ c̃Tc of the sample. The first question is, What is the
equivalentb vector that the classical model uses to predict the
glucose concentrationỹ?

The LS solution of Eq.~32!, which minimizes the SSE of
the spectral fit, estimates the glucose concentration as

ỹpred5 H ~1, 0,...,0!F S gT

KTD ~g K!G21S gT

KTD J x̃pred[b̂eq
T x̃pred,

~33!

where the vector~1, 0,...,0! is simply used to pick the glucose
concentration out of the entire composition. Straightforward
yet tedious, algebra simplifies the above expression to

b̂eq5
@ I2K ~KTK !21KT#g

gT @ I2K ~KTK !21KT#g
, ~34!

where matrixK (KTK )21KT is the projection matrix into the
R-dimensional subspace spanned by the modeled interferin
spectra. The next question is, What assumptions aboutSNRx
would a Wiener filter, Eq.~13!, have to make in order to
produce theb-vector result, Eq.~34!? Comparison of Eqs.
~34! and~25! shows that the classical model is equivalent to a
Wiener filter that~wrongly! assumes that

1. theSNRx in subspaceK (KTK )21KT is zero~no part of
g in this subspace is used! regardless of the size of the
amplitudes of the interfering spectra relative to the glu-
cose signal; and

2. theSNRx in orthogonal subspaceI2K (KTK )21KT is
infinitely goodregardless of the instrumental noise floor
or, worse, any unmodeled interferents.

This is why the classical model has not performed well in
demanding applications in the past and should generally no
be used for concentration prediction. Whereas the result, Eq
~12!, of the statistical model does converge against the Wiene
filter for an increasing number of calibration samples, the re
sult, Eq. ~34!, doesnot converge against the Wiener filter
regardless of how much effort is put into estimating interfer-
ing spectraK . In fact, putting too much effort into definingK
will invariably result into too large a number of modeled in-
terferents anddegradeprediction performance, because noth-
ing of g is left to predict with. Besides, knowledge of the
individual interfering spectrakr (r 51,2,...,R) is not needed
anyway because only the projection matrixK (KTK )21KT is
used for prediction. Recently, efforts have begun that are
equivalent to moving the solution of the classical model
142 Journal of Biomedical Optics d January 2002 d Vol. 7 No. 1
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closer to the Wiener filter,26 but this approach has a long wa
to go and will be much harder in practice than the dire
approach via the statistical model route.

Equation~34! was first presented to the chemometric co
munity by Lorber8 where it formed the basis for the net an
lyte signal concept. In later years, the NAS solution, Eq.~34!,
was erroneously claimed to also be the ‘‘ideal’’ result that t
b vector of the statistical model converged against. Howev
theb-vector result of the statistical model, Eq.~1!, is Eq.~12!,
which is completely different from Eq.~34!. As far as predic-
tion is concerned, classical modeling is basically identica
NAS calibration9 and its various derivatives10,11 with differ-
ences only in the definition of the projection matri
K (KTK )21KT. This fact was recently pointed out by Kaile
and Illing.27

5.16 Limit of Multivariate Detection
The spectral signal-to-noise ratio Eq.~14! can be written as

SNRx5

A ỹTỹ

m21
•igi

A 1

gT

igi H X̃n
TX̃n

m21
J 21

g

igi

F ~AU!RMS

~AU!RMS
G ~148!

SNRx5

A ỹTỹ

m21

A 1

gT H X̃n
TX̃n

m21
J 21

g

F S mg

dL D
RMS

S mg

dL D
RMS

G ~1488!

where the numerator is the rms signal and the denominato
the rms effective noise, in absorbance or in concentra
units. The denominator of Eq.~1488! can be considered the
limit of detection of the multivariate measurement. The rm
prediction error~PRESS1/2! in a scatter plot aproaches th
value if spurious and unspecific correlations are zero and
slope is one and the reference noise is zero. The covaria
matrix of the spectral noise transforms into the scalar effec
noise in a peculiar way that is similar to a harmonic mean~‘‘1
over inverse’’!, which is the mathematical reason why th
effective noise is often much smaller than believed poss
when looking at a measurement problem for the first time

