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Multipolar inserting zeros
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Abstract. We proposed the multipolar inserting zeros �MIZ�
code for direct-sequence optical code division multiple ac-
cess �OCDMA� systems. This code is designed to corre-
spond with the judgment based on linear convolution. Simu-
lation results showed that it can provide a lower multiuser
interference than the conventional Gold sequence. With the
same number of users, the bit error rate in the OCDMA sys-
tem coded by MIZ can be reduced by several decuples than
that coded by Gold, and the source power needed to reach a
BER of 1�10−9 can also be reduced by several decibels. So
the performance of OCDMA can be improved. © 2007 Society of
Photo-Optical Instrumentation Engineers.
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1 Introduction

Optical code division multiple access �OCDMA� technol-
ogy is getting more and more attractive for its random
asynchronous accessibility, simple network management,
and high level of security. Recently, several schemes have
been proposed for designing the encoders �decoders� in
OCDMA systems. Among them, encoders �decoders� fabri-
cated by super structure fiber Bragg grating �SSFBG�
technology1 have the advantage of lower multiuser interfer-
ence �MUI� and low cost, and they may have a promising
application. To get higher signal-to-noise ratio �SNR� and
enlarge the system’s soft capability simultaneously, the
code length of the SSFBG encoder is always increasing
from 7/63 �Ref. 1� to 127,2 255,3 up to 511.4 Because these
encoders use bipolar code, all of them are coded with a
Gold sequence, which has been thoroughly studied. How-
ever, from research, we find that this code is not the best
choice for SSFBG encoding. In this paper, the code used in
SSFBG will be optimized. We will propose a new kind of
code �multipolar inserting zeros �MIZ� code� to replace the
conventional Gold sequence, then the MUI can be de-
creased further.

2 SSFBG Coding

SSFBG is defined as a standard fiber grating, that is, with a
rapidly varying refractive index modulation of uniform am-
0091-3286/2007/$25.00 © 2007 SPIE
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litude and pitch, onto which an additional, slowly varying
efractive index modulation profile has been imposed along
ts length. For a SSFBG encoder �decoder�, the slow vary-
ng profile just represents the code sequence �as depicted in
ig. 1� and each code bit correlates with a chip of the fiber
ragg grating �FBG�. In unipolar coded SSFBG, the code
it can only be 0 or 1, then only the amplitude of the FBG’s
efractive index is modulated; while for bipolar coded SS-
BG, the code bit can be 1 or −1, so only the phase of the
BG’s refractive index is modulated.

Because bipolar coded SSFBG can significantly de-
rease the MUI compared with unipolar coded,1 until now
ll the work related to SSFBG coding used a Gold se-
uence, a mature bipolar code. However, as illustrated in
ef. 1, the decoded signal can be regarded as the spread of

nput signal in time domain by the linear convolution of the
ncoder �decoder� code sequences; then a Gold sequence
ay not be the best choice for SSFBG coding because it is

esigned for a circular convolution judgment system. So
e proposed the MIZ code to correspond with SSFBG cod-

ng. The code bit in MIZ can be 0 or exp�i� /n�, so both the
mplitude and phase of the FBG’s refractive index can be
odulated.

Code Construction

e first present a simple MIZ example. In Table 1, four
equences constructed with 0, ±1 are given. These se-
uences have the following characteristics: �1� 0 appears in
he same position; �2� in each sequence, the bit distance

Table 1 A simple MIZ code.

0 −1 0 0 −1 −1

1 0 1 0 0 −1 −1

1 0 −1 0 0 1 −1

1 0 −1 0 0 −1 1

Fig. 1 Outline of SSFBG coding.
February 2007/Vol. 46�2�
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between each two nonzero bits is different; �3� the dot
product of each two sequences is 0. In fact, these are the
general characteristics of MIZ code. A MIZ code with
length n and weight k can be constructed with the following
steps: first, decide which k bits should be set as nonzero, so
as to satisfy characteristic 2; second, choose an appropriate
Hadamard matrix of order k and fill the code’s k nonzero
bits with the matrix’s rows, k rows generate k sequences,
then characteristics 1 and 3 can be satisfied automatically.
If the Hadamard matrix is of polar r, we named the code as
MIZ�r ,k ,n�. Then the code in Table 1 can be named as
MIZ�2,4,7�.

The two steps above for constructing MIZ�r ,k ,n� code
can be described as find out the seed sequence, and polarize
the seed sequence. The details are given below.

3.1 Find Out the Seed Sequence
Seed sequence refers to a sequence constructed of n−k 0’s
and k 1’s, where the bit distances between each two 1’s are
different. Let q=k−1, when q is a prime number or a prime
number’s power, based on the theory of cyclic difference
sets, the seed sequence can be constructed as follows:

1. Find a primitive polynomial of order 3 in finite field
Fq. Represent each nonzero element �i�0� i�q2

+q� in Fq3 as the linear combination of 1 ,�, and �2,
where � is a primitive element in Fq3.

2. Find out all the elements �i in the hyperplane gener-
ated by 1 and �, and then the exponents of these
elements compose a cyclic difference set: S.

3. For each i, 0� i�q2+q, do the shift operation S+ i
�i.e., add i to all the elements in S� under modulus
q2+q+1. Find out the number i* that makes max�S
+ i� reach its minimum.
Finally, all the elements of S+ i* denote the positions
of bit 1’s in the seed sequence.

