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Abstract. We demonstrate a simple method of stretching DNA to its full length, suitable for optical imaging and
atomic force microscopy (AFM). Two competing forces on the DNAmolecules, which are the electrostatic attrac-
tion between positively charged dye molecules (YOYO-1) intercalated into DNA and the negatively charged
surface of glass substrate, and the centrifugal force of the rotating substrate, are mainly responsible for the
effective stretching and the dispersion of single strands of DNA. The density of stretched DNA molecules
could be controlled by the concentration of the dye-stained DNA solution. Stretching of single DNA molecules
was confirmed by AFM imaging and the photoluminescence spectra of single DNAmolecule stained with YOYO-
1 were obtained, suggesting that our method is useful for spectroscopic analysis of DNA at the single molecule
level. © 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.19.5.051210]
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1 Introduction
Using x-ray crystallography and molecular modeling, Watson
and Crick1 proposed the double helical structure of DNA in
1953, and Fujiyoshi and Uyeda2 visualized this structure by
using high resolution electron microscopy in 1981. Nowadays,
the DNA is essential to many research fields, such as studying
chronic diseases,3,4 tracing criminals,5 sensing of different gases,
and chemicals.6,7 For more molecular insight, the DNA
researchers are focusing at the single molecule level by using
various microscopy and spectroscopy tools on adsorbed and
stretched DNA molecules.

Several techniques have been developed for the adsorption
and stretching of the DNA molecules: atomic force microscopy
(AFM) cantilever technique, optical or magnetic tweezers tech-
nique, flowing liquid, and flowing gas techniques have been
reported.8–12 But most of these techniques are limited to stretch-
ing only a single DNAmolecule at a time. More productive tech-
niques, such as flowing liquid and gas techniques for stretching
multiple number of DNA molecules are rather sophisticated and
require the trained skills. After the development of the molecular
combing technique, stretching of many DNA molecules at a
time has become more convenient.13,14 This technique requires
chemical modification of the substrate surface. Cetyltrimethyl
ammonium bromide coating,15 gas phase silanization and liquid
phase silanization coating16 are mostly used for these surface
modifications. Thus, with the introduction of this combing tech-
nique, many advanced research areas, such as investigating
DNA replication,17 fluorescence situ hybridization,18 and
genomic physical mapping have been made possible.19 A modi-
fied liquid phase silanization technique using a novel solvent/
silane combination has also been established, which showed

better performance for stretching of more DNA molecules at
a time.20 And polydimethyl-siloxane stamping combined with
soft lithography was also used for stretching DNA, but this proc-
ess tends to somewhat overstretch the DNA molecules.21

Here, we demonstrate a simple and fast method for stretching
DNA molecules on a glass substrate. In this method, the sub-
strate is first modified with piranha and RCA22 treatment, fol-
lowed by spin-coating DNA molecules stained with a dye. This
surface modification of substrate can also be used for the
precise controlling of the cationic or anionic polyelectrolyte
film thickness in monomolecular level.22,23 This protocol dis-
perses and stretches the DNA molecules to their full lengths.
Fluorescence imaging and AFM imaging were used to confirm
the isolation of single DNA molecules. We also performed pho-
toluminescence (PL) spectroscopy of stretched single DNA
molecule stained with dye.

2 Experiments

2.1 Cleaning and Surface Treatment of the Cover
Glasses

Cover glasses (22 × 40 × 1 mm3) were first sonicated for
30 min in 200 mL of 1-M KOH then for 15 min in acetone
to remove all inorganic and organic residues. They were then
sonicated 4 times for 10 min each in distilled water and finally
dried with nitrogen gas. The cleaned and dried cover glasses
were taken into 250-mL beaker and 200-mL piranha solution
was added to it, which was prepared by mixing of strong sulfuric
acid (98.08%) with hydrogen peroxide (30%) at a ratio of 7∶3
while maintaining constant temperature using ice bath to avoid
explosions.24 It was then sonicated for 1 h at 75°C temperatures.
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Piranha solution is a strong oxidizing agent; it hydroxylases the
surface of cover glass by adding OH groups and thus making the
glass extremely hydrophilic.24 Those cover glasses were then
washed several times with distilled water to remove all sulfuric
acid residues and to get uniform distribution of reactive
hydroxyl groups. Afterward, they were again dried with nitro-
gen gas and then sonicated for 1 h at 75°C in 200 mL of RCA
solution. This RCA solution was prepared by mixing distilled
water, hydrogen peroxide (30%), and ammonium solution
(27% to 31%) in the ratio of 5∶1∶1.25 The RCA treatments
enriches the hydroxyl and hydroxylate groups on the cover
glasses, which develops negative charge and extremely hydro-
philic surfaces.

