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1 Introduction
Photoacoustic imaging (PAT) is a recent biomedical imaging
modality that can provide high-resolution images of optical
contrast of heterogeneous media such as biological tissues.1–13

In a typical PAT experiment, a short pulse of near-infrared
(NIR) photons is sent into the medium to be probed. Photons
then propagate inside the medium and a portion of them gets
absorbed during the propagation process. The energy absorbed
by the medium leads to the heating of the medium, and the heat-
ing then forces the medium to expand. The medium cools down
when the remaining photons exit, and the cooling process leads
to the contraction of the medium. The expansion and contraction
of the medium initializes a pressure change inside the medium,
which then propagates in the form of ultrasound waves. The
ultrasound signals on the surface of the medium are then mea-
sured. These measurements are used to infer information on
the optical properties of the medium.14–31

We study here the problem of using PAT to image two-
photon absorption properties of tissue-like heterogeneous
media.32–42 Here by “two-photon absorption,” we mean the
absorption event where an electron transfers to an excited state
after simultaneously absorbing two photons whose total energy
exceed the electronic energy band gap.43–45 Even though it
occurs less frequently in normal biological tissues than its
single-photon counterpart (i.e., the absorption event where an
electron transfers to an excited state after absorbing the energy
of a single photon), two-photon absorption is extremely useful
in practice. In recent years, various types of materials with
strong two-photon absorptions have been proposed and engi-
neered as exogenous contrast agents for different optical
imaging modalities.46–49 Many such materials can be tuned to
be associated with specific molecular signatures. Therefore,
they can be used to visualize particular cellular functions and
molecular processes inside biological tissues.

There have been extensive experimental investigations on
measuring two-photon absorption properties of various materi-
als using PAT.33,34,39–42,50,51 Even though many of these studies
use special experimental techniques, they do show collectively
the feasibility of experimentally detecting contributions from
two-photon absorptions to measured photoacoustic signals.
That is, these studies showed that it is indeed possible to have
strong enough photoacoustic effect from two-photon absorption
that can be experimentally detected. However, it has not been
satisfactorily demonstrated so far how to, if it is possible at
all, separate the photoacoustic effect due to single-photon
absorption from that due to two-photon absorption. In the rest
of this paper, we demonstrate, computationally, through a
model-based reconstruction algorithm, that it is possible to get
quantitative reconstructions of both single-photon and two
photon absorptions and therefore separate them, if indeed the
two-photon absorption contribution to the photoacoustic effect
can be detected in the measured acoustic data.

2 Mathematical Models
The main physical processes involved in a two-photon photo-
acoustic tomography (TP-PAT) experiment are the propagation
of NIR photons and the propagation of ultrasound signals in the
underlying medium. In optically heterogeneous media such as
the biological tissues, it is well established now that the propa-
gation of NIR photons can be modeled with a diffusion equation
for the local density of photons.17,23,30,52 The main difference
between TP-PAT and the regular PAT is that two-photon absorp-
tion, in addition to single-photon absorption, needs to be con-
sidered in the model for light propagation. Let us denote by
Ω ⊆ Rd (d ≥ 2) the medium to be probed and denote by
uðxÞ the density of photons at position x ∈ Ω. We then have
that uðxÞ solves the following semilinear diffusion equation:53
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EQ-TARGET;temp:intralink-;e001;63;752

−∇ · γðxÞ∇uðxÞ þ σðxÞuðxÞ þ μðxÞjujuðxÞ ¼ 0; in Ω
uþ κγ ∂u

∂ν ¼ gðxÞ; on ∂Ω ;

(1)

where ∇ is the usual gradient operator with respect to the spatial
variable x, and the function gðxÞ models the incoming NIR illu-
mination source on the boundary ∂Ω. The function γðxÞ is the
diffusion coefficient of the medium, and the functions σðxÞ and
μðxÞ are the single-photon absorption and the (intrinsic) two-
photon absorption coefficients, respectively. The unit outer
normal vector at point x on the boundary ∂Ω is denoted by
νðxÞ, and the notation ∂u

∂ν ¼ ν · ∇u is used in the Robin boundary
condition. The coupling parameter κ in the boundary condition
is the rescaled extrapolation length. Its value depends on many
parameters and can be explicitly calculated in specific settings.54

The main difference between the nonlinear diffusion equa-
tion (1) and the classical linear diffusion equation for modeling
light propagation in PAT is the extraterm μðxÞjujuðxÞ that mod-
els the two-photon absorption mechanism. It is not the objective
of this work to carefully derive the current model from first prin-
ciples for light propagation in diffusive media. However, we do
want to offer the following insights. First, in probabilistic rep-
resentation, the solution to the diffusion equation, the photon
density uðxÞ (after being normalized by the source strength), is
the probability of finding a photon at the location x. Therefore
uu is the probability of finding two photons simultaneously at x.
This probability, multiplied by the absorption rate μ, is the total
two-photon absorption at x. The reason we use juju, not uu, is to
ensure that the solution to the resulting nonlinear diffusion equa-
tion, that is u, is nonnegative, as is required by physics; see more
discussions in Ref. 53. Second, one can indeed derive our
nonlinear diffusion model from the nonlinear radiative transfer
model used in Ref. 32 if the underlying medium is highly
scattering media, following classical results in kinetic theory.54

