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Abstract. Iterative phase retrieval (IPR) has developed into a feasible and simple computational method to
retrieve a complex-valued sample. Due to coherent illumination, the reconstructed image quality is degraded
by speckle noise arising from a laser. Accordingly, partially coherent illumination has been introduced to alleviate
this restriction. We apply weighted feedback modality into multidistance and multiwavelength phase retrieval to
realize high-contrast and fast imaging. In simulation, it is proved that IPR based on weighted feedback accel-
erates the convergence in partially coherent illumination and speckle illumination. In experiment, the resolution
chart and biological specimen are reconstructed in lensless and lens-based systems, which also demonstrate
the performance of weighted feedback. This work provides a simple and high-contrast imaging modality for IPR.
Also, it facilitates compact and flexible experimental implementation for label-free imaging. © 2018 Society of Photo-

Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.23.1.016015]
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1 Introduction
As a beam of light passes through a sample, the cumulation
of phase delay reflects much intrinsic information on the
sample, such as thickness, refractive index, and composition.1,2

However, the current detection device (CCD or CMOS) is inca-
pable of acquiring the phase data, which led to the appearance of
phase retrieval techniques. Technically, the lost phase could be
reconstructed by an interferometric system3 and computational
imaging.4,5 Without the reference beam, the computational
imaging method has been developed by researchers with great
interest and has been successfully applied in super resolution,6–8

three-dimensional imaging,9,10 and quantitative phase imaging.11,12

At present, this technique is classified into two types, namely
transport of intensity equation (TIE)13–15 and iterative phase
retrieval (IPR) method.16,17 TIE is a direct numerical phase
solver so that it does not require phase unwrapping, and thus
computationally efficient. But TIE merely retrieves the phase-
only or amplitude-only object, which is not suitable for imaging
a complex-valued sample. On the contrary, IPR method could
reconstruct complex-valued images of different samples.18–20

As the origin, the Gerchberg–Saxton algorithm16 recon-
structed the object’s phase via computationally propagating
back-and-forth between the real and reciprocal space and impos-
ing the constraints from a pair of amplitude distributions. The
hybrid input output algorithm17 replaced the requirement of the
known amplitude distribution in real space with a loose support
and introduced the feedback to escape the stagnation. But these
two algorithms are both sensitive to the initial guess and have to
get a rough guess of the object for a better reconstruction.
Alternatively, multi-image phase retrieval is capable of achiev-
ing high-accuracy image reconstruction by means of measure-
ment diversity. Without prior knowledge, the ptychographic
iterative engine (PIE) algorithm21–23 retrieves a complex-valued

object from a series of diffraction patterns obtained by an over-
lapped pinhole-scanning across the sample. Apart from the lat-
eral scanning strategy, there emerged plenty of other different
forms to introduce degrees of freedom in the imaging system,
including multidistance,24–27 multiwavelength,28,29 multibeam
illumination,30 and spatial light modulation.31 Unlike the PIE
method, multidistance phase retrieval (MDPR)25 transversely
records diffraction patterns at different positions and iteratively
computes the complex amplitude of the object, whose stability
and robustness have been demonstrated.26,27 Multiwavelength
phase retrieval (MWPR)28 has a similar performance but utilizes
the multiwavelength illumination. These two methods without
the need of lateral shift along x- and y-directions actually reduce
the complexity of experiment.

However, the imaging quality of these methods is severely
hampered by speckle noise from the coherent light source. To
alleviate the speckle noise effect, partially coherent illumina-
tion32,33 has been adopted, which effectively reduces the speckle
noise but holds the coherence assumption according to the van
Cittert–Zernike theorem. Zheng et al.6 mounted a programmable
light-emitting diode (LED) array in conventional wide-field
microscopy for multiangle illumination and retrieved quantita-
tive complex field distribution of the sample. Similarly, Tian
et al.,34 Chen et al.,35 and Lee et al.36 utilized patterned LED
illumination for bright-field, dark-field, and phase-contrast
imaging. Until now, partially coherent illumination has become
a popular and feasible strategy to realize the high-resolution
imaging with low-cost hardware. In our previous work,37 the
weighted feedback was proposed to accelerate the convergence of
MDPR under coherent illumination of a fiber laser. But the
imaging contrast is heavily obstructed by speckle noise. Also, the
reconstruction of the translucent sample is incompetent in that
case.
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In this work, we will show that IPR based on weighted feed-
back acceleration modality can easily realize high-contrast
and fast-converging reconstruction for different samples under
partially coherent and speckle illumination, which are demon-
strated by simulation and experiment in both lensless and lens-
based systems. For the lensless system, a programmable LED
array is used for partially coherent illumination, and the imaging
quality of MDPR is demonstrated to be better compared with
the fiber laser illumination. By imbedding weighted feedback,
the imaging contrast of a biological specimen is enhanced for
both MDPR and MWPR methods. To further exhibit its perfor-
mance, we apply MDPR in the application of noninvasive
imaging through the scattering layer, in which the convergence
speed is significantly improved. For the lens-based system,
MDPR is utilized to image the phase of a translucent sample
in a conventional microscopy and the weighted feedback also
takes effect.

