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Abstract. We present a highly scalable Monte Carlo (MC)
three-dimensional photon transport simulation platform
designed for heterogeneous computing systems. Through
the development of a massively parallel MC algorithm
using the Open Computing Language framework, this
research extends our existing graphics processing unit
(GPU)-accelerated MC technique to a highly scalable ven-
dor-independent heterogeneous computing environment,
achieving significantly improved performance and soft-
ware portability. A number of parallel computing tech-
niques are investigated to achieve portable performance
over a wide range of computing hardware. Furthermore,
multiple thread-level and device-level load-balancing strat-
egies are developed to obtain efficient simulations using
multiple central processing units and GPUs. © The Authors.
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The Monte Carlo (MC) method has been widely regarded as the
gold standard for modeling light propagation inside complex
random media, such as human tissues. MC, however, suffers
from low computational efficiency because a large number of
photons have to be simulated to achieve the desired solution
quality. Sequential MC simulations require extensive computa-
tion and long runtimes, easily taking up to several hours.1,2 In
recent years, studies on massively parallel MC algorithms have
successfully reduced this computational cost down to seconds or
minutes, due largely to the “embarrassingly parallelizable”
nature of MC and the rapid adoption of low-cost many-core pro-
cessors such as general-purpose graphics processing units
(GPUs). Alerstam et al.3 first reported a proof-of-concept
using GPUs to accelerate MC in a homogeneous domain. In

2009, Fang and Boas4 reported the first GPU-accelerated MC
algorithm to model light transport inside a three-dimensional
(3-D) heterogeneous domain, and released an open-source
tool—Monte Carlo eXtreme (MCX).

Nearly all GPU-based MC photon transport frameworks
reported in the literature,3–7 including MCX, have been written
exclusively using the CUDA programming model developed by
NVIDIA.8 Because CUDA is specifically targeted for NVIDIA
GPUs, most existing GPU MC codes cannot be executed on
a central processing unit (CPU) or a high-performance GPUmade
by other manufacturers. In recent years, a generalized parallel
computing solution—Open Computing Language (OpenCL)—
has emerged.9 OpenCL was designed to target scalability and
portability in high-performance computing. The OpenCL speci-
fication defines an open-standard parallel programming language
for multicore CPUs, GPUs, and field-programmable gate arrays
(FPGAs). It specifies a set of generalized programming interfaces
to efficiently utilize the computing resources of dissimilar
processors.9 A program written with the OpenCL computing
model can be natively executed on cross-vendor processors,
including not only NVIDIAGPUs but also Intel and AMD CPUs
and GPUs. Furthermore, the OpenCL model employs a just-in-
time (JIT) compilation model for parallel code execution.10

The OpenCL JIT compiler translates the source code, referred
to as a “kernel,” to device assembly at runtime. This allows
processor-specific optimizations to be applied to the code, achiev-
ing improved portability and efficiency.

This work aims to improve and generalize our previously
developed massively parallel photon transport simulation plat-
form through the adoption of a heterogeneous computing frame-
work using the OpenCL programming model. The generalized
algorithm permits users to launch efficient photon transport sim-
ulations on not only NVIDIA GPUs but also CPUs, GPUs, and
systems-on-a-chip processors, made by many vendors.11

The porting of MCX CUDA kernels to the OpenCL pro-
gramming framework is relatively straightforward. A diagram
of the generalized MC algorithm (MCX-CL) is shown in
Fig. 1. The simulations start on the host (a CPU) by processing
the user’s inputs. The host then decides on how to partition the
total number of simulated photons modeled based on the tar-
geted hardware characteristics to best leverage multiple comput-
ing devices (see below). The photon simulation kernel is then
dynamically compiled by the OpenCL’s JIT compiler for
each device. The simulation parameters, including domain set-
tings, optical properties, and independent random number seeds
for each thread, are allocated, initialized, and copied to each
device. Once this preparation step is complete, the host instructs
all activated devices to start photon transport simulations simul-
taneously. Each computing device launches a specific number of
parallel computing threads, determined by the respective hard-
ware settings (discussed below). Within each computing thread,
a photon simulation loop, (Fig. 1 in Ref. 4) is carried out. The
host waits for all devices to complete and then reads the solutions
(3-D fluence and detected photon data) back to the host memory.
Postprocessing is then performed to yield the final solution.

Several observations have been made during the implemen-
tation of MCX-CL. On a heterogeneous system, the JIT com-
piler and the execution library of different devices are
independently implemented by their respective vendors. As a
result, the same kernel may exhibit different execution behaviors
on different OpenCL implementations. For example, using
the AMD OpenCL implementation, multiple MCX kernels*Address all correspondence to: Qianqian Fang, E-mail: q.fang@neu.edu
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launched in the command queue are executed asynchronously
(i.e., in parallel). With the NVIDIA OpenCL library, however,
kernels in the same command queue are serialized. One has to
launch multiple threads in order to use multiple NVIDIA devi-
ces in parallel. Moreover, the AMD OpenCL library supports
both AMD GPUs and CPUs, but the NVIDIA OpenCL imple-
mentation only supports NVIDIA GPUs. Another caveat of
OpenCL is the lack of intrinsic atomic operations for float-
ing-point numbers. A workaround has been proposed12 when
such operations are desired.

