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Abstract. KillerRed is a unique phototoxic red fluorescent protein that can be used to induce local oxidative stress
by green-orange light illumination. Here we studied phototoxicity of KillerRed targeted to cytoplasmic surface of
lysosomes via fusion with Rab7, a small GTPase that is known to be attached to membranes of late endosomes and
lysosomes. It was found that lysosome-associated KillerRed ensures efficient light-induced cell death similar to
previously reported mitochondria- and plasma membrane–localized KillerRed. Inhibitory analysis demonstrated
that lysosomal cathepsins play an important role in the manifestation of KillerRed-Rab7 phototoxicity. Time-
lapse monitoring of cell morphology, membrane integrity, and nuclei shape allowed us to conclude that
KillerRed-Rab7-mediated cell death occurs via necrosis at high light intensity or via apoptosis at lower light inten-
sity. Potentially, KillerRed-Rab7 can be used as an optogenetic tool to direct target cell populations to either apop-
tosis or necrosis. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this

work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JBO.19.7.071403]
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1 Introduction
Photosensitizers are dyes capable of producing reactive oxygen
species (ROS) in response to visible light illumination.1 ROS
can easily oxidize various biological molecules and thus are
very cytotoxic. Typically, ROS have a short lifetime and act
within a limited distance. Therefore, subcellular distribution
of a photosensitizer determines the target of the oxidative dam-
age. Among chemical photosensitizers, there are molecules tar-
geting preferentially plasma membrane, endoplasmic reticulum
(ER), and Golgi membranes, as well as nucleus, mitochondria,
and lysosomes. Some of them distribute broadly between these
targets, some are more specific, and some relocalize upon light
irradiation.1,2 Localization, along with cellular ATP level, light
dose, and photosensitizer concentration, is a key factor in deter-
mining the modality of light-induced cell death.3

In the classic cell death paradigm, lysosomes were consid-
ered only to be involved in necrotic and autophagic cell
death, and the role of lysosomal proteases was limited to the
nonspecific protein degradation. However, it is now becoming
evident that lysosmes play a far more sophisticated role in cell
death than was previously thought.4 There are models of apop-
tosis that depend on either cathepsins or caspases, and also mod-
els that require both these enzymes for apoptosis initiation and
execution.5 It has been shown for several models that lysosomal
permeabilization followed by release of lysosomal proteolytic
enzymes into the cytosol contributes to the apoptosis execution.6

As suggested by the experiments with lysosomotropic deter-
gents, the extent of lysosomal permeabilization acts as a switch
between alternate cell death pathways. While moderate perme-
abilization initiates apoptotic cell death, extensive destruction of

lysosomes results in necrosis.7,8 In an acridine orange model,
severe photo-oxidation, which resulted in strong lysosomal
damage, caused cellular necrosis, whereas moderate stress,
resulting in only partial lysosomal leakiness, led to apoptosis
with TUNEL-positive nuclei and shrunken cytoplasm.9

Lysosomal damage was shown to trigger mitochondrial mem-
brane permeabilization and cell death via Bax and
Bak—central executioners of apoptotic mechanism. Remarkably,
inhibition of caspases did not affect cell death in this model.10

Thus, lysosomal death pathway may offer an opportunity to effi-
ciently kill cells with impaired caspase-dependent apoptotic cas-
cade, which is not uncommon among cancer cells.

In 2006, we described the first genetically encoded photosen-
sitizer—red fluorescent protein KillerRed capable of ROS pro-
duction in response to green light illumination.11 Recent studies
demonstrated that KillerRed produces superoxide anion radical
and H2O2 but not singlet oxygen.12 KillerRed can be used for
light-induced protein inactivation,13–15 killing specific cell pop-
ulations in vivo,13,16–18 and studying intracellular local oxidative
stress.19–21

Similar to other fluorescent proteins, KillerRed can be tar-
geted to specific cell compartments using well-known protein
localization signals. Importantly, it was demonstrated that
KillerRed induces clearly different cell responses at different
locations. For example, mitochondria-localized KillerRed indu-
ces morphological changes and depolarization of the mitochon-
dria and triggers caspase-dependent or caspase-independent cell
death.11,20 KillerRed at plasma membrane evokes mainly
necrotic cell death by damage of the membrane.13,16–18

Chromatin-associated KillerRed mediates light-induced DNA
damage, activation of reparation machinery, and temporary
blockage of cell division.22,23

Lysosomes represent a promising target for photodynamic
treatment. Here, we studied phototoxicity of KillerRed localized
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to the cytoplasmic surface of lysosomes. We found that in this
localization, KillerRed efficiently mediates light-induced cell
death via either necrosis (at higher light intensity) or apoptosis
(at lower light intensity).

