
Label-free dynamic segmentation and
morphological analysis of subcellular
optical scatterers

Mohammad Naser
Rene S. Schloss
Pauline Berjaud
Nada N. Boustany

Mohammad Naser, Rene S. Schloss, Pauline Berjaud, Nada N. Boustany, “Label-free dynamic segmentation
and morphological analysis of subcellular optical scatterers,” J. Biomed. Opt. 23(9), 096004 (2018),
doi: 10.1117/1.JBO.23.9.096004.



Label-free dynamic segmentation and morphological
analysis of subcellular optical scatterers

Mohammad Naser,a Rene S. Schloss,a Pauline Berjaud,b and Nada N. Boustanya,*
aRutgers University, Department of Biomedical Engineering, Piscataway, New Jersey, United States
bInstitut d’Optique, Palaiseau, France

Abstract. Imaging without fluorescent protein labels or dyes presents significant advantages for studying living
cells without confounding staining artifacts and with minimal sample preparation. Here, we combine label-free
optical scatter imaging with digital segmentation and processing to create dynamic subcellular masks, which
highlight significantly scattering objects within the cells’ cytoplasms. The technique is tested by quantifying
organelle morphology and redistribution during cell injury induced by calcium overload. Objects within the sub-
cellular mask are first analyzed individually. We show that the objects’ aspect ratio and degree of orientation
(“orientedness”) decrease in response to calcium overload, while they remain unchanged in untreated control
cells. These changes are concurrent with mitochondrial fission and rounding observed by fluorescence, and are
consistent with our previously published data demonstrating scattering changes associated with mitochondrial
rounding during calcium injury. In addition, we show that the magnitude of the textural features associated with
the spatial distribution of the masked objects’ orientedness values, changes by more than 30% in the calcium-
treated cells compared with no change or changes of less than 10% in untreated controls, reflecting dynamic
changes in the overall spatial distribution and arrangement of subcellular scatterers in response to injury. Taken
together, our results suggest that our method successfully provides label-free morphological signatures asso-
ciated with cellular injury. Thus, we propose that dynamically segmenting and analyzing the morphology and
organizational patterns of subcellular scatterers as a function of time can be utilized to quantify changes in a
given cellular condition or state. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution
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1 Introduction
Live cell imaging is crucial to understand the biological func-
tions of a cell and its organelles. Fluorescent imaging has been
a gold standard in this regard. While fluorescent stains provide
good specificity and contrast, they also present some shortcom-
ings including photobleaching and phototoxicity.1 In addition,
cell transfection with fluorescent protein constructs, and sample
staining, may complicate sample preparation or interfere with
cell function and confound the results.2 To circumvent these
shortcomings of imaging with fluorescent markers, label-free
techniques, which do not require any stains or markers, are
currently being developed.3–5

Here, we ultilize an optical scatter imaging (OSI) method
based on dark-field microscopy and angular light scattering
that is capable of tracking the distribution and morphology of
subcellular structures, such as organelles, as a function of
time. Imaging based on light scattering has previously enabled
label-free detection and quantification of subcellular structural
properties and dynamics pertaining to a biological process with-
out the use of any exogenous marker.6 For example, wavelength
and angularly-resolved scattering was used to extract nuclear
size information.7,8 Wilson et al.9 used angularly resolved
light-scattering measurements to detect mitochondrial swelling
upon photodynamically induced oxidative stress. Light-scatter-
ing by various mitochondrial distributions has been studied with

a finite-difference time-domain simulation, which was applied
to differentiate between cancerous cells with randomly distrib-
uted mitochondria and healthy cells with aggregated mitochon-
dria around the nucleus.10 In addition, we have previously
utilized the ratio of wide-to-narrow angle scatter measurements
to track calcium-induced mitochondrial injury11 and apoptosis.12

This previously reported OSI method employs optical Fourier
filtering at a conjugate Fourier plane of the imaging system.
More recently, via implementation of Gabor filters on the
Fourier plane, we were able to probe objects of different
size/shape and orientation.13,14 Based on this method, one mor-
phometric parameter, termed orientedness, which probes the
geometric aspect ratio of subcellular organelles was shown to
be sensitive to the morphological changes related to mitochon-
drial fission during apoptosis in bovine aortic endothelial cells
(BAEC).14