The rest of this article is arranged as follows. The theory of
IPR and its weighted feedback modality are described in Sec. 2.
The corresponding simulation and experiment results are given
in Secs. 3 and 4, respectively. Conclusions are presented in
Sec. 5.

2 Theory
In MDPR, a set of diffraction patterns recorded downstream of
the object plane repeatedly constrains the object estimate until
the full complex field of the object is obtained. Here, the ampli-
tude-phase retrieval algorithm25 is assigned to achieve MDPR,
and its schematic diagram is shown in Fig. 1.

As shown in Fig. 1(a), diffraction patterns Inðn ∈ ½1; N�Þ are
measured in the downstream of the sample. The transverse
distance ðZn ¼ Z0 þ ðn − 1Þd; n ∈ ½1; N�Þ is composed of two
components: initial distance Z0 and equivalent interval d.
In Fig. 1(b), the complex amplitude of the sample is initialized
with zero matrix. The algorithmic flowchart of MDPR should
follow: (1) k’th estimation of the object’s complex field Gk

propagates forward to the recording plane and thus generates
N computed patterns by different transverse distances Zn;
(2) replacing the amplitude of computed patterns with the modu-
lus of recorded diffraction patterns and retaining the computed

phase; (3) these synthesized patterns propagate backward to
the object plane and N guesses of the object gknðn ∈ ½1; N�Þ
are produced; (4) kþ 1’th estimation of object Gkþ1 is obtained
by the average of N guessed data ðgkn; n ∈ ½1; N�Þ, especially,
this average operation is separately executed for amplitude
and phase; and (5) running iteratively from steps (1) to
(4) until the reconstructed accuracy meets the required thresh-
old. Weighted feedback operation is imposed between step (3)
and (4) as

EQ-TARGET;temp:intralink-;e001;326;651g̃kn ¼ ð1þ aþ bÞgkn − ag̃k−1n − bg̃k−2n ; (1)

where g̃kn denotes the k’th modulated object guess. The symbols
a and b are the feedback coefficients, which are parameterized
as 0.7 and 0.5 in Ref. 37, respectively. Within this definition,
the kþ 1 estimation Gkþ1 is calculated by the average of
N modulated object guesses (g̃kn). If iterative number k ¼ 1

or 2, let g̃kn ¼ gkn, which means that weighted feedback starts
when k > 2. Here, MDPR based on weighted feedback is
termed as the MDPRF algorithm in the following context.

The method in Ref. 28 is utilized as the MWPR algorithm for
test. Its weighted version is named as the MWPRF algorithm for
short. Here, the MWPR algorithm implements multiple patterns
recorded under different wavelengths ðλ1; λ2; λ3Þ for image
reconstruction, which is defined in Fig. 2(a). Its algorithmic
details about the MWPRF algorithm are shown in Fig. 2(b)
as follows: (1) initializing the complex field of the object
with zeros matrix; (2) plugging λ1 and propagating k’th estima-
tion of object Gk forward to recording plane with a distance of
Z0; (3) replacing the computed amplitude of recording plane
with the modulus of recorded diffraction pattern and retaining
the computed phase; (4) inversely propagating this synthesized
complex amplitude backward to the object plane; (5) using next
wavelength until all wavelengths are scanned and thus the
kþ 1’th estimation of objectGkþ1 is obtained; and (6) iteratively
running steps (2) to (5) so that the reconstructed accuracy meets
the given requirement. The corresponding weighted feedback
operation is imbedded between steps (5) and (6), which is
expressed as

Fig. 1 MDPR based on weighted feedback: (a) the diagram and (b) the algorithmic flowchart.
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EQ-TARGET;temp:intralink-;e002;63;522Gkþ1 ¼ ð1þ aþ bÞGkþ1 − aGk − bGk−1; (2)

where the coefficients a and b are parameterized as 0.7 and
0.5, respectively. For MWPRF, the first (k ¼ 1) and second
estimations (k ¼ 2) are similar to MWPR’ ones. Only if
k > 2, weighted feedback operation starts working effectively.

3 Simulation

3.1 Partially Coherent Illumination

In this section, numerical simulation is presented to prove the
capability of the proposed idea. To quantitatively show the
reconstructed accuracy, we utilize the normalized correlation
coefficient (NCC) between the reconstructed image fðx; yÞ
and the ground truth I0ðx; yÞ as the metric function, which is
defined as

EQ-TARGET;temp:intralink-;e003;63;339Cf;I0 ¼
1

M0N0

XM0

x¼1

XN0

y¼1

½fðx; yÞ − f̄ðx; yÞ�½I0ðx; yÞ − Ī0ðx; yÞ�;

(3)

EQ-TARGET;temp:intralink-;e004;63;280NCC ¼ Cf;I0ffiffiffiffiffiffiffiffiffiffiffi
CI0;I0

p ffiffiffiffiffiffiffiffiffi
Cf;f

p ; (4)

where Cf;I0 is the covariance matrix of the reconstructed image
and the ground truth, which is an indicator of how much two
images match each other. Here, M0N0 denotes the total pixel
numbers of the object image. The value of NCC ranges from
[0, 1]. With the increase of NCC, the information of two images
becomes closer to each other.