Next, we characterize and optimize MCX-CL simulation per-
formance across a range of devices, including CPUs and GPUs
produced by Intel, NVIDIA, and AMD. We first run a profile-
based analysis on a small set of selected devices, generalize the
observations, and then develop a number of optimization strat-
egies that can deliver portable performance to a wide range of
devices. For profiling, we use AMD’s CodeXL toolset for AMD
CPUs and GPUs and VTune Amplifier for Intel CPUs/GPUs.

A number of observations can be made from our profiling
results. First, the MCX-CL kernel is compute-intensive. On
an AMD R9 Nano GPU, 91 million computing instructions
are executed when running a benchmark problem; in compari-
son, only 0.5 million memory instructions were executed.
Second, the number of parallel threads that MCX-CL can launch
and execute is bounded by the available register space—the fast-
est memory in the device. For the AMD R9 Nano GPU, the
available “vector register” space can only accommodate up to
768 threads (divided into 12 × 64-thread groups; a 64-thread
group is referred to as a “wavefront” in AMD’s architecture)
to run simultaneously inside a compute unit (CU, also called
a “multiprocessor” in NVIDIA literature). The third observation
is that the complex workflow of the MC simulation algorithm
results in 62% “thread divergence,” which means that 62% of
the time, only a subset of the threads inside a wavefront is exe-
cuting instructions—caused by the presence of if/then/else
branches. Because all 64 threads inside a wavefront are designed
to execute instructions in lock-step fashion (single-instruction
multiple threads), in the event that a subset of the threads
need to take a different execution path, the wavefront has to
be serialized, resulting in low execution efficiency.

With these key characteristics in mind, we have implemented
multiple optimization strategies to maximize MCX-CL’s simu-
lation efficiency. First, to make the mathematical computation
more efficient, we have utilized the “native” math functions—
a set of functions with hardware-dependent accuracy provided

by the OpenCL library (referred to Opt1). Second, to better uti-
lize the available computing resources (in particular, register
space), we have developed an automatic algorithm to calculate
a “balanced” number of threads to ensure that all available regis-
ters are occupied (referred to Opt2). Generally speaking, a low
thread number can result in low utilization of computing resour-
ces, whereas an excessively high number of threads can result in
overhead due to frequent switches between queued thread
blocks. An optimized thread number can balance resource
utilization to address both inefficiencies. In this work, this
thread number is estimated by multiplying the maximum con-
current threads per CU with the available CUs on the GPU.
Additionally, we simplify the control flow of the kernel (referred
to Opt3), aiming to reduce thread divergence. This is also
expected to reduce the complexity of the kernel, providing
the JIT compiler with a better chance to optimize the execution
and allocate fewer registers.

In Fig. 2, we report the MCX-CL simulation speed (in
photons∕ms) for three benchmarks (B1, B2, and B2a), before
and after applying the aforementioned optimization strategies.
Our baseline simulation is configured with a fixed thread num-
ber (N ¼ 214) and a workgroup size of 64. All three benchmarks
simulate 108 photons inside a 60 × 60 × 60 mm3 domain, with
an absorption coefficient μa ¼ 0.005 mm−1, a scattering coeffi-
cient μs ¼ 1.0 mm−1, an anisotropy g ¼ 0.01, and a refractive
index n ¼ 1.37. The medium outside of the cube is assumed
to be air. In B2 and B2a, a spherical inclusion (μa ¼
0.002 mm−1, μs ¼ 5.0 mm−1, g ¼ 0.9, n ¼ 1.0) of radius
15 mm is placed at the center of the cube. In B1, a photon is
terminated when it arrives at the cube’s boundary; in B2 and
B2a, a reflection calculation is performed at the sphere and
cube boundaries based on Snell’s law. The difference between
B2 and B2a is that B2a applies atomic operations to avoid data
races when accumulating the fluence rate in each voxel, whereas
B2 uses nonatomic floating-point additions.4 In all three cases, a
pencil beam along þz-axis enters the domain at (30, 30, 0) mm.
Each speed value reported is obtained by running three simula-
tions and selecting the highest speed. All tests were performed
on Ubuntu 14.04, using the nvidia-375 driver for NVIDIA
GPUs, amdgpu-pro 16.30.3 for AMD GPUs, and opencl-1.2-
6.2 for Intel CPUs and GPUs. All simulations are verified to
produce correct solutions. For comparison purposes, we also
run the B2a benchmark using MCX (implemented in CUDA)
on all NVIDIA GPUs. A speed comparison between MCX-
CL and MCX is shown as an inset in Fig. 2.