Therefore, Eq. (1) is not a completely artificial model.
The nonlinear term μjuju makes the model Eq. (1) harder to

solve computationally than the classical linear diffusion model.
It is important to emphasize that this nonlinear diffusion model
is indeed a well-posed mathematical model that admits a unique
solution for a given illumination source g under classical
assumptions on regularities of the coefficients and the domain.
Classical numerical discretization schemes, such as finite
element and finite difference methods, can be used to discretize
the equation. Iterative schemes such as the Newton’s method
can be used to solve the resulting nonlinear algebraic system;
see more detailed discussions in Ref. 53.

The initial pressure field generated by the photoacoustic
effect in TP-PAT is the product of the Grüneisen coefficient
of the medium, Γ, and the total energy absorbed locally by
the medium, σuþ μjuju. Note that here the total absorbed
energy consists of two components, the contribution from
single-photon absorption, σu, and the contribution from two-
photon absorption, μjuju. Therefore, we write the initial pres-
sure field as53

EQ-TARGET;temp:intralink-;e002;63;154HðxÞ ¼ ΓðxÞ½σðxÞuðxÞ þ μðxÞjujuðxÞ�; x ∈ Ω; (2)

where the Grüneisen coefficient is nondimensionalized, and it
describes the efficiency of the photoacoustic effect of the under-
lying medium.

The change of pressure field generates ultrasound waves that
propagate following the standard acoustic wave equation, the

same model equation for ultrasound propagation in the regular
PAT11

EQ-TARGET;temp:intralink-;e003;326;730

1
c2ðxÞ

∂2p
∂t2 − Δp ¼ 0; in ð0;þ∞Þ × Rd

pðt; xÞ ¼ χΩHðxÞ; ∂p∂t ðt; xÞ ¼ 0; in ft ¼ 0g × Rd
; (3)

where pðt; xÞ is the pressure field, and cðxÞ is the speed of the
ultrasound waves. In most biological applications of PAT, the
ultrasound speed c is assumed known and is often taken as
the speed of ultrasound in water since most biological tissues
behave like water to ultrasound waves. The function χΩ is
the characteristic function of the domain Ω. It should be under-
stood as the extension operator that extends the initial pressure
field inside the medium Ω to the whole space Rd, that is,

EQ-TARGET;temp:intralink-;sec2;326;592χΩHðxÞ ¼
�
HðxÞ; x ∈ Ω
0; x ∈ Rd \ Ω :

The acoustic datum measured in TP-PAT is the ultrasound
signal on the surface of the medium, pjð0;T�×∂Ω, for time T suf-
ficiently long, and very often, we need to measure data that are
generated from multiple illumination sources. From the mea-
sured data, we are interested in reconstructing the physical coef-
ficients ðΓ; γ; σ; μÞ of the underlying medium. Note that among
all the coefficients, the two-photon absorption coefficient μ is
the only new coefficient that appears in TP-PAT. The coeffi-
cients ðΓ; γ; σÞ are also quantities to be reconstructed in the regu-
lar PAT.3,5,13,17,30,52,55–61 Mathematical analysis in Ref. 53 shows
that one can not simultaneously reconstruct all four coefficients
ðΓ; γ; σ; μÞ even from data collected from multiple illuminations,
if all illumination sources have the same optical wavelength. We
will therefore only focus on the two absorption coefficients
ðσ; μÞ in the rest of the paper. The reconstruction of all four coef-
ficients using multispectral data following the ideas in Refs. 3,
21, 55, 62–66 will be the subject of a future work.

3 A Two-Step Reconstruction Method
We now present a numerical method for the reconstruction of the
absorption coefficients ðσ; μÞ. We follow the standard two-step
procedure in quantitative PAT image reconstructions. In the first
step, the qualitative step, we reconstruct the initial pressure field,
H in Eq. (2), from measured acoustic data using the wave equa-
tion (3). In the second step, the quantitative step, we reconstruct
the absorption coefficients from the initial pressure fieldH using
the nonlinear diffusion equation (1). We emphasize that the rea-
son for choosing this two-step reconstruction strategy, instead of
the more recent one-step algorithms such as those in Refs. 67–
69, is that the two-step method allows us to avoid solving
the nonlinear diffusion equation (1) in the quantitative
reconstruction step in this specific setup; see more discussions
in Sec. 3.2.