2 Materials and Methods

2.1 Genetic Manipulations

The vector pKillerRed-C (Evrogen, Moscow, Russia) was used
to construct the vector pKillerRed-Rab7, encoding KillerRed
protein fused to Rab7A protein via SGLRSRAE linker.
cDNA encoding human Rab7A protein was amplified using
cDNA from HeLa cells as a template and cloned into XhoI-
EcoRI digested KillerRed-C vector in frame with KillerRed
to generate Rab7A fused to the C-terminus of KillerRed.
Enhanced green fluorescent protein (pEGFP)-N1, pEGFP-Bax
vector (both from Clontech, Mountain View, California), and
pCasper3-GR (Evrogen, Russia) were used for cotransfection
experiments.

2.2 Cell Culture

HeLa and rat embryonic fibroblast REF52 cell lines were used.
Cells were plated at ∼5 × 104 cells per 35 mm glass-bottomed
culture dish and grown in Dulbecco’s modified Eagle’s medium
(DMEM, PanEco, Moscow, Russia) with 10% (v/v) fetal bovine
serum (FBS, Sigma, St. Louis, Missouri) for 24 h before trans-
fection. Transient transfections were performed with the
FuGene® 6 reagent (Roche, Mannheim, Germany), according
to the manufacturer’s protocol using 1 μg of plasmid DNA
per transfection. Stable cell line HeLa-TurboGFP
(Marinepharm, Berlin, Germany) was used as control cells.

2.3 Microscopy

Live cell imaging was performed 24 to 48 h after transfection
in MEM without phenol red (Sigma) supplemented with 10%
(v/v) FBS at 37°C in a 5% CO2 atmosphere. For fluorescence
microscopy, a Leica (Wetzlar, Germany) AF6000 LX imaging
system, based on a DMI 6000 B inverted microscope equipped

with a Photometrics (Tucson, Arizona) CoolSNAP HQ charge-
coupled device camera, was used. A 120 W HXP short arc lamp
(Osram, Munich, Germany) was used as a light source. A stan-
dard TX2 filter set [excitation band pass (BP) 560∕40 nm, emis-
sion BP 645∕75 nm] was used to acquire a red fluorescence
signal and to illuminate the cells; green fluorescence was
imaged using GFP filter set (excitation BP470/40, emission
BP525/50). A Laser Power Meter LP1 (Sanwa, Tokyo,
Japan) was used to measure the total power of the excitation
light. Light power density (W∕cm2) was estimated by dividing
the total power by the area of the illuminated region.

3 Results and Discussion
To avoid low pH-induced denaturation and degradation of
KillerRed by proteases in lysosomal lumen, we directed
KillerRed to the cytoplasmic surface of the lysosome mem-
brane. KillerRed was fused to the small GTPase Rab7, which
is attached to membranes of late endosomes and lysosomes
via a lipid anchor.24,25 KillerRed-Rab7 fusion transiently
expressed in mammalian cells showed expected punctuate pat-
tern of red fluorescence well colocalized with EGFP-Rab7 green
signal (not shown). Thus, we concluded that KillerRed did not
affect localization of Rab7.

We first compared phototoxicity of KillerRed-Rab7 with
that of KillerRed localized to mitochondria (KillerRed-
mito) or plasma membrane (KillerRed-mem), which were pre-
viously shown to efficiently mediate light-induced cell
death.11,13,16–18,20 HeLa cells were transiently transfected
with KillerRed-Rab7, KillerRed-mito, KillerRed-mem, or
KillerRed-C (the latter as a negative control with low photo-
toxicity) and mixed with HeLa stable cell line expressing
green fluorescent protein TurboGFP. Culture dishes with
mixed populations of cells were illuminated with green
LED array (530 nm, 30 mW∕cm2 for 1 h) or kept in the
dark (control cells) and left to grow for 24 h. Then several
random fields of view were analyzed by fluorescence micros-
copy for each dish to compare number of KillerRed- and
TurboGFP-expressing cells. We found that green light illumi-
nation practically did not affect cells expressing free