5.17 Economic Opportunities
The best thing about Eqs.~13! and~14! is that they mean ne
present value to companies because they point to a multi
of opportunities by which to reduce cost and time of develo
ment programs. Today’s R&D efforts are characterized b
sequence of calibration experiments that are time consum
and expensive and, too often, inconclusive. The results in
article can be used to reduce the number of experime
needed to reach the goal. First, significant savings are pos
whenever the pure component response spectrum~g! is
known. All that is needed then is an estimate of the spec
noise and this may be possible under lab conditions, ther
avoiding the expense of collectingin situ calibration spectra.
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The calibrationb vector can be determined in a direct way by
inserting the estimates for the spectral signal and spectra
noise into Eq.~13!, guaranteeing specificity and eliminating
the danger of spurious correlations altogether. If the pure
component response spectrum is not known, then many oth
opportunities still exist, especially when one good calibration
experiment is performed as a starting point. The effect o
additional noise sources on theSNRx of an existing calibra-
tion can then be assessed quantitatively using Eq.~14!. For
example, imagine a single instrument is calibrated to a pro
cess and the task is to transfer this calibration to other instru
ments. One way to do this is to take a population of instru-
ments and measure the instrument-to-instrument noise in th
lab and on an average sample, then ‘‘harden’’ the existing
calibration by adding the instrument-to-instrument noise to
the spectral noise, and decide whether the hardened calibr
tion still has enoughSNRx left. Other opportunities arise from
intelligent optimization of the measurement hardware and
process, always by assessing the effect onSNRx in Eq. ~14!.
This allows quantitative trade-offs between, e.g., the numbe
of wavelength channels used and the final prediction correla
tion coefficient. It also improves communication between the
hardware developers and the applications people by answe
ing many of the questions from the hardware departmen
without having to perform another calibration experiment, to
an extent that a closed-loop feedback path can be establish
between hardware changes and system performance effects
also avoids wasting time on ineffective issues like trying to
improve the baseline stability of a glucose analyzer tomAU
levels~theSNRx in the spectral baseline direction is virtually
zero because of varying amounts of interfering spectra from
other blood components anyway!. Instead, attention will be
focused onto efforts that increase and protect the spectral d
rections with highSNRx . In summary, there are a multitude
of ways in which Eqs.~13! and ~14! can bring significant
savings to companies working in a number of different fields,
and the amount of potential savings is great compared to th
scale of the markets involved. A variety of very useful meth-
ods is described in a patent application by this author.

6 Example
The example chosen is the relatively simple case of thein
vitro measurement of glucose in blood plasma in the mid-IR
spectral range. A data set of 126 plasma samples from diffe
ent, mostly diabetic patients was measured using an IFS-6
Fourier transform infrared~FTIR! spectrometer~Bruker,
Karlsruhe, Germany! and an ATR micro-CIRCLE cell~Spec-
tra Tech, Stamford, CT!. The plasma samples were measured
in a random sequence over a period of 8 days, including 6
measurement days. The reference concentrations of eight d
ferent analytes were determined, including glucose and tota
protein. Experimental details of this are given in Refs. 28 and
29. For our purposes here, no spectra are removed as outlie
and the first 100 spectra collected are used to calibrate and th
last 26 spectra collected are used as the prediction test se
The glucose calibration signal isA( ỹR

TỹR)/100589.7 mg/dL
rms. Plasma absorbance spectra using water as the spect
scopic reference are shown in Figure 4. The measureme
problem is slightly ill posed because the glucose spectrum i
overlapped by other blood components. The standard devia
l
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tion of the calibration spectra can be compared to the gluc
signals shown in Figure 5, where trace C is the result of
author manipulating trace B to what he wished. The five a
sorbance bands between 1200 and 950 cm21 are specific to
glucose. Trace A in Figure 5 is the property-weighting spe
trum ~PWS! of the calibration spectra~200 mg/dL!