3.1 Qualitative Step: Reconstructing Initial Pressure
Fields

In the qualitative step of TP-PAT, we aim at reconstructing
the initial pressure field H from measured datum pjð0;T�×∂Ω.
This step is the same as that in the regular PAT, which has been
extensively studied in the past. Many efficient algorithms have
been proposed; see for instance Refs. 4, 27, 31, 70–82 for an
incomplete list of works in this direction. We implement here
a simple least-square-based algorithm for the reconstruction.
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To simplify the presentation, let us denote by A the linear
operator that takes the initial pressure field HðxÞ to the acoustic
field on the boundary ∂Ω, i.e.,

EQ-TARGET;temp:intralink-;e004;63;719pðt; xÞjð0;T�×∂Ω ¼ AH: (4)

Our objective is to invert the operator A to find H for a given
measurement p�ðt; xÞjð0;T�×∂Ω. We solve this problem in the
least-square sense, that is, we search for H as the minimizer
of the misfit functional

EQ-TARGET;temp:intralink-;e005;63;643ΦðHÞ ≔
Z

T

0

Z
∂Ω

ðp − p�Þ2dx dt ≡ kAH − p�k2L2ðð0;T�×∂ΩÞ:

(5)

Standard least-square theory then implies that the minimizer H
solves the normal equation

EQ-TARGET;temp:intralink-;e006;63;564A⊤AH ¼ A⊤p�; (6)

where A⊤ denotes the L2-adjoint of the operator A. We there-
fore need to invert the self-adjoint operator A⊤A to find H.

We solve the normal equation (6) using the conjugate gra-
dient method.83 In a nutshell, the method seeks a solution of
the normal equation by iteratively choosing “conjugate” or
“A⊤A-orthogonal” directions, and minimizing the magnitude
of the residual, kAH − p�k2L2ðð0;T�×∂ΩÞ, in each of these conju-
gate directions.

More precisely, let Hk be the value of H at iteration k and let
fhigki¼1 be the set of “A

⊤A-orthogonal” directions constructed
in the first k iterations. The directions fhigki¼1 satisfy the A⊤A
orthogonality relation, ∀ 2 ≤ i ≤ k

EQ-TARGET;temp:intralink-;sec3.1;63;400hhi;A⊤AhjiL2ðΩÞ ¼ 0; ∀ 1 ≤ j ≤ i − 1:

We now search for an update of Hk in the direction hk such
that the residual is minimized after the update. That is, we min-
imize the residual ΨðαÞ over α with

EQ-TARGET;temp:intralink-;sec3.1;63;333

ΨðαÞ ¼ kAðHk þ αhkÞ − p�k2L2ðð0;T�×∂ΩÞ

¼ hAðHk þ αhk −HÞ;AðHk þ αhk −HÞiL2ðð0;T�×∂ΩÞ

¼ hHk þ αhk −H;A⊤AðHk þ αhk −HÞiL2ðΩÞ;

where it was recalled p� ¼ AH. The optimality condition
immediately gives that the step length at iteration k is

EQ-TARGET;temp:intralink-;sec3.1;63;241αk ¼
hhk;A⊤AðHk −HÞiL2ðΩÞ

hhk;A⊤AhkiL2ðΩÞ
¼ hhk; skiL2ðΩÞ

hhk;A⊤AhkiL2ðΩÞ
;

with sk ¼ A⊤½AðHk −HÞ�:

Note that if we define rk ¼ AðHk −HÞ ¼ AHk − p� as the
residual of the original problem at step k, then sk ¼ A⊤rk is
simply the so-called normal residual corresponding to rk. The
updated value Hkþ1 is then obtained as

EQ-TARGET;temp:intralink-;sec3.1;63;130Hkþ1 ¼ Hk þ αkhk;

while the normal equation residual sk is updated as

EQ-TARGET;temp:intralink-;sec3.1;326;752skþ1 ¼ sk − αkA⊤Ahk:

The conjugate gradient method updates the search direction
following:

EQ-TARGET;temp:intralink-;sec3.1;326;708hkþ1 ¼ skþ1 þ
kskþ1k2L2ðΩÞ
kskk2L2ðΩÞ

hk:

We summarize the conjugate gradient method in Algorithm 1
following the routine in Ref. 83, with an accuracy tolerance
parameter ε > 0 and the maximal number of iteration K.

It is often the case that a regularization term is added to the
misfit functionalΦðHÞ in Eq. (5). In our implementation, we did
not include a regularization term in ΦðHÞ. When it is needed,
the two algorithmic parameters ε and K can both serve as mech-
anisms to regularize the reconstruction. We did not pursue in this
direction in this study, but we understand that tuning regulari-
zation can refine some of the reconstruction results that we show
in the next section.