From Fig. 2, the first two optimization techniques consis-
tently produced faster simulations, although the magnitude of
the improvements vary from device to device. The acceleration
due to hardware-optimized math functions (Opt1) yielded some
decent speedup on AMD GPUs (7% to 12%), Intel GPUs and
CPUs (11% to 17%), and a smaller improvement on NVIDIA
GPUs (3% to 10%). Combining Opt1 with Opt2 (i.e., optimized
thread/workgroup size), we have observed a significant
improvement for the AMD GPUs (63% to 74%), along with
a moderate improvement for Intel and AMD CPUs (12% to
21%); the speed of NVIDIA GPUs is also noticeably improved
(6% to 12%). However, the results when applying simplification
of control flow (i.e., Opt3) are mixed—for some NVIDIAGPUs
(1080Ti, 980Ti, Titan X, 1050Ti), a noticeable speedup was
observed; for two other NVIDIA GPUs (1080, 590) and all
AMD and Intel CPUs/GPUs, we encountered a minor reduction
in speed (1% to 7%). We want to note that the GTX 1050Ti

Fig. 1 Generalized parallel Monte Carlo photon transport simulation
workflow for heterogeneous systems.
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experienced a 1.9× speedup with the help of Opt3. We believe
the variation in speedup when applying control flow simplifica-
tion is a result of the complex interplay between kernel complex-
ity and compiler heuristics when optimizing the kernel.
Nevertheless, the advantage of using a GPU over a CPU in pho-
ton transport simulation is clear. The AMD RX Vega 64 GPU
performs 23× faster in B2/B2a tests compared to using the dual-
Xeon E5-2658v3 CPUs (with all 48 CUs), 61× faster than the
i7-7700k CPU (8 CUs) and 42× to 49× faster than Ryzen 1700X
CPU (16 CUs). Moreover, comparing the runtimes between B2
and B2a on different devices, the average overhead due to
atomic operations is only 5% for all NVIDIA GPUs newer
than GTX 590, which experiences a 138% overhead; the aver-
age overhead is 31% and 46% for AMD and Intel GPUs, respec-
tively. It is interesting to note that the B2a benchmark actually
runs faster (∼20%) than the B2 test on the NVIDIA 980Ti and
Titan X (both belong to the “Maxwell” architecture) when all
three optimizations are used. We believe this is related to archi-
tecture-specific compiler optimizations.

We also estimate the throughput per core (i.e., a stream proc-
essor in a GPU or a physical core in a CPU) and throughput per
watt for all tested devices using the B1 benchmark with Opt1
and Opt2. Without surprise, CPUs report a significantly higher
per-core performance than GPUs (256 and 143 photons∕ms∕
core for i7-7700K and Ryzen 1700X, respectively, comparing
to 115 photons∕ms∕core for Intel HD 520 GPU and on average
9 and 6 photons∕ms∕core for AMD and NVIDIA GPUs,
respectively). This suggests that although CPUs have more
powerful cores, GPUs excel in MC simulations with many
less powerful cores. For the throughput per watt calculations,
we divide the throughput by the thermal design power of
each processor. The Intel HD 520 GPU reports the highest
power efficiency at 184 photons∕ms∕W, followed by AMD
(145 photons∕ms∕W) and NVIDIA (60 photons∕ms∕W)
GPUs; that for the CPU is between 11 and 12 photons∕ms∕W.

From the inset in Fig. 2, it appears that the CUDA-based MC
is 2.1× to 5.4× faster than the OpenCL version on NVIDIA
GPUs, except for the GTX 1050Ti. It is well-known that
NVIDIA does not fully support OpenCL, as the current driver
lacks the latest features supported by the hardware, such as float-
ing-point atomic operations (natively supported in CUDA),
therefore, resulting in the lower performance.

To efficiently run MCX-CL simulations in a heterogeneous
computing environment, we have also investigated dynamic
workload-balancing strategies. Two types of load-balancing
optimizations have been investigated: (1) improving load bal-
ance across all threads within a single execution and (2) improv-
ing load balance between computing devices (GPUs and CPUs)
when multiple devices are simultaneously used.

To address the first challenge, we have developed an in-
workgroup dynamic load-balancing strategy to reduce the run-
time differences between different threads. In this scheme, the
total photon count is first divided by the number of launched
workgroups (also called a “block” in NVIDIA CUDA) as the
target workload of each workgroup. Within each workgroup,
each thread first checks if there are any remaining photons, if
so, the thread will launch a new photon and decrease the
group workload by 1; otherwise, the thread is terminated.
The group workload is an integer stored in the local memory
and is “atomically” decreased by each thread.