In this paper, we build upon our previous results by applying
edge detection15 and segmentation16 methods to our filtered
dark-field image data. Together, these methods allow us to
amplify the signal from highly scattering subcellular structures
relative to background, as well as segment these highly scatter-
ing microscopic regions within the cell cytoplasm. Combining
these steps together, we develop an approach that can track sub-
cellular dynamics noninvasively, in unstained cells over time. As
a test of this method, we apply this approach to quantify mor-
phological changes governed by mitochondrial fragmentation
and remodeling induced by calcium overload. We demonstrate
that the morphological signatures generated from unstained cells
can clearly differentiate between injured and untreated cells.
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2 Methods

2.1 Cell Culture

BAEC were cultured on glass coverslips as previously
described.14 When comparing the dark-field data with fluores-
cence imaging, cells were incubated in Hepes buffered balanced
salt solution11 supplemented with 100-nM MitoTracker Green
(Invitrogen) for 45 min following the manufacturer’s protocol.
The cover-slips containing the cells were mounted on a metal-
slide for imaging as described in Ref. 14.

2.2 Calcium Treatment

To induce subcellular morphological change, the cells were
overloaded with calcium via treatment with ionomycin
(Sigma-Aldrich), a calcium ionophore. Pretreatment imaging
was conducted in a salt-solution11 containing 1.5 mM CaCl2.
The treatment solution was prepared by adding 20-μM ionomy-
cin to the same saline medium. To induce the calcium overload,
the chamber containing the cells was flushed three times with
this treatment solution. Taking this point as t ¼ 0, time-lapse
post-treatment images were collected every 45 s for a maximum
of 10 min. For control, a 1.5 mM CaCl2 with no ionomycin was
flushed three times instead of the treatment solution.

2.3 Optical Setup and Image Acquisition

Details of the optical setup are described in Ref. 13 and shown in
Fig. 1. Briefly, an inverted microscope fitted with a 63×,N:A: ¼
1.4 oil immersion objective is used to image the sample illumi-
nated with a laser at λ ¼ 532 nm. The incident laser light is
passed through a spinning diffuser to average speckle. Scattered
light is collected from the sample in transmission mode and
filtered by displaying images of Gabor filters on a liquid crystal
display (LCD) placed in a conjugate Fourier plane (F2). To
implement dark-field, the zeroth-order of diffraction is blocked
by setting the corresponding pixels to 0 at the center of the LCD.
The resulting filtered images are captured by a CCD camera
placed in a conjugate imaging plane (I2). The OSI image

magnification on the CCD at I2 is 0.25 μm∕pixel. Through
an additional port on the trinocular (not shown in the figure),
the microscope also permits collection of epifluorescence
images from the same sample on a different CCD camera.

2.4 Gabor Filter Design

The Gabor filter images displayed on the LCD are created in
MATLAB (The Mathworks, Natick, MA). In the object or
image space, the filters are characterized by three parameters:
period (S), orientation (φ), and standard deviation (σspace).
While deviation determines the size of the object area probed
by the Gabor filter, the period and standard deviation are
typically chosen not to be independent16 so that the region
probed by the filter scales with the filter’s period. For this
work, we choose σspace ¼ S

2
, and we choose six periods,

S ðin μmÞ ¼ 2.0, 1.43, 1.11, 0.91, 0.77, 0.66, and four orienta-
tions 90 deg ≤ φ < 225 deg with 45-deg increment. To imple-
ment the filters in a conjugate Fourier plane, we convert
these parameters to their frequency-domain equivalents within
the actual optical setup. The period transforms to the spatial fre-
quency, F ¼ 1

S and σfrequency ¼ 1
2πσspace

.17 The filters are created in

MATLAB by defining a Gaussian function as shown below.
Derivation of the equation is shown in Table 1 (see Appendix):

EQ-TARGET;temp:intralink-;sec2.4;326;231Hðu; vÞ ¼ A � e−
π2

2�ðU2þV2Þ½ðu−UÞ2þðv−VÞ2�
;

where A is set to 255, and ðU;VÞ are the coordinates in Fourier
space and are calculated by

EQ-TARGET;temp:intralink-;sec2.4;326;172U ¼ F � cos φ and V ¼ F � sin φ:

To calibrate for spatial frequency, a diffraction pattern
with known spatial frequency spacing is used as described
in Ref. 13. The calibration factor for the current setup is
0.0075 cycles∕μm∕LCD-pixel and the distance, F, of the
Gaussian-peaks from the center of the LCD can be calculated
using this factor. We also correct for the LCD’s reflectance by
correcting the Gaussian’s grayscale values using the LCD’s