From this method, for different q, the seed sequence
with minimum length n can be obtained, as shown in
Table 2.

3.2 Polarize the Seed Sequence
The objective of polarization is to construct a Hadamard

Table 2 The minimum length

q Primitive Polynomial Code Length

7 x3+x2+4 36

9 x3+x2+�x+ ��+1� 56

11 x3+x2+5x+7 86

13 x3+x2+7x+2 128

16 x3+x2+ ��3+1�x+ ��2+�� 202

17 x3+x2+12x+1 217

Note: When q=9, � is the root of x2+x+2=0 i
When q=25, � is the root of x2+x+2=0 in F5. W
matrix of order k and polar r, and then fill the nonzero bits
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n the seed sequence with the rows of H�r ,k�. It should be
oticed that not for any k or r, H�r ,k� can be constructed.
able 3 shows the order and polar of the 27 smaller order
adamard matrices.
Their construction methods are illustrated in Refs. 5 and

. Using these matrices, we can polarize the seed sequence
hose weight appears in Table 3 as the matrix’s order.

Correlation Property

rom Sec. 3, it can be found that the self-correlation peak
f MIZ�r ,k ,n� is k since it has k nonzero bits. Also because
he bit distances between each two nonzero bits are differ-
nt, its maximum self-correlation wing and cross-
orrelation peak are both 1. So the ratio of maximum auto-
orrelation wing to autocorrelation peak �W / P� and the
atio of cross-correlation peak to autocorrelation peak
C / P� for MIZ�r ,k ,n� are both 1/k. On the other hand, as
he Gold sequence is designed based on cycle convolution,
n analytical expression for its W / P and C / P under linear
onvolution cannot be obtained and they can only be esti-

ed sequence for different q.

Primitive Polynomial Code Length n

x3+x2+18x+4 284

x3+x2+17x+10 426

x3+x2+2��+2�x+4��+1� 493

x3+x2+�2x+2��2+1� 586

x3+x2+7x+12 681

x3+x2+28x+22 785

hen q=16, � is the root of x4+x+1=0 in F2.
=27, � is the root of x3+2x+1=0 in F3.

Table 3 Hadamard matrices’ order and polar.

�p ,n� H�p ,n� H�p ,n�

2,2� �2,36� �3,36�

2,4� �2,40� �4,4�

2,8� �2,44� �4,8�

2,12� �2,48� �4,12�

2,16� �3,3� �4,16�

2,20� �3,6� �5,5�

2,24� �3,9� �5,10�

2,28� �3,18� �6,12�

2,32� �3,27� �7,14�
of se

n q

19

23

25

27

29

31

n F3. W
hen q
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mated from numerical calculation. In Table 4, W / P and
C / P of the MIZ code and the Gold code with close code
length are compared.

From this table, it can be seen that under close code
length, the W / P and C / P of the MIZ code are much
smaller than those of the Gold code. So the MIZ coded
system will also have a much higher SNR than that coded
with Gold.

5 Simulation Results

To give a further comparison between MIZ and Gold se-
quences, a simulation model of direct-sequence OCDMA
�DS-OCDMA� system is proposed. For convenience, the
dispersive and nonlinear effects in the fiber are ignored.
The power loss within the channel is also not considered.
We use a random signal that obeys Gaussian distribution to
calculate all the noises in the channel, including the shot
noise, thermal noise, quantum noise, and other noise
sources. Six cases are considered: 127-chips, 255-chips,
and 511-chips SSFBG coded by Gold sequence �G-127,
G-255, and G-511�, 128-chips, 284-chips, and 493-chips
SSFBG coded by MIZ code �M-128, M-284, and M-493�.
The simulation results are given in Fig. 2 and Fig. 3.

In Fig. 2, with Pout=500Pn �Pout is output power for
each user’s optical source, and Pn is the average noise
power�, the bit error rate �BER� of the system is calculated

Table 4 The correlation parameters for Gold and MIZ sequence at
close code length.

W /P C /P

127 Gold 0.126 to 0.2126 0.1339 to 0.2205

128 MIZ 0.0714 0.0714

255 Gold 0.1176 to 0.1725 0.1176 to 0.1725

284 MIZ 0.05 0.05

511 Gold 0.0802 to 0.1429 0.0802 to 0.1429

493 MIZ 0.0385 0.0385
Fig. 2 The BER versus the number of users, Pout=500Pn.
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or different users. It can be seen that for each pair—G-127
nd M-128, G-255 and M-284, G-511 and M-493 �because
he pulse width of the input signal is limited by the code
ength, only the sequences with close length in the two
inds of codes have comparability�—the BER in MIZ is
uch lower than that in Gold, and several decuples of im-

rovement can be achieved. In Fig. 3, the minimum Pout for
eaching the BER of 1�10−9 with different number of us-
rs is given. It can be seen that for each comparable pair,
oth the output power and power penalty �denoted by the
lope of the curves� in MIZ are much lower than that in
old. From 1 to several decibels power reduction can also
e achieved for different numbers of users.

Conclusions

e have proposed the MIZ code for SSFBG coding. With
IZ coded SSFBG in DS-OCDMA systems, the MUI can

e significantly decreased compared with that coded by
old, so a better BER performance can be achieved. Be-

ause MIZ code is designed basing on linear convolution, it
an also be used for other systems that use linear convolu-
ion for signal recognition.
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