The kernel of IPR is the propagation computation. In this
paper, the diffraction computation is defined in the Fresnel
regime. Thus, all propagations are computed by the angular
spectrum formula as

EQ-TARGET;temp:intralink-;e005;63;132HFðξ; ηÞ

¼
(
exp

h
2πjZn

λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðλξÞ2 − ðληÞ2

p i
; ðλξÞ2 þ ðληÞ2 < 1;

0; otherwise;

(5)

where λ is the illumination wavelength. Here, ðξ; ηÞ denotes
the coordinate in frequency domain. In this case, any diffraction
patterns placed in any transverse distances Zn are able to be
obtained by F−1½FðGkÞHF�, where F and F−1 represent the
Fourier transform and its inverse version, respectively. To sim-
ulate the partial coherence of diffraction recording, the object
plane around its original position is vibrated by 100 random
plates to generate 100 object planes. These 100 object planes
propagate a transverse distance of Zn so that 100 diffraction
patterns are produced. The desired modulus of partially coherent
diffraction pattern in Zn is calculated by averaging the modulus
of 100 computed patterns. Repeatedly running this procedure,
it is workable to get a set of multidistance or multiwavelength
intensity images under partially coherent illumination. This
partial coherence calculation is explicitly described in Ref. 38.

Here, the image “cameraman” is chosen as the ground
truth image and simulated parameters are listed as follows:
(1) the imaging size is 3 × 3 mm2 (256 × 256 pixels); (2) λ ¼
532 nm; (3) Z0 ¼ 20 mm, d ¼ 1 mm; and (4) the recording
number N is 3, 8, 11, and 13. One of 13 recorded diffraction
patterns is shown in Fig. 3(a). The corresponding convergence
curve is shown in Fig. 3(b). It is easy to observe the improve-
ment of convergence speed by MDPRF. With the recording
number >11, there is no predominant impact of increasing
recording number on the convergence. So in this case, the con-
vergence merely depends on the iterations. To visually exhibit
the comparison of MDPR and MDPRF, the reconstructed
images using 11 diffraction patterns after 10, 30, and 50 iterations
are shown in Figs. 3(c)–3(e) for MDPR and Figs. 3(f)–3(h) for
MDPRF. Obviously, the degradation of slow-rate convergence
happens on the edge of the man at lower iterations, which actually
wraps all around “the man” with a vague halo in MDPR results.
But this degradation is visibly ironed out by MDPRF. Also, the
iterative number reaching to convergence is 50 for the MDPRF
algorithm, which is superior to MDPR’s results.

Within the computation of partial coherency, the recon-
structed images of MWPR and MWPRF algorithms are shown
in Figs. 4(a)–4(d). The convergence curve is shown in Fig. 4(e).
The simulated parameters are listed as follows: (1) the imaging
size is 3 × 3 mm2 (256 × 256 pixels); (2) λ1 ¼ 467 nm, λ2 ¼
532 nm, λ3 ¼ 623 nm, and (3) Z0 ¼ 20 mm. The convergence

Fig. 2 MWPR based on weighted feedback: (a) the diagram and (b) the algorithmic flowchart.
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performance is explicitly improved by weighted feedback in
Fig. 4. The NCC curves in Figs. 3(b) and 4(e) prove that the
problems of the degradation and stagnation are actually worked
out by weighted feedback under partially coherent illumination.

3.2 Speckle Illumination

Measuring intensity patterns in the volume speckle field could
lead to a unique and accurate image reconstruction of the

Fig. 4 The retrieval of MWPR and MWPRF with Z 0 ¼ 20 mm under partially coherent illumination:
(a)–(d) are reconstructed images by MWPR and MWPRF with the wavelength of 467, 532, and
623 nm after 10 and 100 iterations and (e) the convergence curve of MWPR and MWPRF.

Fig. 3 The retrieval of MDPR and MDPRF with Z 0 ¼ 20 mm and d ¼ 1 mm under partially coherent
illumination: (a) recorded diffraction pattern in Z 1 ¼ 20 mm, (b) the convergence curve of MDPR and
MDPRF with 3, 8, 11, and 13 diffraction patterns after 100 iterations, and (c)–(e) and (f)–(h) are recon-
structed images by MDPR and MDPRF with 11 diffraction patterns, respectively.
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object.39–41 To test the feasibility of our method in speckle illu-
mination, we place the object in the speckle field and retrieve it
using multiple intensity patterns. Here, the object in Fig. 5(a) is
selected as the ground truth image, and its incident pattern is
shown in Fig. 5(b). The speckle pattern to illuminate object
results from a phase mask located in the front plane of the
object. The simulated parameters are listed as: (1) the image
size is 1.24 × 1.24 mm2 (400 × 400 pixels); (2) λ ¼ 532 nm;
(3) the receiving plane is placed in the back plane of the object
(Z0 ¼ 20 mm, d ¼ 1 mm); (4) the recording number N is
set as 5, 8, 11, and 13; and (5) the phase mask with a range of
0 to 1.5π is located upstream 30 mm from the object.