Let us mention that even though the operator A and its
adjoint operatorA⊤ are called in each iteration of the algorithm,
these operators are never explicitly formed in the numerical
implementation. We only need to know the actions of these
operators on given vectors. For instance, to evaluate Ah for a
given hðxÞ, we solve the acoustic wave equation (3) with initial
condition pð0; xÞ ¼ hðxÞ and record the solution on the boun-
dary of Ω: pðt; xÞjð0;T�×∂Ω. To evaluate A⊤r for a given rðt; xÞ,
we first solve the following adjoint wave equation:

EQ-TARGET;temp:intralink-;e007;326;440

1
c2ðxÞ

∂2v
∂t2 − Δv ¼ 0; in ð0; TÞ × Ω

vðt; xÞ ¼ 0; ∂v∂ν ðt; xÞ ¼ r; in ð0; TÞ × ∂Ω
vðt; xÞ ¼ 0; ∂v∂t ðt; xÞ ¼ 0; in ft ¼ Tg × Ω

: (7)

Algorithm 1 CG algorithm for qualitative reconstruction.

1: Set parameters ε and K ; set k ¼ 0

2: Set initial guess H ¼ 0

3: Evaluate the residual r ¼ p� −AH and the normal residual s ¼ A⊤r

4: Set initial search directions h ¼ s

5: Evaluate the size of normal residual γ ¼ ksk2
L2ðΩÞ

6: while k ≤ K and γ∕kA⊤p�k2
L2ðΩÞ > ε do

7: g ¼ Ah

8: α ¼ γ∕kgk2L2ðð0;T �×∂ΩÞ
9: H ¼ H þ αh

10: r ¼ r − αg, s ¼ A⊤r

11: β ¼ ksk2L2ðΩÞ∕γ

12: γ ¼ ksk2
L2ðΩÞ

13: h ¼ s þ βh

14: k ¼ k þ 1

15: end while
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We then take A⊤r ¼ − ∂v
∂t ð0; xÞ. The derivation of Eq. (7) is

straightforward and has been documented previously,67,84 so
we omit the details here.

3.2 Quantitative Step: Reconstructing Absorption
Coefficients

The second step, the quantitative step, is to reconstruct the opti-
cal coefficients from the initial pressure field H recovered in
the first step. In recent years, this step was the subject of
many computational studies in the case of the regular PAT; see,
for instance, Refs. 3, 14, 16, 17, 23, 30, 52, 55–61, 84–86 for
a partial list of references.

Our main objective here is to develop an algorithm to recon-
struct the absorption coefficients ðσ; μÞ in TP-PAT to show that
we can separate two-photon absorption from single-photon
absorption. We assume that both the Grüneisen coefficient Γ
and the diffusion coefficient γ are known already, for instance
from a regular PAT reconstruction.

We assume that we have reconstructed initial pressure
fields generated from J ≥ 2 illuminations sources. We denote
by fHj ¼ Γ½σuj þ μjujjuj�gJj¼1

those initial pressure fields,

where uj denotes the solution of the nonlinear diffusion equa-
tion with illumination sources gj ð1 ≤ j ≤ JÞ.

We first reconstruct from the initial pressure fields fHjgJj¼1
,

using the fact that Γ and γ are known, the quantities

EQ-TARGET;temp:intralink-;e008;63;463σuj þ μjujjuj ¼
Hj

Γ
; 1 ≤ j ≤ J: (8)

This allows us to replace the term σuj þ μjujjuj in the nonlinear
diffusion equation (1) for source j to obtain the following linear
diffusion equation for uj ð1 ≤ j ≤ JÞ

EQ-TARGET;temp:intralink-;e009;63;389−∇ · ðγ∇ujÞ ¼ −
Hj

Γ
in Ω; uj þ κ

∂uj
∂ν

¼ gj on ∂Ω:

(9)

We can solve this linear elliptic equation to reconstruct uj, again
since Γ and γ are known. Therefore, we can reconstruct the
quantities

EQ-TARGET;temp:intralink-;e010;63;301σ þ μjujj ¼
Hj

Γuj
; 1 ≤ j ≤ J: (10)

Therefore, at each point x ∈ Ω, we have the following system to
determine σ and μ

EQ-TARGET;temp:intralink-;sec3.2;63;234

0
B@

1 ju1j
..
. ..

.

1 juJj

1
CA� σ

μ

�
¼

0
BB@

H1

Γu1

..

.

HJ
ΓuJ

1
CCA:

We then reconstruct ðσ; μÞ by solving this small linear system, in
least-square sense, at each point x ∈ Ω, to get

EQ-TARGET;temp:intralink-;e011;326;752�
σ

μ

�
¼

2
664
�

1 · · · 1

ju1j · · · juJj

�0BB@
1 ju1j
..
. ..

.

1 juJj

1
CCA
3
775
−1

×
�

1 · · · 1

ju1j · · · juJj

�0BBB@
H1

Γu1

..

.

HJ
ΓuJ

1
CCCA

¼
 

J
P

J
j¼1 jujjP

J
j¼1 jujj

P
J
j¼1 jujj2

!−1
0
@
P

J
j¼1

Hj

ΓujP
J
j¼1

Hjjujj
Γuj

1
A:

(11)

We have assumed here that the small 2 × 2 matrix

EQ-TARGET;temp:intralink-;sec3.2;326;562

�
J

P
J
j¼1 jujjPJ

j¼1 jujj
PJ

j¼1 jujj2
�

in Eq. (11) is invertible at each point x ∈ Ω. Theoretical analysis
in Ref. 53 shows that one can indeed invert this matrix if the
illuminations are selected carefully, that is, the illuminations
are sufficiently different from each other. In our numerical
experiments, we observe that this matrix is invertible for almost
all illuminations that we have tried.