3(X̃TỹR)/( ỹR
TỹR) and it has striking similarity to the pure

glucose absorbance. However, some residual correlation
the protein bands in the 1500–1700 cm21 range is also vis-
ible. The correlation coefficient between the glucose ref
ences and the total-protein references of the calibrat
samples wasr 1250.126, which is very low and it is only

Fig. 4 ATR spectra of blood plasma in the mid-IR with water used as
the spectroscopic reference: (A) average calibration spectrum and (B)
standard deviation of the calibration spectra (enlarged and offset by
−0.05 AU).

Fig. 5 (A) Property weighting spectrum of glucose; (B) spectrum of
aqueous glucose solution (offset −2 mAU); and (C) user-manipulated
spectrum of aqueous glucose solution (offset −4 mAU). All scaled to a
concentration of 200 mg/dL.
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Fig. 6 b vectors of calibration scenarios (i)–(iv) described in the text.
The results of the traditional and modern methods overlap almost
perfectly. The b vectors in the expanded wavelength range are offset
by −1.5e5 (mg/dL/AU).
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pec-
because of the large amplitude of the protein absorbanc
bands that the PWS is visibly affected in the 1650 cm21 re-
gion. In fact, the value of 0.126 is not even statistically sig-
nificantly different from zero so that the correlation is very
likely not a small unspecific correlation but, rather, a spurious
effect of this calibration data set. Does this spurious correla
tion have any significant effect on the glucose prediction?
This question is addressed below. Four different scenario
were used for calibration:

~i! the traditional way in the ‘‘specific’’ wavelength
range51198.2–951.4cm21 with 7.7 cm21 intervals
~k533 channels!;

~ii ! the direct way in the specific wavelength range;

~iii ! the traditional way in the ‘‘expanded’’ wavelength
range51198.2–951.4 and 1697.1–1604.5 cm21

with 7.7 cm21 intervals(k546);

~iv! the direct way in the expanded wavelength range.

To repeat, the ‘‘traditional’’ way means that the data mea-
sured were plugged into Eq.~4! to generate theb vector, and
the ‘‘direct’’ way means that the glucose spectral signal and
spectral noise were estimated in a first step and then the es
mates were plugged into Eq.~13! to generate theb vector. For
the direct way, trace C in Figure 5 was used as the glucos
responseg; the reference concentrationsỹR were used to es-

timate ỹ, and the differenceX̃2 ỹgT was used to estimate the
spectral noise. All matrix inversions used in this example are
full rank, i.e., no PLS or PCR but plain least squares. The
1650 cm21 region does not contain any glucose signal but was
intentionally chosen to demonstrate the~insignificant! effect
of the residual spurious correlation to the large protein bands
The b-vector results are shown in Figure 6 and the indepen
dent prediction results are shown in Figure 7. The results o
the traditional and direct methods are virtually identical in this
144 Journal of Biomedical Optics d January 2002 d Vol. 7 No. 1
i-

.

case of a well-designed calibration data set. The results
scenario~iii ! demonstrate that the spurious correlation to t
large protein bands around 1650 cm21 seen in the PWS is no
significant in the calibration, because correlation counts
covariance. Scenario~iv! in Figure 6 demonstrates that th
nonzero wiggle of theb vector in the protein region is no
caused by the spurious correlation there, but is caused by
true glucose signal when it is weighted down by the inve
matrix of the spectral noise.

Figure 8 is shown for completeness. Figure 8~a! shows the

singular values of the 100 calibration spectraX̃ in the ex-
panded wavelength range and Figure 8~b! shows the correla-
tion of the time eigenvectors to the glucose reference conc
trations. The second and third factors clearly dominate
calibration. Figure 8~b! also shows that overfitting is no prob
lem in this particular data set because the time correlation
eigenfactors higher than rank 10 are all virtually zero. Th
using PCR or PLS to eliminate these eigenfactors would h
been redundant here. Figure 8~c! shows the shape of the firs
few spectral eigenvectors and demonstrates the recover
visualization possible in ill-posed measurement systems.