Fig. 1 (a) OSI setup. The OSI technique involves the acquisition of transmission dark-field, filtered
images on the charge-coupled device (CCD) camera. Two-dimensional (2-D) Gabor filters are displayed
on a liquid crystal device (LCD) in the Fourier plane. L1 and L2: relay lenses, PBS: polarizing beam
splitter, LP = linear polarizer, F1 and F2: conjugate Fourier planes, I1 and I2: conjugate imaging planes.
The magnification on the CCD at I2 is 0.25 μm∕pixel. (b) Illustration depicting a two-dimensional Gabor
filter displayed on the LCD and positioned at coordinates (U,V) in Fourier space. Pixels at the center of
the LCD are turned off and act as a zeroth order block to implement dark-field.
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measured look-up-table, which gives the LCD reflectance as a
function of gray scale input. As such, the grayscale values input-
ted into the LCD will result in the expected Gaussian-shaped
reflectance. Since the Fourier transform of a Gabor function
is a center-shifted Gaussian, the filters are realized by placing
the peaks of the Gaussians at a distance F from the center of
the LCD. The coordinates of these pixels correspond to the
spatial frequencies whose inverse corresponds to the prechosen
periods.

Once the filtered-images are captured in the CCD, they are
further processed, as shown in Fig. 2. To generate the oriented-
ness images, local energy is calculated at each pixel first.
Orientedness images are then masked using the dynamic masks
generated using the maximum moment of phase-congruency
(PC) images. Finally, features are extracted from both the binary
masks and the masked-orientedness images. Calculation of
local energy, orientedness, and PC is described in the following
sections.

2.5 Generating Local Energy and Phase
Congruency (Maximum Moment) Images

In one dimension, PC is defined as PCðxÞ ¼ jEðxÞjP
n
AnðxÞ

, where

AnðxÞ are the amplitudes of n Fourier components at a location
(x), and local energy EðxÞ is the vector summation of all
components.15 PC acts as a highly localized operator to detect
edges and corners in an image that is invariant to illumination
and magnification. This technique takes advantage of the fact
that Fourier components of the edge- or corner-points in an
image are maximally in phase. This can be explained by a sim-
ple example of a square pulse. If all of the Fourier components
of the square pulse are superimposed on each other, it can be
shown that all of them will be in phase at the edges of the
pulse. Thus, for the edge, the summation of the component-
amplitudes is equal to the vector summation of all components,
producing a PC value of 1. A minimum value of 0 may be
obtained if all of the components are out of phase. Kovesi

et al.15 proposed to extract the frequency information via wavelet
transform instead of taking the Fourier transform. The wavelet
transform is realized by even and odd symmetric log-Gabor fil-
ters of varying scale and orientation. Using the PC information,
the edge-like features in the subcellular domain are then
enhanced by taking the maximum moment of the PC covariance
matrix. In this work, we have used an optimized code-version
developed by Kovesi18 to generate the maximum moment
and local energy images from each of the Gabor filtered images
acquired in the setup. Thus, for each sample, 24 maximum
moment images and 24 local energy images are calculated
from the 24 optically filtered images acquired by the setup.
These images are obtained from the “M” and “pcSum” variables
found in the abovementioned code.

In addition, the user may set several input parameters pertain-
ing to the calculation of PC. In particular, the local frequency
information is obtained via digital log-Gabor wavelets of differ-
ent scales and orientations. In this work, we set the number of
scales (“nscale” in the code) to 4 and number of orientations
(“norient”) to 4. We set the minimum wavelength of the wavelet
(“minWaveLength”) to 2 pixels and the scaling between succes-
sive wavelengths (mult) to 2.1 Hence, for four scales, we obtain
wavelets with wavelengths 2, 4.2, 8.82, and 18.5 pixels.
To detect spatial properties at different orientations, four angles
from 0 deg to 135 deg spaced 45 deg apart are used. The width
of the filter function is controlled by the angular standard
deviation σG of the function that is dependent on the filter center
frequency, fo as R ¼ σG

fo
. We set R ¼ 0.65 for this work (R cor-

responds to “sigmaOnf” in the code). Such combination of the
scaling factor and R ensures an even coverage of the spectrum.
Finally, we set “k” = 1, “cutoff” = 0.5 and “gamma” (gain) = 5.
As described in Ref. 15, the code utilizes a weighting function
that penalizes any PC value that is not spread beyond a certain
frequency. This is because PC is significant only when it occurs
over a wide range of frequencies. This function is of sigmoid
form and can be controlled by two parameters: cutoff fraction,
which dictates the amount of frequencies considered for the PC