Figure 1(a) shows a schematic sketch of how piranha solu-
tion hydroxylases the substrate and how the RCA solution

develops negative charges over its surface. Figure 1(b) describes
the intercalation of YOYO-1 dye to DNA strands. The molecular
structure of DNA and YOYO-1 molecules are correctly fit for
this purpose. The alkyl functional group on the YOYO-1 dye
molecule and the amine functional group contained on DNA
molecule support intercalation because of hydrogen bonding
to each other. Here, we chose a negatively charged, modified
glass substrate for stretching DNA molecules stained with
YOYO-1. The negative charges distributed over the substrate
surface and the positively charged nitrogen ions of the
YOYO-1 molecules form ionic bonds. Figure 1(c) describes
the process of DNA dispersion and stretching by spin coating.
The strategy used for this approach is the development of com-
petition between the centrifugal force caused by spin coating
and the electrostatic force between the negatively charged

Fig. 1 Schematic diagram for DNA stretching: (a) surface modification of glass substrate after piranha
and RCA treatments; (b) DNA and YOYO-1 dye intercalation process; (c) stretching of DNA molecules
stained with YOYO-1 dye.

Fig. 2 (a) Fluorescence images showing the representative result-stretched λ-DNA molecules obtained
with the concentration of 7.5 ng∕μL DNA-dye solutions. (b) Column diagram illustrates the statistic dis-
tribution of stretched lengths of the DNA molecules.
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surface of the substrate and the positively charged YOYO-1 dye
of the stained DNAmolecules. The YOYO-1 dye has good inter-
calating properties with DNA and becomes highly fluorescent
after intercalating with the DNA molecules.26

2.2 Solution Preparation

Initially, 5 μL of YOYO-1 (1-mM solution in dimethyl sulfox-
ide) dye was mixed with 500 μL of distilled water and the mix-
ture was sonicated for 2 min to make a homogeneous solution.
Then, 200 μL of this solution were mixed with 5 μL of λ-DNA

(0.3 μg∕μL) solution and the mixture was sonicated for 10 to
15 min at room temperature for effective intercalation of
DNA with the YOYO-1 dye. Human placenta DNA
(1 mg∕mL) solution was also prepared by using the same pro-
portions of DNA and dye as for the λ-DNA, but the mixture was
kept overnight at −4°C and only 2 min of sonication was per-
formed for the protection from its shearing. Finally, 20 to 30 μL
of the DNA-dye solution was spin-coated over the surface of the
modified glass substrate with the rotating speed of 4550 rpm for
first 20 s and 5750 rpm for an additional 10 s for optimal
dispersion.

Fig. 3 Fluorescence images showing the result of the dispersion density control of stretched λ-DNA
molecules with the variation of concentration of the DNA. Stretching of DNA molecules with the concen-
tration of (a) 3, (b) 7.5, (c) 22.5, and (d) 37.5 ng∕μL. Column diagrams are displayed along with the fluo-
rescence images to show the statistic distribution of stretched lengths of λ-DNAs.
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2.3 Microscopy

Epi-fluorescence microscopy was performed using the 435-nm
excitation light from Hg lamp and a color CCD camera was used
for the fluorescence imaging of stretched DNA molecules
stained with YOYO-1 dye. For the AFM imaging, we used a
commercial AFM (PSIA, XE 120 system) that stood on a lab-
made confocal microscope which was built around an inverted
optical microscope and shared the sample-scanning stage with
AFM. The AFM imaging was operated in noncontact mode. The
PL spectra and laser confocal fluorescence image were obtained
with the confocal microscope.27 We used an oil-immersion
objective lens with a numerical aperture (NA of 1.4) to focus
the laser light onto the sample. For PL excitation, the 458-
nm line of an argon ion laser was used. The spot size of the
laser beam focused on the sample was estimated to be less
than 300 nm.27 The same objective was used to collect PL sig-
nals which was guided to a 30-cm long monochromator
(equipped with a cooled CCD) through multimode optical
fiber having 100-μm core diameters, which acted as a confocal
detection pinhole. The laser power incident upon the sample and
the acquisition time for each PL spectrum were fixed at 10 μW
and 3 s, respectively.

3 Results and Discussion
Figure 2(a) displays a representative result of stretching of λ-
DNA, double stranded linear DNA having 48,502 base pairs.
The column diagram shown in Fig. 2(b) shows that most of
DNA strands have a length between 20 and 22 μm. The
observed lengths of λ-DNA are somewhat longer than the
expected crystallographic size of 16.2 μm of λ-DNA suggesting
the possibility of overstretching. Overstretching of DNAs has
been mostly due to the nature of the hydrophobic surface.21

Here, piranha and RCA treatment develops the hydrophilic
nature on the surface therefore minimizing the possibility of
overstretching. This lengthening might be due to the relaxation
of DNA strands, caused by the intercalation with the YOYO-1
dye molecules.