The convergence curve is shown in Fig. 5(c), and the
reconstructed images with 11 intensity patterns are given in

Figs. 5(d)–5(g) for MDPR and Figs. 5(h)–5(k) for MDPRF.
To our surprise, even in the case of speckle field, weighted
feedback still functions well in the acceleration of the conver-
gence. Similar to partially coherent illumination, the recording
number >11 is a maximum limit for acceleration. As shown
in Figs. 5(d)–5(k), MDPRF retrieves a full object merely in
50 iterations, in which the convergence speed is enhanced by
twofolds of magnitude.

4 Experiment

4.1 Lensless Multidistance Imaging

To prove the capability of our method, we set up the experiment
in both lensless and lens-based systems. For lensless imaging, a

Fig. 5 The retrieval of MDPR and MDPRF with Z 0 ¼ 20 mm and d ¼ 1 mm under speckle illumination:
(a) the object image, (b) the speckle pattern to illuminate object, (c) the convergence curve of MDPR and
MDPRF with 5, 8, 11, and 13 diffraction patterns, and (d)–(g) and (h)–(k) are reconstructed images by
MDPR and MDPRF with 11 diffraction patterns after 20, 50, 80, and 100 iterations, respectively.

Fig. 6 The experimental schematic of lensless imaging under partially coherent illumination.
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programmable LED matrix (Adafruit 607) is used to realize par-
tially coherent illumination. Unlike the regional illumination
schemes in Refs. 34–36, only one LED is switched on in experi-
ment so as to prevent the diffraction patterns from alias. A beam
of spherical wave from LED is incident on a condense lens to
generate plane wave illumination. This parallel light shaped
by aperture illuminates the sample so that the CCD camera
(3.1 μm, Point Gray) receives a diffraction pattern in the down-
stream of the sample. For MDPR, the CCD camera is mounted
on the precision linear stage (M-403, Physik Instrumente Inc.).
As the stage moves, a set of diffraction patterns is recorded
with different transverse diffractive distances (initial distance
Z0 and equally spaced interval d). Choosing a proper transverse
distance, MWRR is doable by changing the wavelength of
LED. The details of the experimental setup are shown in Fig. 6.
Here, this lensless implementation is able to accomplish the
experiment of partially coherent illumination for MDPR and
MWPR, simultaneously.

To verify the performance of partially coherent illumination,
we perform MDPR with a sample of Negative Resolution Chart
(R2L2S1N, Thorlabs) by LED and a fiber laser. The correspond-
ing results are shown in Fig. 7. The experimental parameters are
listed as follows: (1) the imaging size is 1800 × 1800 pixels;
(2) N ¼ 11, Z0 ¼ 29 mm, d ¼ 1 mm; and (3) the wavelength
of the fiber laser is 532 nm and LED is 623 nm. After 100 iter-
ations for the fiber laser and 50 iterations for LED, the recon-
structed images are shown in Figs. 7(a)–7(c), which indicates
that partial coherency of incident light doubtlessly eliminates
the affection of speckle noise. To quantitatively show this
improvement, the plotlines along blue dash lines in Figs. 7(a)–
7(c) are drawn in Figs. 7(d) and 7(e). Note that the vertical fringe
pattern is clearly resolved by weighted feedback with a high
imaging contrast.

Fig. 7 The comparison of reconstructed images under coherent and partially coherent illumination:
(a) fiber laser illumination (532 nm), (b) LED illumination (623 nm), (c) LED illumination with weighted
feedback operation, (d) the plotline along the dash line in (a), and (e) the plotlines along the dash lines in
(b) and (c). The white bars in (a)–(c) correspond to 150 μm.

Fig. 8 The reconstruction of orchid root by MDPR and MDPRF with
the LED’s wavelength of 623 nm. (a), (b) and (d), (e) are retrieved
amplitudes and phases after 50 and 500 iterations for MDPR, respec-
tively, (c) and (f) are reconstructed by MDPRF after 50 iterations, and
(g) plotlines along blue, red, and black arrow in (a)–(c) respectively.
The black bars in (a)–(c) correspond to 600 μm.
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Similarly, we image “orchid root” (NSS Ltd.) with 623-nm
LED illumination and its retrieved complex amplitudes are
displayed in Fig. 8. MDPR is run by 50 and 500 iterations to
generate reconstructed amplitudes [Figs. 8(a) and 8(b)] and
phases [Figs. 8(d) and 8(e)]. By plugging in weighted feedback
and running 50 iterations, the amplitude and phase from
MDPRF are obtained in Figs. 8(c) and 8(f), respectively.
Comparing Figs. 8(a) and 8(c), it is noted that the vague
shape of the specimen is removed by MDPRF, which accords
with simulation analysis. The profiles along blue, red, and black
arrows in Figs. 8(a)–8(c) are plotted in Fig. 8(g). The plotline
of MDPRF by 50 iterations is close to the line of MDPR by
500 iterations, which implies that weighted feedback actually
speeds up the convergence. For phase reconstruction, it is worth
noting that the contrast of the reconstructed phase is enhanced
for MDPRF, which enables the biological tissue more distinct
with respect to background noise.