We now summarize the quantitative reconstruction step in
Algorithm 2.

Let us emphasize two important features of the quantitative
reconstruction algorithm. First, even though the reconstruction
of the coefficients ðσ; μÞ from initial pressure field H is a
nonlinear inverse problem, our reconstruction method is non-
iterative. Therefore, there is no convergence issues at all. The
method is guaranteed to give the correct reconstruction result.

Algorithm 2 Noniterative algorithm for quantitative reconstruction.

1: for j←1; J do

2: Reconstruct the quantities σuj þ μjuj juj following Eq. (8)

3: end for

4: for j←1; J do

5: Solve the diffusion equation (9) to reconstruct uj

6: end for

7: for j←1; J do

8: Reconstruct the quantities σ þ μjuj j following Eq. (10)

9: end for

10: for each point x ∈ Ω do

11: Evaluate ω ¼PJ
j¼1 juj ðxÞj, θ ¼PJ

j¼1 juj ðxÞj2, ξ ¼
PJ

j¼1
Hj

Γuj
and

ζ ¼PJ
j¼1

Hj juj j
Γuj

12: Evaluate ðσ; μÞ using the formula:
�
σðxÞ
μðxÞ

�
¼
� J ω
ω θ

�−1� ξ
ζ

�
13: end for
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Second, the reconstruction algorithm is computationally cheap.
The major computational cost of the reconstruction algorithm is
the solution of the J linear diffusion equations in Eq. (9).
The cost in dealing with the algebraic calculations in the rest
of the algorithm, in Eqs. (8), (10), and (11), is almost negligible.

4 Numerical Implementations
We now provide some details on the numerical implementation
of the two-step algorithm for quantitative TP-PAT image recon-
structions. We limit ourselves to two-dimensional simulations.
Nothing changes in three-dimensional case besides the increas-
ing of the computational cost. We use the notational convention
x ¼ ðx; yÞ for the spatial variable.

Since the units of the physical quantities in the nonlinear dif-
fusion model (1) and the acoustic wave Eq. (3) are very differ-
ent, we first normalize the problems by taking the following
convention. We take the spatial domain Ω to be the unit square
Ω ¼ ½0;1�2 and set the ultrasound speed c ¼ 1. We set the time
interval where the measurements are taken as ð0; T� with T ¼ 3.
This convention means that if we take the size of Ω in units of
cm2, the ultrasound speed at 1.5 × 105 cm∕s, then T ¼ 3 equals
20 μs. We observed in our numerical simulations (see discus-
sions in the next section) that these choices of Ω, c, and T
for the wave equation are sufficient to capture all of the physical
wave signals generated by the initial conditions HðxÞ we have
tested, at least up to the numerical discretization errors. For the
diffusion problem, we setU0 ¼ 1011 as the characteristic photon
density involved in the system, and normalize the solution u and
the boundary illumination against U0.

The wave equation (3) is posed on R2, not inside Ω. We
therefore have to make a truncation to have a finite domain
for the wave simulation. We do this by using the technique
of perfectly matched layers (PML).87,88 We surround our physi-
cal domain Ω with a PML region of thickness 0.2 to have the
computational domain Ω̃ ¼ ½−0.2; 1.2�2. We use a split-field
PML scheme (see, e.g., Refs. 87 and 88). This scheme reduces
to the undamped wave equation in the physical domain Ω,
coupled with a damped wave split-field scheme in the PML
region Ω̃ \ Ω. Ultimately, we end up solving the system of equa-
tions, assuming again that c ¼ 1

EQ-TARGET;temp:intralink-;sec4;63;308

8>>>>><
>>>>>:

∂px
∂t þ τxpx ¼ ∂vx

∂x ;
∂py

∂t þ τypy ¼ ∂vy
∂y ;

∂vx
∂t þ τxvx ¼ ∂p

∂x ;
∂vy
∂t þ τyvy ¼ ∂p

∂y ;

where p ¼ px þ py, τxðxÞ and τyðxÞ are absorptive terms
supported only in the PML region Ω̃ \ Ω. In our simulations,
we use τxðxÞ ¼ τxðx; yÞ ¼ χx>1ðxÞαðx − 1Þ2 þ χx<0ðxÞαx2 with
α a given constant. Similarly, τyðx; yÞ ¼ τxðy; xÞ. Initial and
boundary conditions can be transformed into this first-order
formulation in a straightforward way.