Fig. 2 Flowchart of the algorithm utilized for image analysis.
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to be significant, and gain (gamma), which controls the steep-
ness of the sigmoid function. In addition, “k” corresponds to the
number of standard deviations of the noise energy beyond the
mean at which the noise threshold is set. Only signal energies
beyond this threshold will be considered. For noisy images, the
value of “k” can be set up to 20. However, this will increase
the threshold and result in loss of useful data. In our case,
we set the value as low as 1 to avoid any such loss while
discarding a minimum level of noise.

2.6 Generating Orientedness Images

Orientedness is a scattering-based parameter we had previously
defined as the maximum signal over the average signal collected

as a function of orientation, orientedness ¼ maxðSignal;φiÞ
hSignal;φii

���
S¼0.9μm

,

and taken for data filtered with a Gabor period of 0.9 μm.14 φi is
the orientation of the Gabor filters used in the experimental
setup. For a round object, there will be an equal amount of scat-
tering in all φ, resulting a minimum orientedness value of 1,
whereas for an elongated object, the scatter profile will be ori-
ented in a certain direction, producing an orientedness value
greater than 1. As shown previously,14 orientedness decreases
as long mitochondria fragment and round upon injury. In this
work, we calculated orientedness using the local energy images,
defined in the previous section, instead of the raw intensity val-
ues fsignal;φig. Here, 90 deg ≤ φi < 225 deg, and the opti-
cally filtered images with a Gabor filter period of 2 μm were
used in this calculation. Hence, the modified equation is

given by orientedness ¼ maxðlocal energy;φiÞ
hlocal energy;φii

���
S¼2μm

.

2.7 Image Segmentation

First, the nucleus regions as well as the background outside the
cells (no-cell region) are segmented out manually from the cell
images so as to only analyze the scatterers within the cytoplasm.
Then, following the main frame-work proposed by Jain and
Farrokhnia,16 each Gabor-filtered image is preprocessed and
fed to a clustering algorithm. However, we applied PC as a pre-
processing step instead of the “blob-detection” approach applied
in Ref. 16. Then, pixels in the maximum moment images
obtained above were subjected to a K-means clustering algo-
rithm. K-means clustering is an unsupervised learning approach
that is used to assign data to a number of groups, K, based on
the distances of data-points from K initially assigned centroids.

The iterative algorithm assigns each data-point to one of the K
groups until all of the points are assigned.19 After each iteration,
each of theK centroids is moved to the median intensity value of
the pixels in its group. The algorithm is repeated until the sum of
the point-to-centroid distances over all clusters is minimized.
For this, we let the algorithm assign the initial centroids. We
used the “cityblock” distance algorithm in MATLAB for the
K-means distance calculation. We took the median value instead
of the mean to avoid the effect of any outlier. Pixels in the 24
optically filtered images are grouped into four clusters here.
We found 4 to be the highest number of clusters to be used for
these images as the algorithm does not converge for a greater
number of clusters. Pixels categorized in each cluster are color-
labeled with one of the four colors: blue, turquoise, yellow, and
red. In this analysis, all the experimental timepoints for a given
cell were analyzed at once, yielding four classes evolving as
a function of time.

3 Results

3.1 Cell Images Produced by the Algorithm

Images obtained at different steps are shown in Fig. 3. The
Gabor-filtered image is obtained with S ¼ 2.0 μm, φ ¼
225 deg, and the corresponding PC (maximum moment),
local-energy, and orientedness images are shown. The dark-
field image is also shown. The dark-field image contains all
spatial-frequency components; hence, it contains the scattering
information from objects of all sizes and orientations. On the
other hand, it is mostly the objects oriented at 225 deg that
are highlighted in the Gabor-filtered image. Enhanced edges
of these objects can be seen in the maximum moment image.
The orientedness image maps the orientedness values of the sub-
cellular objects in the cytoplasm. As indicated by the color scale,
objects with a hue toward the blue have low orientedness and
hence are round compared to the objects shown in red.