4.2 Lensless Multiwavelength Imaging

The advantage of LED matrix lies in that it could exchange
wavelength by programmable operation without any extra
mechanical devices. MWPR’s experimental implementation is
the same as done in Fig. 6. Choosing a proper transverse
distance Z0, three appreciable diffraction patterns are measured
by sequentially switching red, green, and blue channels of LED
(623, 532, and 467 nm). When Z0 ¼ 29 mm, the reconstructed
results of orchid root (NSS Ltd.) by MWPR and MWPRF are
presented in Fig. 9.

Technically, the red, green, and blue LED channels are
fabricated side by side in Adafruit 607, which leads to a relative
shift for multiwavelength diffraction patterns. The relative posi-
tion distribution is derived from cross-correlation operation.27

The detailed process should follow: (1) choosing the peak posi-
tion of self-correlation of the diffraction pattern related to blue
LED as a start position and (2) orderly use cross correlation of
start image and others to calculate the relative shifts. Thus,
the relative position distribution of three patterns is shown in
Fig. 9(a). To accomplish MWPR, we align these patterns to
the start position and cut out irrelevant parts. After this prepa-
ration, the reconstructed images of MWPR and MWPRF are
shown in Figs. 9(b)–9(e). The retrieved phases in Figs. 9(b)

and 9(d) encounter the problem of phase wrapping. Here, the
DCT least-squares algorithm42,43 is applied for phase unwrap-
ping, and its corresponding unwrapped phases are presented in
Figs. 9(c) and 9(e). Note that the contrast of retrieved phase is
strengthened by weighted feedback. However, the imaging qual-
ity of multiwavelength strategy is not as good as Fig. 8. This
discrepancy is mainly attributed to the uncertainty of central
wavelength. We propose two solutions to solve this problem.
The direct solution is that introducing different narrow-band-
width filters in the back plane of the condensed lens to cut out
uncertain parts. But the plug-in of the filter could lead to the
decrease of outgoing radiance onto the CCD camera, which
will heavily impair the quality of the reconstructed image. It
is accordingly imperative to combine this weighted feedback
modality with the noise compression method. For another
solution, replacing the present LED with a high-power one, it is
easy to get rid of the obstruction of low signal-to-noise ratio. But

Fig. 9 The reconstructed phases of orchid root by MWPR and MWPRF with the LED’s wavelength of
623 nm: (a) peak position distribution of cross correlation, (b) and (d) are wrapped retrieved phases
for MWPR and MWPRF, respectively, and (c) and (e) are unwrapped ones. The black bars in
(b) and (d) correspond to 600 μm.

Fig. 10 The image reconstruction through scatter layer by MDPR
and MDPRF: (a) the experimental schematic, (b)–(e) and (f)–(i) are
reconstructed by MDPR and MDPRF algorithm after 10, 25, 50,
and 100 iterations, respectively. The white bars in (b)–(i) correspond
to 600 μm.
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the incoherent property of this light source will lose the effec-
tiveness of distance-based angular spectrum propagation.
Hence, it is workable to place the recording plane in the far-
field regime for IPR. We believe that this challenge will be over-
come in the future.

4.3 Lensless Imaging Through Scatter Layer

Optical imaging through a scattering medium has great promise
for biomedical engineering, since biological tissue could diffuse
any incident beams into a speckle pattern so that the resolution
and penetration are limited.41 IPR, as a useful tool, could recover
a target hidden behind the scatter medium. Here, we apply our
weighted feedback acceleration in this situation and compare
MDPRF with MDPR. The experimental diagram is shown in
Fig. 10(a).

A fiber laser with the wavelenght of 532 nm takes the task of
illumiantion. A ground glass diffuser (GGD, Thorlabs, 120 grit)
is chosen as the scattering medium and placed in the middle
of the CCD camera and sample. The sample is a number
“5” of Negative 1951 USAF Target (R3L3S1N, Thorlabs).
The experimental parameters are listed as follows: (1) the im-
aging size is 1700 × 1700 pixels; (2) the distance ZSG from
the sample to GGD is 40 mm; and (3) N ¼ 11, Z0 ¼ 27 mm,
and d ¼ 1 mm. The corresponding retrieved images are shown
in Figs. 10(b)–10(e) for MDPR and Figs. 10(f)–10(i) for
MDPRF after 10, 25, 50, and 100 iteartions. It is noted that
weighted feedback still works well in the speckle field. In only
25 iterations, MDPRF is capable of retrieving the structure of
Only target, while MDPR needs 100 iterations or more. This
result is identical to simulation analysis in Sec. 3.