We found rotating speeds of spin coater and its time periods
are the controlling keys for the good stretching of DNA mole-
cules on the glass substrate. Rotating speed of 4550 rpm for
first 20 s and 5750 rpm for an additional 10 s was the optimum
condition for good stretching. We found that dominating electro-
static attraction force brings coiling and aggregations of DNA

molecules and dominating centrifugal force tend to cause the
shearing of the DNA molecules. In our techniques, we first
chose so that the attractive electrostatic force is somewhat domi-
nating to give good attachment of DNA molecules on the sub-
strate and subtle adjustment of the rotating speed in an
additional 10 s removed the coiling and aggregation.

We found that density of dispersed DNA molecules
depended upon the solution concentration, dispersed volume,
viscosity, and rotating speed and time. In our technique, we con-
trolled the density of stretched DNA molecules by varying the
DNA concentration in DNA-dye solution. We made four differ-
ent concentrations of λ-DNA solutions with the concentration of
3, 7.5, 22.5, and 37.5 ng∕μL and carried out the stretching of
molecules under the same rotating speed and the time. The num-
ber of DNA molecules was estimated to be 8.5 × 104, 3.5 × 105,
7.6 × 105, and 1.1 × 106 cm−2 for 3, 7.5, 22.5, and 37.5-ng∕μL
concentration, respectively. The result of controlling the
dispersion density is shown in Fig. 3.

Stretching of shorter DNA molecules has been more difficult
than the long DNA molecules. We investigated the stretching of
human placenta DNA molecules by applying our method. The
approximate crystallographic length of these molecules having
∼25;000 base pairs ranges from 6.6 to 9.9 μm. By applying the
same spin coating speed and volume of drop casting as was
determined in stretching of λ-DNA molecules, we were able
to obtain some number of stretched DNA molecules in the
range of 8 to 12 μm, as shown in Fig. 4. Some overstretching
is noticed in the fully stretched DNA molecules, and the yield
for stretching of short-length DNA strands is not as high as
stretching λ-DNA. However, we believe that we showed a rea-
sonable success considering the technical difficulty of stretching
shorter DNA molecules.

An AFM image of a strand of λ-DNA is shown in Fig. 5(a).
Line profiles across the DNA strand are displayed in Fig. 5(b),
where the height of the DNA strand is only ∼2.5 nm, which
confirms the stretching of a single strand of λ-DNA without
the aggregation of multiple DNA strands. The height of
2.5 nm is somewhat bigger than previously reported heights
of a single λ-DNA molecule (∼1 nm).28–30 The intercalated
YOYO-1 molecules with DNA may have increased the height
of a single DNA strand. In the AFM image, some bright spots
are also observed along the DNA strand, which are believed to
be the aggregated YOYO-1 molecules.

Fig. 4 (a) Fluorescence image of human placenta DNAs stretched on glass substrate. (b) Column dia-
gram illustrating the statistic distribution of stretched lengths of the DNA molecules.
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We compared the PL spectrum of stretched λ-DNA stained
with YOYO-1 dye molecule to PL spectrum of pristine YOYO-
1. Figure 6(a) shows a confocal fluorescence image of stretched
λ-DNA molecule stained with YOYO-1 and Fig. 6(b) shows a
comparison between the PL spectra taken from the marked
region of stretched single DNA molecule in Fig. 6(a) and the
spin-coated film of YOYO-1. The stretched DNA molecule
shows the different PL spectrum of which the peak position
lies at 505 nm, while the PL peak position in spin-coated
YOYO-1 film is at 550 nm, and the band width in stretched
DNA molecule is narrower. This kind of PL spectral modifica-
tion comes from the DNA-dye intercalation because it contains
many stably bound chromospheres after the intercalation.26

4 Conclusion
We presented a simple and effective technique for DNA stretch-
ing on a glass substrate for AFM, fluorescence imaging, and PL
spectroscopy. We used the piranha and RCA solutions to
develop the negative charges on the glass substrate and
DNAs were intercalated with YOYO-1 dye to make positive
charge on them. Two competitive forces of the centrifugal
force created during the spin coating process and the electro-
static force developed between the negatively charged surface
and positive charge of the YOYO-1 molecules were optimally
controlled to achieve the isolation of the fully stretched DNA

molecules. The stretched DNA molecules were visualized
and confirmed using fluorescence and AFM imaging. We
also showed that the density of the stretched DNA molecules
could be controlled by concentration of λ-DNA solutions.
Our method also showed a reasonable success in stretching
shorter DNA molecules having length <10 μm. The PL spectro-
scopic study of YOYO-1 stained single DNA molecule showed
a different PL spectrum from YOYO-1 film showing the pos-
sibility of optical study in single DNA molecular level.
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