3.2 Tracking Subcellular Organelles with
Dynamic Masking

To segment the subcellular objects in the cytoplasm, we applied
a K-means algorithm to classify the pixels in the maximum
moment images. Before classification, the data are standardized
by subtracting the mean and dividing by the standard deviation
to obtain zero mean and unit variance. Figure 4 shows the four

Fig. 3 (a) Dark-field, (b) Gabor-filtered (S ¼ 2.0, φ ¼ 225 deg), (c) PC (maximum moment), (d) local
energy, and (e) orientedness images of a representative cell. Note that edges are enhanced in
the PC (maximum moment) image.

Journal of Biomedical Optics 096004-4 September 2018 • Vol. 23(9)

Naser et al.: Label-free dynamic segmentation and morphological analysis of subcellular optical scatterers



colored pixel clusters resulting from the K-means algorithm for
a representative cell. To verify whether the clusters contain
pixels with significant morphological information as well as
to discard clusters that contain pixels from the background,
we analyze the four centers, or centroids, of the four clusters
[Fig. 5(a)]. Each centroid has 24 centroid components, represen-
tative of the 24 filtered intensities of pixels within the cluster
associated with that centroid. The 24 centroid values are
arranged as a function of optical filter period, S, and orientation
φ. As can be seen in the polar-plots [Fig. 5(a)], the centroid val-
ues of the turquoise (cluster 2) and red labels (cluster 4) vary as
a function of period and orientation. On the other hand, there is
no or little change in the centroid values for blue (cluster 1) and
yellow labels (cluster 3). The blue and yellow clusters also
have lower values. This indicates that the pixels from these
two clusters are either from the background outside the cell

or the nuclei, which were manually segmented out (blue in
Fig. 4), or subcellular regions with significantly less intensity
than the red and turquoise regions (yellow in Fig. 4). We quan-
tified the variation in cluster values by taking the magnitude

(mag) of each cluster, where mag ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

S;φc
2

q
and c is the

centroid-value corresponding to a filter ðS;φÞ. The bigger the
magnitude, the greater the variation over period and orientation.
We then pick two clusters with the highest magnitudes and
add them to create a single binary mask for the pretreatment
condition [Fig. 5(b)]. Keeping the selected clusters the same,
we repeat the combining process for each time point of data
acquisition to generate masks that change over the period of
time. We then create “masked orientednedness” images by
multiplying the orientedness images with the binary masks at
each time point (Fig. 6).

Fig. 4 Four clusters of pixels labeled in blue, turquoise, yellow, and red. Top panels: pretreatment, and
bottom panels: post-treatment. Each of these clusters contains objects with different scattering profiles
and intensities. Note also how the shape of the labeled objects changes with treatment; particularly
elongated objects in the turquoise-cluster become smaller and rounder.

Fig. 5 (a) Color-coded centroid values are arranged in a 4 × 6 polar plot corresponding to four orienta-
tions and six periods for each label shown in Fig 4. In both pre- and post-treatment cases, the centroid
components of the turquoise and red clusters’ demonstrate variation over orientations (φ) as well as
periods (S), while those of the blue and yellow clusters have low signal with little or no variation.
(b) The turquoise and red clusters are added together to produce a combined final binary mask.
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As can be seen in Fig. 6, dynamic masks created by the
proposed algorithm change shape over time as the cell shrinks
upon severe chemical insult (Fig. 7). Most of the long objects in
the masks become fragmented or round along with the cell-

shrinkage and exhibit a decrease in their orientedness value.
Concurrently, mitochondria become shorter and rounder upon
calcium-overloading, observed in the MitoTracker-labeled fluo-
rescent images (Fig. 8).

3.3 Effect of Jain’s Multichannel Filtering Approach

Jain’s framework is based on a multichannel filtering approach,
originally proposed in Ref. 20, which dictates that the human
visual system decomposes retinal information into a number
of filtered images. The “multichannels” are realized by the
Gabor filters. To understand the effect of Gabor filters on
the final segmented image with classified pixels, we applied
PC and clustering of the pixels on the unfiltered dark-field
image. Segmented images obtained using the single-channel
(DF only) and multichannel (Gabor) contain almost the same
information in the cellular region, except the former has
noise (Fig. 9). The multichannel approach decomposes the
same information of the dark-field into multiple channels and
allows selecting the channels less corrupted by noise. Hence,
we can discard the channels manually (i.e., Gabor filters of
particular period and orientation) that are corrupted by noise.
This enabled us to generate a clearer image compared to that
obtained by using dark-field only.

Fig. 6 Masked orientedness image of a representative cell. Gradual change in the subcellular scatterers
and shape of the dynamic mask can be observed upon injury at t ¼ 0.