In Fig. 3(a), we show a comparison between an equal distri-
bution of photons between threads (thread level) and the work-
group dynamic load-balanced simulations (workgroup level).
On NVIDIA’s GPUs, the dynamic workload generates a
minor (1% on average) improvement over the uniform thread
workload; on AMD GPUs, a 13% speedup is observed.

Because MCX-CL supports photon simulations with multi-
ple computing devices, to maximize performance in such cases,
an efficient device-level load-balancing strategy is needed. On
most of the tested devices, the runtime (T) of MCX-CL exhibits
a roughly linear relationship with the size of the workload (pho-
ton number—n) as T ¼ a × nþ T0. The nonzero intercept T0 is
related to the host and device overhead. Both the slope a and
intercept T0 are device-dependent. For each device, a and T0

can be estimated by running two pilot simulations with small
photon numbers (here we use n1 ¼ 106 and n2 ¼ 5 × 106 for
such estimations).

When multiple devices are run concurrently, the “optimal”
partitioning of the total workload requires us to solve a lin-
ear-programming problem. Here, three device-level load-
balancing strategies are studied by distributing the total photon
number using S1: the number of stream-processors (i.e., cores),
S2: the throughput of the device estimated using 1∕a, and
S3: the solution to a linear-programming problem (using

Fig. 2 The MCX-CL simulation speed (photons∕ms) on different computing devices after applying three optimization schemes: Opt1: using hard-
ware-native math library; Opt2: using optimized thread configuration; and Opt3: reducing thread divergence. The throughputs in the B1, B2, and
B2a benchmarks are shown as a stacked-bar and the four bars for each hardware are baseline (•), Opt1 (+), Opt1+2 (×), Opt1+2+3 (#), displayed
from left to right. The inset shows the speed comparison between the OpenCL and CUDA versions of the algorithm on NVIDIA GPUs.
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fminimax in MATLAB). These strategies are compared to the
“ideal” case, i.e., summing the individual device speeds.

In Fig. 3(b), we compare the simulation speed using bench-
mark B1 and multiple computing devices with different capabil-
ities. The total photon number is partitioned based on the three
algorithms mentioned above. From the results, both the through-
put (S2) and optimization-based (S3) load-partitioning methods
achieve a 10% to 14% speedup over the core-based approach
(S1). Based on the near-identical results for S2 and S3, we con-
clude that throughput (approximated by 1∕a) can serve as a
practical metric for multidevice load partitioning. For the
four devices tested (1080Ti, 980Ti, R9 Nano, RX480), we
find an overhead (T0) of 53, 63, 631, and 652 ms, respectively,
accounting for 1%, 0.8%, 12%, and 11% of the total runtime at
n ¼ 108, respectively. A simple load-balancing scenario is
tested and shown in Fig. 3(c), in which 1 to 8 identical
GPUs (NVIDIA GTX 1080Ti) are simultaneously used in a sin-
gle simulation. A nearly linear speedup is observed in all three
benchmarks; in comparison, the ideal cases (assuming no over-
head) are shown in dashed lines.

In summary, we have successfully implemented 3-D photon
transport simulations using OpenCL to support a heterogeneous
computing environment and multivendor hardware. Guided by
profiling results, we explored various optimization techniques to
improve simulation speed and achieved a 56% average perfor-
mance improvement on AMDGPUs, 20% on Intel CPUs/GPUs,
and 10% on NVIDIA GPUs. We also observed a significant
speed gap (2.1× to 5.4×) between the CUDA-based MC simu-
lation (MCX) and MCX-CL on most NVIDIA’s GPU, reflecting
the vendor’s priority in supporting CUDA. We expect such
underperformance will be reduced in the future as NVIDIA
updates its OpenCL driver. Although the profiling analyses
were only performed on selected devices, our optimization strat-
egies show very good scalability and speed improvements on a
range of tested devices, including GPUs newer than those being
profiled. In addition, workgroup-level and device-level load-
balancing strategies have been investigated. Our dynamic work-
group load-balancing strategy produced a 1% and 13% speedup
for NVIDIA and AMD GPUs, respectively. When multiple
computing devices are used concurrently for photon simula-
tions, efficient load-partitioning strategies, based on the device
throughput and linear-programming models, achieved higher
throughput than core-based load partitioning.

The availability of MCX-CL makes high-performance photon
transport simulations readily available on a large array of modern
CPUs, GPUs, and FPGAs. Improved computational speed can
be obtained by launching simulations on multiple computing
devices, even if from different vendors. Furthermore, our insights
on the MC simulation kernel generalize our previous findings

from NVIDIAGPUs to a heterogeneous computing environment.
In the next step, we will implement mesh-based MC13 for hetero-
geneous computing systems and compare execution performance
to MCX and MCX-CL. The source code for MCX-CL is avail-
able at http://mcx.space/mcxcl/.
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