In Refs. 28 and 29 it was hypothesized that reference n
was the dominant contribution to the inaccuracy of the mid-
glucose measurement because of the shape of the scatter
which showed large errors at the high concentration end
vice versa. The reference analyses were performed in tr
cate at a certified clinical reference laboratory in the Diabe
Research Institute in Du¨sseldorf, Germany, which also ra
‘‘gold standard’’ controls at regular intervals. Based on t
results of these controls and using a fairly detailed analys28

the SNRy of the calibration data set was estimated at aSNRy

of 9.8. We now quantifySNRx by plugging the estimates o
spectral signal and noise into Eq.~14!, which gives aSNRx of
12.5. The two results plugged into Eq.~17! show the total to
be at a SNR of 7.7, which is excellent for a biomedical app
cation. Figure 7 is the realization of a scatter plot with
points from a SNR of 7.7.

So, was it necessary to collect blood samples from diab
patients to do this calibration? No. Since the response s

Fig. 7 Prediction scatter plots of scenarios (i)–(iv) described in the text.
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Fig. 8 Visualization of the ill-posed measurement problem. (a) Singu-
lar value decomposition svd(X̃)/A100 of the calibration spectra in the
expanded wavelength range. (b) Correlation of the time eigenvectors
to the glucose reference concentrations. (c) First six spectral eigenvec-
tors, unitless, normalized to unity Euclidian length (No. 1 on top to
No. 6 on the bottom; offset starts at zero and increases in steps of
−0.5).
trum of glucose was known, the direct way of calibratio
could have been used and the spectral noise could have
measured from nondiabetic blood.

So, given that glucose is pretty easy to measure in
mid-IR, would not it be even easier to calibrate, say, album
which has much larger absorbance signals? As discusse
connection with Eq.~31! above, in the past the answer wa
‘‘no’’ because of the strong unspecific correlations betwe
the different proteins in the blood. Today, the answer
‘‘maybe.’’ The fact that the absorbance values of albumin
large is good but has limited value in itself, because corre
tion counts not covariance. Sure, the albumin measureme
better posed than the glucose measurement and instru
noise is of less concern, however, whether or not the stron
overlapping spectra of the other proteins leave enough us
correlation akaSNRx is up for grabs in a future study usin
the direct way of calibration. All results published so f
based on the traditional method are corrupted by unspe
correlations.

If there is one important point to take away from Sec. 6
is this one:b vectors are hard to interpret. Even though t
mid-IR glucose measurement is simple~in the research lab!
and only slightly ill posed, theb vectors in Figure 6 still do
not look ‘‘right.’’ It is the spectral noise that makes them ha
to interpret, though, even when the spectral signal has b
very accurately identified. This author recommends mode
tion in trying to read physics fromb vectors. For one thing,
the human imagination does not work in.three-dimensional
~3D! space. Also, instead of trying to visually solve the dif
cult inverse problem~Could this b vector be right for my
analyte?!, it is much easier to visualize the forward proble
~OK, if this is my signal and this is my noise, then I guess th
has to be myb vector.!.

7 Summary
The so-called statistical calibration models are grounded
the physics of the pure component spectra. There are no
damental differences between statistical and physical cali
tion models because both approaches are merely differen
tempts to realize the same basic idea, viz., to point theb
vector into the direction with maximum spectral signal-t
noise ratio(SNRx). This solution is the spectrometric Wiene
filter and it is optimal in the mean-square prediction err
sense. The rms pure component spectral sig
A( ỹTỹ)/m g (AU) and spectral noise(X̃n

TX̃n)/m (AU2) are
the two main physical building blocks that make up the sp
trometric Wiener filter.