Fig. 7 Differential interference contrast (DIC) image of a cell under
calcium-overload. (a) Long objects (yellow arrow) observed in the pre-
treatment image fragment and (b) become round due to excessive
calcium. The cell also shrinks which is indicated by trace-marks of
the cell membrane (pink arrow-head).When compared withMitoTracker-
labeled fluorescent images, the fragmented and rounded long objects
in the DIC images correspond to mitochondria (Fig. 8).

Fig. 8 MitoTracker labeled fluorescent images show mitochondrial fragmentation and remodeling upon
calcium-overload.
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3.4 Aspect-Ratio and Orientedness Decrease upon
Injury

To quantify the subcellular morphological changes, we analyzed
the subcellular objects segmented by the image masks obtained
above (Fig. 5). Objects are defined as clusters of pixels with
connectivity with four pixels.21 We measured the aspect-ratio
of the objects over time to quantify the subcellular morphologi-
cal changes [Fig. 10(a)]. We also calculated the median orient-
edness from the pixels contained in each object. Figure 10(b)
shows that the object’s median orientedness decreases upon
cell injury. Analysis of the aspect ratio of the MitoTracker
labeled objects also shows a simultaneous decrease with treat-
ment [Fig. 10(c)].

3.5 Texture-Features Can Detect Subcellular
Morphological Dynamics Induced by Injury

Calcium-injury perturbs the spatial arrangement of the subcel-
lular organelles. Such rearrangement is a result of changes in
organelle morphology, as well as cell-shrinkage. While the
treatment produces objects with a decreased aspect ratio and
orientedness [Figs. 10(a) and 10(b)], relative distances among
organelles also change and reduce as the cell shrinks. To quan-
tify these two-dimensional, cell-wide, structural changes asso-
ciated with the injury, we analyzed the texture of the masked
orientedness images as a function of time. To this end, we
extracted eight texture-features22–24 using the code available25

to analyze the spatial variation in the orientedness values.
As proposed in Ref. 24, we grouped the features into three

categories; features that describe the smoothness [contrast,
dissimilarity, and inverse difference moment (IDM) or homo-
geneity], uniformity (entropy, maximum probability, and energy)
and correlation (autocorrelation, correlation) of the texture.

We found that multiple texture features are sensitive to the
morphological changes encoded by the orientedness images.
We plotted these texture-features as a heat-map (Fig. 11) for
each cell and observed the change in color over time, which
indicates the features’ ability to detect the underlying structural
changes. Several features changed by more than 30% in
the treated cells. Autocorrelation, contrast, dissimilarity, and
entropy increased in the treated cells, while they decreased
slightly or remained within 10% of the starting value in the
control cells. Energy and maximum probability decreased in
the treated cells but remained within 10% of the starting
value in the control cells. Cell-to-cell variations are also
observed in both the control and treated cells. We also observed
individual feature-responses for the whole dataset (Fig. 12).
Autocorrelation, correlation, contrast, dissimilarity, and entropy
increase while energy, maximum probability, and IDM decrease
over time in the treated cells compared with the control. We
select autocorrelation, contrast, entropy as the representative
features from each group with positive trends (i.e., increase)
and energy and IDM as negative trends (i.e., decrease).
We then calculate the composite feature by subtracting the
decreasing features from the increasing ones. The square root
of the energy feature is taken to match the unit with that of
other features. The composite feature in Fig. 13 also shows
a shift from the baseline after injury.

4 Discussion
Cells and their subcellular organelles undergo morphological
changes constantly. These changes occur either naturally or
upon treatment. To quantify such morphological changes in
an unstained cell, we utilized OSI to detect the scatterers present
within the cell. However, tracking these scatterers and quantify-
ing their morphology over time is a challenge since they are con-
stantly shifting in space and changing shape. To address this
problem, we present an algorithm to process angular-scatter-
encoded images to detect as well as to track structural changes
in the subcellular domain. With this algorithm, we generate a set
of masks, which are used to segment individual subcellular scat-
terers, and dynamically change shape in response to the morpho-
logical changes in the scatterers over time (Figs. 5 and 6).

Fig. 9 (a) Segmented images generated using the multichannel
Gabor-filtered images and (b) the single unfiltered dark-field image.