Fig. 1 Phototoxicity of KillerRed-Rab7 in HeLa cells. Green light induced strong decrease in the number of KillerRed-Rab7-containing cells in a mixed
population of HeLa cells expressing TurboGFP (stably) or KillerRed-Rab7 (transiently). Shown are representative fields of view in green and red chan-
nels and their overlay with transmitted light images for green light illuminated (upper panels) and nonilluminated (bottom panels) dishes (24 h after
illumination). Scale bars 100 μm.
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cytoplasmic KillerRed-C but resulted in a dramatic decrease
of the KillerRed-expressing cells numbers for KillerRed-Rab7
(7.9� 1.9-fold, N ¼ 3, Fig. 1), KillerRed-mito (10.5� 2.5-
fold, N ¼ 3), and KillerRed-mem (6.3� 1.2-fold, N ¼ 3).
As the observed differences between KillerRed-Rab7,
KillerRed-mito, and KillerRed-mem were not statistically sig-
nificant, we concluded that lysosome-associated KillerRed
ensures efficient light-induced cell death similar to previously
reported localizations to mitochondria and plasma membrane.

Next we studied phototoxicity of KillerRed-Rab7 in more
detail using rat embryonic fibroblasts REF52. Cotransfection
with EGFP was used to monitor cell morphology and membrane
integrity. To induce phototoxic effects, cells were illuminated
with green light (530 to 550 nm) using a fluorescence micro-
scope; cell fate was then tracked by time-lapse imaging. At a
relatively low light intensity and dose (75 mW∕cm2 for
20 min), we observed morphological changes (shrinkage and
blebbing) in the transfected cells 40 to 60 min after illumination
[Fig. 2(a)]. At the same time, nontransfected cells remained
intact after illumination. All transfected cells (n ¼ 17) excluded
propidium iodide (PI) and retained EGFP green fluorescence 1 h

after illumination, indicating that the plasma membrane
remained intact. Hoechst33342 staining revealed compaction
of chromatin in the dying cells. Altogether, these features are
characteristic of the apoptotic cell death.26 In contrast, trans-
fected cells (n ¼ 20) illuminated with higher light intensity
and dose (700 mW∕cm2 for 5 min; these conditions did not
kill control nontransfected cells) incorporated PI within 30 to
60 min after illumination and simultaneously lost EGFP
green fluorescence [Fig. 2(b)]. In this case, Hoechst33342-
stained nuclei were round-shaped with smooth edges. Thus,
we concluded that intense green light illumination results in
necrosis26 of KillerRed-Rab7-expressing cells.

In order to assess whether lysosomal proteases are involved
in KillerRed-Rab7-mediated photodamage, we incubated
REF52 cells coexpressing KillerRed-Rab7 and EGFP with
cathepsin inhibitors. Cells were preincubated with 10 μM pep-
statin A (inhibits cathepsin D) or 10 μM E-64 (inhibits cathe-
psins B, L, H) for 1 h prior to the illumination, and then the cells
were illuminated with 700 mW∕cm2 green light for 3 min.
About 60% of the control cells (w/o inhibitor) died within
90 min after illumination, compared to only 30 and 35%
dead cells with pepstatin A and E-64, respectively (n ¼ 20 to
25 cells for conditions). Thus, lysosomal cathepsins play impor-
tant role in KillerRed-Rab7-mediated cell death.

To conclude, KillerRed-Rab7 localized to the cytoplasmic
surface of lysosomes delivers a considerable phototoxicity to
mammalian cells, comparable to that of membrane- and mito-
chondria-localized KillerRed. Similar to lysosome-localized
chemical photosensitizers, KillerRed-Rab7 induces either apop-
tosis or necrosis depending on light intensity and dose. This fea-
ture of KillerRed-Rab7 differs from previously studied
localizations of KillerRed. Thus, KillerRed-Rab7 is particularly
useful for models where controllable switching between apop-
totic and necrotic cell death is desirable. Being genetically
encoded, KillerRed with different intracellular localization
tags represents a useful optogenetic tool to study local oxidative
stress and eliminate specific cell populations.
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