The closed-form solution, Eq.~12!, of the statistical cali-
bration model, Eq.~1!, is given in terms of the pure compo
nent spectral signal, the spectral noise, the signal and nois
the reference method, and a scaling factor between the sa
and reference concentrations. Equation~12! shows in detail
how the traditional solution, Eq.~4!, converges against th
Wiener filter with an increase in the number of statistica
independent calibration samples. Specifically, convergence

quires thatX̃n
Tỹn→0, which means zero effect of referenc

noise; andX̃n
Tỹ→0 which means zero spurious correlation

and zero unspecific correlations. Spurious correlations h
been the biggest challenge and cost driver for many prac
applications of multivariate calibration in the past.@For com-
Journal of Biomedical Optics d January 2002 d Vol. 7 No. 1 145
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pleteness, we should also state the obvious requirement tha
in order to insure optimum performance in thefuture, the
calibration signal A( ỹTỹ)/m g and calibration noise

(X̃n
TX̃n)/m must also be good estimates of the true population

statistics encountered in the future prediction spectra.#
The closed-form solution, Eq.~12!, provides a wealth of

practical benefits. First, it can be used to speed up the conve
gence against the Wiener filter. Second, it can be used t
guarantee specificity. And third, it makes the calibration pro-
cess fully transparent.

The ways by which to inserta priori knowledge are nu-
merous and application specific, but the core statement is thi
Different pieces ofa priori physical knowledge about the
spectra can be combined with any available measured data
estimate the pure component spectral signal and the spectr
noise separately, and then compute the Wiener filter manuall
by plugging the results into Eq.~13!. The effects of spurious
correlations and reference noise are eliminated and the quali
of the estimate of the Wiener filter is limited only by the
quality of the initial estimates of the spectral signal and noise

In a fortunate case, where bothg and(X̃n
TX̃n)/m are known,

collection of further calibration spectra is not necessary at al
because the desired Wiener filter can be computed directly. I
the more typical case, where spectral noise is not known, the
calibration samples still have to be collected to estimate spec
tral noise, however, reference analyses are not necessary
soon as the shape ofg is known. Trade-offs regarding practi-
cally important issues like calibration transfer or long-term
stability can be made by adjusting the estimate of spectra
noise. For example, a calibration can be made ‘‘universal’’ by
including instrument-to-instrument and patient-to-patient
noise.

The distinction between statistical and physical calibration
models is artificial and should be a thing of the past. All
calibration methods try to converge against the Wiener filte
~or a ‘‘slope-corrected’’ version of it! and all usestatistical
estimates~from measured data! of thephysicalquantities that
make up the Wiener filter. Practically speaking, it is often
easier to approach the Wiener filter via the statistical mode
route rather than via the alternative classical model route be
cause it is often easier to measure just the total rms spectr
noise of a specific measurement application rather than t
describe the noise in all its details. The Wiener filter requires
knowledge of a single pure component response spectru
only ~of the analyte of interest! whereas spectral noise can be
determined as a total.

The signal-to-noise ratios of both the reference data
(SNRy) and the spectral data(SNRx) were defined and the
way in which they combine to form the total SNR of the
application was given. Other statistics like the correlation co-
efficient, slope deficiency, scatter error, prediction error, etc.
are highly nonlinear functions of SNR which, in turn, is really
the only measure needed for assessing the quality of a me
surement system and for decision making as to what needs
be done next in the development process.

The limited role of PLS and PCR was discussed. Also, the
danger of spurious correlations in both the larger and the
smaller eigenfactors was discussed in quantitative terms. Th
second most frequent reason for wild goose chase R&D ef
146 Journal of Biomedical Optics d January 2002 d Vol. 7 No. 1
t,

-

:
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l

y

-
s

l

-
l

-
o

e

forts, the riding-the-cliff effect, was also discussed in quan
tative terms.

The results in this paper can provide significant net pres
value to companies in various fields using multivariate ca
brations, e.g., companies developing infrared spectrome
instruments and applications. Significant savings in cost
time for instrument calibration and calibration maintenan
can be realized by reducing the number of expensive cali
tion experiments and by focusing hardware and process
velopment efforts into areas that really count for system p
formance. The most important piece of physical informati
and the key to the most significant savings is knowledge
the shape of the pure component response spectrum o
analyte of interest. In addition, there is an opportunity f
increases in revenue due to increased customer acceptan
calibration-based products.
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