Fig. 10 Segmented subcellular objects become rounder after calcium overload, as indicated by the
(a) aspect-ratio and (b) orientedness. The decrease in the aspect ratio of objects within the fluorescence
images (c) suggests that the change in the aspect ratio of mitochondria partially accounts for the
decrease in the masked subcellular objects’ aspect ratio. The data show mean and standard error
for n ¼ 6 cells for the first six timepoints (treated) and the first seven timepoints (control). Additional
timepoints were tested for one control cell and four of the treated cells.
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These masks further allow us to extract morphometric
parameters, such as the aspect ratio of the segmented objects
(Fig. 10) or analyze the textural features of the mask-images
(Figs. 11–13).

To test this algorithm, we induced morphological changes
by overloading endothelial cells with calcium. Excess calcium
leads to the opening of the mitochondrial permeability transition
(mPT) pores. Subsequent redistribution of small molecules and
water causes swelling in the mitochondria.26 Due to calcium
overload, a long mitochondrion may either remodel or undergo
fission. Mitochondria undergoing remodeling become round,

whereas fission produces smaller fragments.27 With a suffi-
ciently high calcium dose as used here, cells will also shrink
and undergo cell death. As a result of this treatment, the organ-
elles’ morphology changes as well as their subcellular structural
arrangement as the cell starts to shrink and subsequently die.
This calcium treatment is similar to the one published in
Ref. 11. Thus, one significant aspect of this treatment is that
it results in mitochondrial fragmentation and rounding. As
we had previously observed, mitochondria in this study also
attain a smaller and rounder shape postinjury as opposed to
the elongated shape pretreatment (Fig. 8). Given the twofold

Fig. 12 Average responses of the individual texture features over time. The smoothness of the texture
decreases as the contrast and dissimilarity increase and IDM (also known as homogeneity) decreases in
the treated cells compared with controls. The uniformity of the texture decreases as the entropy
increases, whereas the energy and max. probability decrease. Correlation between pixels increases.
The data show mean and standard error for n ¼ 6 cells for the first six timepoints (treated) and
the first seven timepoints (control). Additional timepoints were tested for one control cell and four of
the treated cells. (a) Autocorrelation, (b) correlation, (c) contrast, (d) dissimilarity, (e) entropy, (f) energy,
(g) maximum probability, and (h) IDM.

Fig. 11 Changes in the texture-features of the masked orientedness images shown as heat-maps.
Each row is a feature while each column is a time-point. Cells were monitored for different time periods,
but for at least 180 s, after ionomycin treatment (t ¼ 0, treated), or the same saline solution but with
no ionomycin (t ¼ 0, control). Texture-features are sensitive to the change in the spatial arrangement
of the morphometric parameter orientedness. The color scale represents the magnitude of each
parameter.
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transformation in the morphology and arrangement of subcellu-
lar organelles upon treatment, we apply our algorithm and
dynamic masks to track the scatterers over time and quantify
their morphological changes. Our results show that the
aspect-ratio and orientedness of the segmented objects in the
masks decrease [Figs. 10(a) and 10(b)]. This suggests that
these masks are sensitive to the rounding of the organelles.
This change was concurrent with a decrease in the aspect
ratio of MitoTracker-labeled mitochondria [Fig. 10(c)], sug-
gesting that the decrease in the scattering objects’ aspect ratio
may be at least partially accounted for by the rounding of
the mitochondria becoming shorter and rounder upon calcium
overloading.

We had used the “orientedness” parameter previously to
measure mitochondrial fission.14 In that work, average oriented-
ness values were calculated for each cell based on raw optical
filtered intensities. The orientedness parameter takes advantage
of the fact that objects of different geometries (e.g., noncircular
versus circular) have different directional light-scattering pro-
files. For example, light scattered from an elongated object is
confined in a smaller azimuth angle, φ in the scatter-plane as
compared to that of a round object.11 Orientedness measures
this anisotropy of scattered light by taking the ratio of light-scat-
ter signal at the direction of maximum scatter to the mean signal
collected at all available directions.14 This ratio is measured
at each pixel, resulting in a cell-wide orientation mapping.
However, since orientedness is a normalized ratio of two inten-
sity values, it is independent of signal strength at a given pixel,
and pixels in the background may show orientation, which does
not have any biological relevance. Hence, to amplify signal from
the subcellular organelles as well as to suppress signal from
background, we present a modification of the orientedness
parameter that uses local energy information, instead of only
raw intensity values. Local energy emphasizes regions of abrupt
change in intensity such as edges in an image. We take this prop-
erty of local energy to enhance the edges of the organelles as
well as to suppress signal from monotonically varying intensity
such as the background. By multiplying the orientedness images
with the masks, we further extract signal from the major scatter-
ing sources, allowing us to analyze individual subcellular scat-
terers over time, as opposed to taking the average orientedness