We discretize these equations using standard second-order
finite differences in space, and first-order finite differences in
time on uniform spatial-temporal grids. The spatial grid cover-
ing Ω̃ consists of 141 × 141 spatial points

EQ-TARGET;temp:intralink-;sec4;63;113fðxi; yjÞ∶xi ¼ i∕100; yj ¼ j∕100;−20 ≤ i; j ≤ 120g;
and the temporal grid covering ½0; T� ¼ ½0;3� consists of 3001
grid points

EQ-TARGET;temp:intralink-;sec4;326;752ftk∶tk ¼ k∕1000;0 ≤ k ≤ 3000g:

The velocity fields vx and vy are solved for at staggered half-
time steps, i.e., at times ftkþ1∕2g, using values of the split pres-
sure fields px and py at the usual time steps ftkg. The pressure
field p ¼ px þ py is then updated using the velocity fields at
these staggered times. Hence, the scheme is known as a leapfrog
scheme and reduces to standard second-order finite difference
time stepping in the physical domain Ω where τx ¼ τy ¼ 0.
With our spatial step size h ¼ 1∕100 and our temporal step
size Δt ¼ 1∕1000, we clearly satisfy the CFL stability condition

EQ-TARGET;temp:intralink-;sec4;326;631

ðcΔtÞ2
h2

¼ 104

106
¼ 10−2 < 1;

which is necessary for the explicit finite difference scheme we
implemented to be stable.

To solve the adjoint wave equation (7), we first perform
the change of variable t 0 ¼ T − t to transform the equation into
an initial value (instead of final value) problem. We then apply
the same type of spatial-temporal discretizations to the new
equation.

The nonlinear diffusion equation (1) and the linear diffusion
equations involved in the reconstruction process, mainly in
Eq. (9), are all discretized using a standard first-order finite
element method with about 12,000 elements on a triangular
mesh of Ω. The nonlinear algebra system resulting from the dis-
cretization of Eq. (1) is solved with the Newton’s method. In the
forward simulation, the initial pressure field H that is needed
in the acoustic wave equation (3) is linearly interpolated
from the quadrature points of the triangular elements. In the
reconstruction process, the initial pressure field H reconstructed
in the qualitative step, i.e., the first step, is interpolated back to
the quadrature points of the triangular elements as datum for the
quantitative reconstruction step. These interpolation processes
induce additional noise in the reconstruction process besides
the artificial white noise we add to the acoustic data that we dis-
cuss below.

To generate synthetic data, we solve the nonlinear diffusion
equation (1) with the true physical coefficients to generate H
and then solve the acoustic wave equation (3) to produce
pðt; xÞjð0;T�×∂Ω. To add noise to the synthetic data, we use the
following strategy. At each point x ∈ ∂Ω where the ultrasound
signal is measured, we generate an independent Gaussian
“white-noise” process wxðtÞ, t ∈ ð0; T�, that satisfies

EQ-TARGET;temp:intralink-;sec4;326;258 E½wxðtÞ� ¼ 0; and; E½wxðtÞwxðsÞ� ¼ δðt − sÞ;

where E denotes the operation of taking expectation. We then
scale the white noise wxðtÞ according to the power of the signal
pðt; xÞ, to generate noisy data p̃ðt; xÞ with a specified noise-to-
signal ratio (NSR) η

EQ-TARGET;temp:intralink-;sec4;326;183p̃ðt;xÞ ¼ pðt;xÞþ η

�R T
0 p2ðt 0;xÞdt 0R
T
0 w2

xðt 0Þdt 0
�
1∕2

wxðtÞ; t ∈ ð0; T�:

In our numerical simulations in the upcoming section, we set
the tolerance level ε ¼ 10−6 in Algorithm 1 and run this
algorithm for a maximum number of K ¼ 1000 iterations.
The quantity kAHk − p�k2L2ðð0;T�×∂ΩÞ is usually guaranteed to
decrease monotonically [see, e.g., the discussion in (Ref. 83,
Sec. 7.4)]. However, it is clear from our description above
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that our implementation of the operators A and A⊤ constitute
only approximate adjoints of one another due to errors associ-
ated with the finite difference approximations and PML region
in the wave solver. Therefore, we also force Algorithm 1 to
exit if nonmonotonic behavior of kAHk − p�k2L2ðð0;T�×∂ΩÞ is
encountered.

5 Numerical Simulations
We now present some numerical simulations to demonstrate the
performance of our quantitative reconstruction strategy. Our
main objective is to show that the photoacoustic data measured
in TP-PATallow quantitative separation of the single-photon and
the two-photon absorption coefficients. In all the simulation
results below, we set the Grüneisen coefficient Γ ¼ 1 and the
diffusion coefficient γðxÞ ¼ 0.02þ 0.01 sinð2πyÞ. Moreover,
we use data collected from four different illumination sources.
The first source function takes a constant value the top and right
sides of the boundary and is zero everywhere else. That is,

EQ-TARGET;temp:intralink-;sec5;63;553g1ðxÞ ¼
�
1; x ∈ ð0;1Þ × f1g ∪ f1g × ð0;1Þ
0; otherwise

:

The second to fourth sources, g2, g3, and g4, are obtained by
rotating g1 by π∕2, π, and 3π∕2, respectively, along the boun-
dary. Note again that g1 is normalized against U0 already.