4.4 Lens-Based Imaging

At present, the resolution of lensless imaging is limited by finite
pixel size of the imaging sensor. To observe the performance of
our method on tiny matters, we apply weighted feedback into
microscopy (magnification 20×, NA ¼ 0.5) and utilize translu-
cent “human cheek cells” as the sample. Here, the MDPR algo-
rithm is performed to synthesize a set of defocused intensity
images for the phase reconstruction of an in-focused image.
The corresponding datasets are from Laura Waller’s team.44

The wavelength of incident light is filtered by white light
as 650 nm (10-nm bandwidth). The number of recorded images
is 129 (one focused image and 128 defocused images,
1024 × 1024 pixels). The defocus range belongs to [−256,
256 μm] and the interval is 4 μm. The focused intensity image
is assigned as an initialization for MDPR. Choosing a set of
defocused intensity images at the front/back of the focused
plane, the reconstructed phases are obtained by iterative back-
and-forth computation and amplitude replacement. The corre-
sponding results are shown in Fig. 11. Within five recorded
images (propagating distance: −8;−4, 0, 4, and 8 μm), the
retrieved phases under 10, 100, and 1000 iterations are shown
in Figs. 11(a)–11(f). For weighted feedback operation, speeding
up convergence is easy to be discerned. At the same iterations,
the imaging quality of MDPRF is superior to MDPR. Within
129 recorded images, the results of two methods under 10 iter-
ations are given in Figs. 11(g)–11(h). It is noted that the cells are
successfully reconstructed by the two methods, and the imaging
contrast of MDPRF is higher than MDPR’s. To further exhibit
this improvement, the plotlines of Figs. 11(g) and 11(h) are
shown in Fig. 11(i), which indicates that the edge enhancement
of cells enable itself to be sharper. For low recorded images
and short intervals, weighted feedback ensures high-accuracy
reconstruction for MDPR.

5 Conclusion
We expand the application of weighted feedback operation
into partially coherent illumination and speckle illumination.
MDPR and MWPR algorithms are modified into weighted
modality, MDPRF and MWPRF algorithms. In simulation, it
is proved that these modified methods have the ability of speed-
ing up convergence in partially coherent and speckle field. In
experiment, a programmable LED matrix is used to form
lensless multidistance and multiwavelength imaging systems.
Compared with conventional fiber laser illumination, partial
coherency of a light source actually makes imaging quality bet-
ter. Using weighted feedback to retrieve the resolution chart and
orchid root, the imaging contrast and convergence speed are
highly enhanced for both lensless imaging strategies. Further-
more, our method also functions well in the optical imaging
through scattering medium. Similarly, the MDPR algorithm
and its weighted version MDPRF algorithm are applied in
microscopy to image translucent human cheek cells, which
demonstrates that weighted feedback not only enhances the con-
vergence speed but also strengthens the phase contrast for the
translucent sample.

This work provides an effective strategy to perform high-
contrast imaging for IPR method. Also, due to fast and accurate
convergence, weighted feedback could heavily decrease meas-
urement times, which enables the experimental setup at low cost
and compactness for label-free biological imaging.

Fig. 11 The phase reconstruction of translucent human cheek cells
by MDPR and MDPRF under partially coherent illumination: (a)–(c)
and (d)–(f) are obtained by five recorded images after 10, 100, and
1000 iterations, (g) and (h) are done by 129 recorded images after
10 iterations, and (i) plotlines along red and blue arrows in (g) and
(h). The black bars in (a) and (d) correspond to 30 μm.

Journal of Biomedical Optics 016015-8 January 2018 • Vol. 23(1)

Guo et al.: Enhancing imaging contrast via weighted feedback for iterative multi-image phase retrieval



Disclosures
No conflicts of interest, financial or otherwise, are declared by
the authors.

Acknowledgments
This work was supported by the National Natural Science
Foundation of China (Nos. 61377016, 61575055, and
61575053), the Fundamental Research Funds for the Central
Universities (No. HIT.BRETIII.201406), the Program for
New Century Excellent Talents in University (No. NCET-12-
0148), and the China Postdoctoral Science Foundation (Nos.
2013M540278 and 2015T80340), and the Scientific Research
Foundation for the Returned Overseas Chinese Scholars, State
Education Ministry, China. The authors thank Mr. Cheng Shen
for polishing the English.

References
1. B. Bhaduri et al., “Diffraction phase microscopy: principles and appli-

cations in materials and life sciences,” Adv. Opt. Photonics 6, 57–119
(2014).

2. H. Majeed et al., “Quantitative phase imaging for medical diagnosis,”
J. Biophotonics 10(2), 177–205 (2017).

3. W. Osten et al., “Recent advances in digital holography,” Appl. Opt.
53(27), G44–G63 (2014).

4. Y. Shechtman et al., “Phase retrieval with application to optical imaging:
a contemporary overview,” IEEE Signal Process. Mag. 32, 87–109
(2015).

5. E. McLeod and A. Ozcan, “Unconventional methods of imaging: com-
putational microscopy and compact implementations,” Rep. Prog. Phys.
79, 076001 (2016).

6. G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution
Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745
(2013).

7. S. Pacheco, G. Zheng, and R. Liang, “Reflective Fourier ptychography,”
J. Biomed. Opt. 21(2), 026010 (2016).

8. J. Sun et al., “Resolution-enhanced Fourier ptychographic microscopy
based on high-numerical-aperture illuminations,” Sci. Rep. 7, 1187–
1197 (2017).

9. R. Horstmeyer et al., “Diffraction tomography with Fourier ptychogra-
phy,” Optica 3(8), 827–835 (2016).

10. L. Tian and L. Waller, “3D intensity and phase imaging from light field
measurements in an LED array microscope,” Opitca 2(2), 104–111
(2015).

11. Y. Yao et al., “Ptychographic phase microscope based on high-speed
modulation on the illumination beam,” J. Biomed. Opt. 22(3), 036010
(2017).

12. A. Anand, V. Chhaniwal, and B. Javidi, “Quantitative cell imaging
using single beam phase retrieval method,” J. Biomed. Opt. 16(6),
060503 (2011).

13. M. R. Teague, “Deterministic phase retrieval: a Green’s function
solution,” J. Opt. Soc. Am. 73, 1434–1441 (1983).

14. L. Waller, L. Tian, and G. Barbastathis, “Transport of intensity
phase-amplitude imaging with higher order intensity derivatives,”
Opt. Express 18(12), 12552–12561 (2010).

15. C. Zuo et al., “High-resolution transport-of-intensity quantitative phase
microscopy with annular illumination,” Sci. Rep. 7, 7654 (2017).

16. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the deter-
mination of phase from image and diffraction plane pictures,” Optik 35,
237–246 (1972).

17. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt.
21(15), 2758–2769 (1982).

18. A. Greenbaum et al., “Wide-field computational imaging of pathology
slides using lens-free on-chip microscopy,” Sci. Transl. Med. 6,
267ra175 (2014).

19. S. Dong et al., “High-resolution fluorescence imaging via pattern-
illuminated Fourier ptychography,” Opt. Express 22(17), 20856–20870
(2014).

20. T. M. Godden et al., “Phase calibration target for quantitative phase
imaging with ptychography,” Opt. Express 24(7), 7679–7692 (2016).

21. J. M. Rodenburg and H. M. L. Faulkner, “A phase retrieval algorithm for
shifting illumination,” Appl. Phys. Lett. 85(20), 4795–4797 (2004).

22. A. M. Maiden and J. M. Rodenburg, “An improved ptychographical
phase retrieval algorithm for diffractive imaging,” Ultramicroscopy
109(10), 1256–1262 (2009).

23. W. Yu et al., “High-quality image reconstruction method for ptychog-
raphy with partially coherent illumination,” Phys. Rev. B 93(24),
241105 (2016).

24. G. Pedrini, W. Osten, and Y. Zhang, “Wave-front reconstruction from a
sequence of interferograms recorded at different planes,” Opt. Lett.
30(8), 833–835 (2005).

25. Z. Liu et al., “Iterative phase amplitude retrieval from multiple images in
gyrator domains,” J. Opt. 17(2), 025701 (2015).

26. C. Shen et al., “Two noise-robust axial scanning multi-image phase
retrieval algorithms based on Pauta criterion and smoothness con-
straint,” Opt. Express 25(14), 16235–16249 (2017).

27. C. Guo et al., “Axial multi-image phase retrieval under tilt illumination,”
Sci. Rep. 7, 7562 (2017).

28. P. Bao et al., “Phase retrieval using multiple illumination wavelengths,”
Opt. Lett. 33(4), 309–311 (2008).

29. D. W. E. Noom, K. S. E. Eikema, and S. Witte, “Lensless phase contrast
microscopy based on multiwavelength Fresnel diffraction,” Opt. Lett.
39(2), 193–196 (2014).

30. X. Pan, C. Liu, and J. Zhu, “Single shot ptychographical iterative engine
based on multi-beam illumination,” Appl. Phys. Lett. 103(17), 171105
(2013).

31. J. A. Rodrigo et al., “Wavefield imaging via iterative retrieval based on
phase modulation diversity,” Opt. Express 19(19), 18621–18635 (2011).

32. L.W. Whitehead et al., “Diffractive imaging using partially coherent
x rays,” Phys. Rev. Lett. 103, 243902 (2009).

33. Z. Jingshan et al., “Partially coherent phase imaging with simultaneous
source recovery,” Biomed. Opt. Express 6(1), 257–265 (2015).

34. L. Tian et al., “Multiplexed coded illumination for Fourier ptychogra-
phy with an LED array microscope,” Biomed. Opt. Express 5(7), 2376–
2389 (2014).

35. M. Chen, L. Tian, and L. Waller, “3D differential phase contrast micros-
copy,” Biomed. Opt. Express 7(10), 3940–3950 (2016).

36. D. Lee et al., “Color-coded LED microscopy for multi-contrast and
quantitative phase-gradient imaging,” Biomed. Opt. Express 6(12),
4912–4922 (2015).

37. C. Guo et al., “A fast-converging iterative method via weighted feed-
back for multi-distance diffractive imaging,” Sci. Rep. (2017),
Submitted for publication.

38. D. Voelz, Computational Fourier Optics: A MATLAB Tutorial, Chapter
9, SPIE Press, Bellingham, Washington (2011).

39. A. Anand et al., “Wavefront sensing with random amplitude mask and
phase retrieval,” Opt. Lett. 32(11), 1584–1586 (2007).

40. A. K. Singh et al., “Scatter-plate microscope for lensless microscopy
with diffraction limited resolution,” Sci. Rep. 7, 10687 (2017).

41. O. Katz et al., “Non-invasive single-shot imaging through scattering
layers and around corners via speckle correlations,” Nat. Photonics
8(10), 784–790 (2014).

42. M. A. Schofield and Y. Zhu, “Fast phase unwrapping algorithm for
interferometric applications,” Opt. Lett. 28(14), 1194–1196 (2003).