To measure the quality of the reconstructions, we use relative
L2 errors. Let f be a quantity to be reconstructed, ft its true
value, and fr the reconstructed value. Then, the relative L2

error of the reconstruction, denoted by EL2ðfÞ, is the ratio
between the size of the error in the reconstruction and the
size of the true quantity. That is,

EQ-TARGET;temp:intralink-;sec5;63;409EL2ðfÞ ¼ kft − frkL2ðΩÞ
kftkL2ðΩÞ

:

5.1 Experiment I

In the first group of numerical simulations, we attempt to recon-
struct the absorption coefficients ðσ; μÞ shown in Fig. 1. We first
perform reconstructions, using Algorithm 1, on the initial pres-
sure field H generated by the four illumination sources fgig4i¼1

from acoustic data of different noise levels. The quality of the
reconstructions, in terms of the relative L2 errors, is summarized
in Table 1, third column. We observed, as has been confirmed
by many works in the PAT community, the qualitative
reconstruction is of high quality. We show in Figs. 2 and 3
some reconstructions with illuminations g1 and g2, respectively.

Fig. 1 The true absorption coefficients, (a) σ ðcm−1Þ and (b) μ × U0 ðcm−1Þ, used to generate synthetic
data in experiment I.

Table 1 Quality of reconstructions in experiment I. Shown are rela-
tive L2 errors in the reconstructions of various initial pressure fields
(third column) and the corresponding absorption coefficients in
Fig. 1 (fourth column) from ultrasound data with different noise levels
(controlled with the NSR η).

NSR Illumination EL2 ðHÞ ½EL2 ðσÞ; EL2 ðμÞ�
η ¼ 0.00 g1 4.05 × 10−4 ð0.46;3.33Þ × 10−2

g2 6.66 × 10−4

g3 6.22 × 10−4

g4 4.96 × 10−4

η ¼ 0.01 g1 7.13 × 10−3 ð1.71;4.08Þ × 10−2

g2 7.30 × 10−3

g3 8.25 × 10−3

g4 8.00 × 10−3

η ¼ 0.05 g1 1.78 × 10−2 ð3.80;6.33Þ × 10−2

g2 1.80 × 10−2

g3 1.77 × 10−2

g4 1.93 × 10−2

η ¼ 0.10 g1 2.68 × 10−2 ð5.15;8.01Þ × 10−2

g2 2.63 × 10−2

g3 2.48 × 10−2

g4 2.55 × 10−2
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Shown are the true initial pressure field H, the reconstructed H
using clean data (NSR η ¼ 0.0) and noisy data with NSR
η ¼ 0.1. The relative L2 errors of the reconstruction in Fig. 2
are 0.04% for the case of η ¼ 0.0 and 2.7% for the case of
η ¼ 0.1, whereas those for the reconstructions in Fig. 3 are
0.06% for the case of η ¼ 0.0 and 2.6% for the case of η ¼ 0.1.

Let us mention that even though we can see clearly the two-
photon absorbing inclusions in the true initial pressure field H
and the reconstructed H, the true absorption coefficients in
Fig. 1 are very different from the H in Figs. 2 and 3. In other
words, knowing H does not provide us enough information
about the true absorption coefficients unless we perform the
next step, the quantitative step, of the reconstruction.

In Fig. 4, we show the reconstructions of the coefficient pair
ðσ; μÞ in Fig. 1 from the initial pressure fields we obtained in
the qualitative step, using Algorithm 2. Shown, from left to
right, are reconstructions using noisy data with NSR η ¼
0.00, η ¼ 0.05, and η ¼ 0.10, respectively. The quality of
the reconstructions is very high with relative L2 errors
ð1.71;4.08Þ×10−2, ð3.80;6.33Þ×10−2, and ð5.15;8.01Þ×10−2,
respectively; see the fourth column of Table 1 for the
reconstruction result using data with η ¼ 0.01, which we did
not show here since it is too similar to the case with η ¼ 0.00.

The reconstructions in Fig. 4 show that by performing quan-
titative reconstructions, we can separate the two-photon absorp-
tion coefficient from the single-photon absorption coefficient

from the initial pressure field. This is clearly important for prac-
tical applications of TP-PAT where two-photon absorption is
the main quantity of interest.

5.2 Experiment II

In the second group of numerical simulations, we study the
reconstruction of the absorption coefficients ðσ; μÞ shown in
Fig. 5. In Fig. 6, we present the true initial pressure filedH com-
puted with illumination source g1, and the reconstructions of this
H with clean ultrasound data (NSR η ¼ 0.00) and noisy data
(NSR η ¼ 0.10). By visual inspection, we can see the presence
of both the single-photon absorption and the two-photon absorp-
tion inclusions inH. The reconstructions are impressively good,
with relative L2 errors 9.30 × 10−4 and 2.51 × 10−2 for η ¼ 0.00
and η ¼ 0.10, respectively, even whenH is this complicated. We
have also performed similar reconstructions for H generated
from the other three illumination sources g2, g3, and g4. The
relative errors in the reconstructions are summarized in Table 2,
third column. Despite its slight degeneration as noise level
increases, the quality of the reconstructions of H remains
high at moderate noise levels.