43. W. Shi, Y. Zhu, and Y. Yao, “Discussion about the DCT/FFT phase-
unwrapping algorithm for interferometric applications,” Optik 121,
1443–1449 (2010).

44. Z. Jingshan et al., “Transport of Intensity phase imaging by intensity
spectrum fitting of exponentially spaced defocus planes,” Opt. Express
22(9), 10661–10674 (2014).

ChengGuo is currently a PhD student in the Department of Automatic
Test and Control, Harbin Institute of Technology, under the supervi-
sion of Professor Zhengjun Liu. His research focuses on the develop-
ment and application of iterative phase retrieval methods.

Qiang Li is currently a master’s student in the Department of
Automatic Test and Control, Harbin Institute of Technology, under
the supervision of Professor Jian Liu. His research mainly focuses
on computational photography and image processing.

Journal of Biomedical Optics 016015-9 January 2018 • Vol. 23(1)

Guo et al.: Enhancing imaging contrast via weighted feedback for iterative multi-image phase retrieval

http://dx.doi.org/10.1364/AOP.6.000057
http://dx.doi.org/10.1002/jbio.201600113
http://dx.doi.org/10.1364/AO.53.000G44
http://dx.doi.org/10.1109/MSP.2014.2352673
http://dx.doi.org/10.1088/0034-4885/79/7/076001
http://dx.doi.org/10.1038/nphoton.2013.187
http://dx.doi.org/10.1117/1.JBO.21.2.026010
http://dx.doi.org/10.1038/s41598-017-01346-7
http://dx.doi.org/10.1364/OPTICA.3.000827
http://dx.doi.org/10.1364/OPTICA.2.000104
http://dx.doi.org/10.1117/1.JBO.22.3.036010
http://dx.doi.org/10.1117/1.3589090
http://dx.doi.org/10.1364/JOSA.73.001434
http://dx.doi.org/10.1364/OE.18.012552
http://dx.doi.org/10.1038/s41598-017-06837-1
http://dx.doi.org/10.1364/AO.21.002758
http://dx.doi.org/10.1126/scitranslmed.3009850
http://dx.doi.org/10.1364/OE.22.020856
http://dx.doi.org/10.1364/OE.24.007679
http://dx.doi.org/10.1063/1.1823034
http://dx.doi.org/10.1016/j.ultramic.2009.05.012
http://dx.doi.org/10.1103/PhysRevB.93.241105
http://dx.doi.org/10.1364/OL.30.000833
http://dx.doi.org/10.1088/2040-8978/17/2/025701
http://dx.doi.org/10.1364/OE.25.016235
http://dx.doi.org/10.1038/s41598-017-08045-3
http://dx.doi.org/10.1364/OL.33.000309
http://dx.doi.org/10.1364/OL.39.000193
http://dx.doi.org/10.1063/1.4826273
http://dx.doi.org/10.1364/OE.19.018621
http://dx.doi.org/10.1103/PhysRevLett.103.243902
http://dx.doi.org/10.1364/BOE.6.000257
http://dx.doi.org/10.1364/BOE.5.002376
http://dx.doi.org/10.1364/BOE.7.003940
http://dx.doi.org/10.1364/BOE.6.004912
http://dx.doi.org/10.1364/OL.32.001584
http://dx.doi.org/10.1038/s41598-017-10767-3
http://dx.doi.org/10.1038/nphoton.2014.189
http://dx.doi.org/10.1364/OL.28.001194
http://dx.doi.org/10.1016/j.ijleo.2009.02.006
http://dx.doi.org/10.1364/OE.22.010661


Xiaoqing Zhang is currently a PhD student at the School of Biological
Science and Technology, Harbin Institute of Technology, under the
supervision of Professor Huan Nie. His research focuses on
glycomics.

Jiubin Tan is the head of Precision Instrument Engineering School,
Harbin Institute of Technology. He received a PhD from Harbin
Institute of Technology in 1991. He is academician of the Chinese
Academy of Engineering. He is also a standing committee member of
the International Committee on Measurements and Instrumentation,
the chairman of the China Measuring Instrument Specialty Committee,
the managing director of the China Instrument and Control Society,
and the managing director of the Chinese Society for Measurement.

Shutian Liu is a professor in the Department of Physics, Harbin
Institute of Technology. He has published more than 200 peer-

reviewed journal articles in the field of optics and 1 book. His current
research interests include optical information processing, optical infor-
mation security, nonlinear optics, and quantum optics. He is a senior
member of the Optical Society of America (OSA) and a fellow of the
Chinese Physical Society.

Zhengjun Liu is a professor in the Department of Automatic Test and
Control, Harbin Institute of Technology, China. He was honored by
the Program for New Century Excellent Talents in University in 2012.
He has published 97 peer-reviewed journal articles in the field of
optics, 2 books, and 1 book chapter. He is a senior member of
OSA and a member of IEEE. His current research interests include
optical image processing and super-resolution imaging.

Journal of Biomedical Optics 016015-10 January 2018 • Vol. 23(1)

Guo et al.: Enhancing imaging contrast via weighted feedback for iterative multi-image phase retrieval