To separate μ from σ in the initial pressure fields, we perform
quantitative reconstructions using Algorithm 2. In Figs. 7(a)–7(c),
we show the reconstructions from data with NSR η ¼ 0.00,
η ¼ 0.05, and η ¼ 0.10, respectively. The relative L2 errors in

Fig. 2 (a) The initial pressure field HðxÞ generated from illumination g1 using the true absorption
coefficients in Fig. 1, (b) as well as the reconstructions of H using ultrasound data with NSR η ¼ 0.0
(clean data) and (c) NSR η ¼ 0.1.

Fig. 3 The same as Fig. 2 except that the illumination source used is g2.
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Fig. 4 The absorption coefficients (a) σ and (b) μ × U0 reconstructed using noisy data with NSR η ¼ 0.00,
η ¼ 0.05, and η ¼ 0.10 (from left to right).

Fig. 5 The true absorption coefficients, (a) σ ðcm−1Þ and (b) μ × U0 ðcm−1Þ, used to generate synthetic
data in experiment II.

Fig. 6 (a) The initial pressure field HðxÞ generated from illumination g1 using the true absorption
coefficients in Fig. 5, (b) as well as the reconstructions of H using ultrasound data with NSR η ¼ 0.00
(clean data) and (c) NSR η ¼ 0.10.
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the reconstructions are ð2.19; 5.26Þ × 10−2, ð4.31; 7.73Þ × 10−2,
and ð5.60; 9.34Þ × 10−2, respectively. Once again, we see good
separation of the two different absorption coefficients, which
were mixed together in the initial pressure fields H in Fig. 6.
The quantitative reconstruction results are summarized in
Table 2, fourth column.

6 Concluding Remarks
We studied in this paper quantitative image reconstructions in
TP-PAT, aiming at reconstructing the single-photon absorption
and the two-photon absorption coefficients of biological tissues
from measured ultrasound signals generated by the photoacous-
tic effect of light absorption. We introduced a nonlinear diffu-
sion equation as the model for light propagation in TP-PAT and
presented a two-step image reconstruction strategy, including
a noniterative quantitative reconstruction step, based on this
model. We showed, with computational simulations, that while
single-photon absorption and two-photon absorption are mixed
in the images of the initial pressure fields, they can be stably
separated from each other through the quantitative reconstruc-
tion step, using Algorithm 2, even when the ultrasound data
contain relatively high level of random noises. Our numerical
simulations confirm the results of mathematical analysis of
the problem in a previous publication.53

Compared to the case in the regular PAT, quantitative image
reconstruction in TP-PAT is far less investigated, theoretically
or computationally, to date. Our numerical simulations show
great promise in the quantitative imaging of the two-photon
absorption. However, there are still a lot of issues that need
to be addressed. For instance, it would be very interesting to
test the two-step reconstruction method we proposed against
experimentally measured data to see what types of resolution
and contrast we can get for the two-photon absorption coeffi-
cient. It would also be important to develop efficient algorithms
to reconstruct the diffusion coefficient γ in addition to the
absorption coefficients. Last but not the least, reconstructing

Table 2 Quality of reconstructions in experiment II. Shown are rel-
ative L2 errors in the reconstructions of various initial pressure fields
(third column) and the corresponding absorption coefficients in Fig. 5
(fourth column) from ultrasound data with different noise levels.

NSR Illumination EL2 ðHÞ ½EL2 ðσÞ; EL2 ðμÞ�
η ¼ 0.00 g1 9.30 × 10−4 ð2.19; 5.26Þ × 10−2

g2 1.16 × 10−3

g3 1.17 × 10−3

g4 9.38 × 10−4

η ¼ 0.01 g1 8.09 × 10−3 ð2.77; 5.78Þ × 10−2

g2 8.25 × 10−3

g3 7.79 × 10−3

g4 7.68 × 10−3

η ¼ 0.05 g1 1.72 × 10−2 ð4.31; 7.73Þ × 10−2

g2 1.82 × 10−2

g3 1.82 × 10−2

g4 1.78 × 10−2

η ¼ 0.10 g1 2.51 × 10−2 ð5.60; 9.34Þ × 10−2

g2 2.48 × 10−2

g3 2.40 × 10−2

g4 2.79 × 10−2

Fig. 7 Reconstruction of the absorption coefficient pair (a) σ and (b) μ × U0 in Fig. 5 using data at different
noise levels (NSR η ¼ 0.00, η ¼ 0.05, and η ¼ 0.10 from left to right).
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the Grüneisen coefficient with multispectral data, following for
instance the ideas in Refs. 3, 21, 55, 62–66, could also be
extremely useful as well.
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