across the whole cell. When tracked over time, we observe
a decrease in the orientedness of the objects of the masks.
While the aspect-ratio measures an object’s shape directly by
taking the ratio of the height and weight, orientedness provides
an indirect means to obtain similar information from the scatter-
ing profile of the object in question. As expected, when tracked
over time, both of these parameters show a similar decreasing
trend with time [Figs. 10(a) and 10(b)], indicating concordance
between two approaches. Correlation between the fluorescent
data [Fig. 10(c)] and data obtained from the label-free approach
suggests that the morphological change probed by our optical
scatter technique is pertinent to mitochondria. These results cor-
roborate our previous data showing detection of mitochondrial
rounding and fission with optical scattering.11,14 However,
the present data improve on our previous parameters. Here,
we generate a dynamic mask that can change shape over
time to extract orientedness values only from the scatterers
within the cell and discard background pixels. Thus, our current
data are less sensitive to background and can enable tracking of
individual scatterers.

To generate our subcellular organelle masks, we apply a
segmentation technique originally proposed for digital Gabor-
filtered images16 and multiply the resulting segmentation mask
with the orientedness image. The masked-orientedness images
therefore contain orientation information from significant
scatterers in the cell. As the organelles change shape, the trans-
formation of their orientedness values will impact the spatial
relationship between two pixels. In addition, the spatial arrange-
ment of the organelles will also be affected by the shrinkage of
the cell upon injury. While the change in the individual masked
objects reflects changes in individual structures, the spatial dis-
tribution and arrangement of these structures may be quantified
using various image-based texture-features. Our texture analysis
shows that autocorrelation, correlation, contrast, dissimilarity,
and entropy increase while energy, maximum probability, and
IDM decrease over time (Fig. 12). However, as suggested by
Haralick et al.,22 even though these features show sensitivity
toward change in texture, it is difficult to identify which textural
characteristic is signified by each of them. Hence, it will be
hard to draw any biological relevance of the extracted features.
Thus, one way to represent the underlying biological events is to
combine these features and observe their ensemble behavior in
one composite textural parameter (Fig. 13). Taken together,
our data allow for single-scatterer analysis via the analysis of
the individual masked objects, and whole-cell analysis via
the textural features. The textural features are indicative of an
overall cellular dynamic morphological state that changes in
response to treatment.

Traditionally, organelles in live cells are visualized either by
staining with dyes or by expressing organelle-targeted fluores-
cent proteins. However, such approaches can have adverse
effects on organelle function. In particular, fluorescent labels
have adverse effects on mitochondrial metabolism1 and dynam-
ics,2 which can ultimately hinder reliable drug screening.
For example, MitoTracker dyes reduce cell motility in primary
neuronal culture as well as alter their morphology.2 Besides,
some dyes are not photostable if used in low concentration to
avoid quenching effects, whereas fluorophores tend to aggregate
and stain other organelles if used in high concentration.28

On the other hand, mitochondria targeted fluorescent proteins
such as mito-GFP do not affect function or morphology;
however, long-duration time-lapse imaging is not possible

Fig. 13 Composite feature calculated from representative features:
autocorrelation, contrast, entropy, energy, and IDM. The data show
mean and standard error for n ¼ 6 cells for the first six timepoints
(treated) and the first seven timepoints (control). Additional timepoints
were tested for one control cell and four of the treated cells.
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due to phototoxicity.1 Moreover, low transfection efficiency hin-
ders high-throughput screening for drug discovery.29 Hence, a
label-free imaging technique would be ideal for noninvasive
quantification of organelle dynamics over a long period. To
this end, several studies have recently demonstrated the potential
of label-free methods used in conjunction with computational
image processing for cellular analysis and classification. For
example, Blasi et al.3 proposed a label-free approach to detect
DNA content and quantify mitotic cell cycle phases by combin-
ing conventional flow cytometry and single-cell imaging. The
phases were classified using morphological features extracted
from bright-field and dark-field images. In this paper, we use
similar features, such as aspect-ratio and Haralick textures.
However, one major difference here is the use of the oriented-
ness parameter, which is based on light-scattering. Since
light-scattering is directly related to the size and shape of the
probed objects, the orientedness parameter contains valuable
information regarding morphological changes in the subcellular
organelles.

One of the limitations of the technique presented here is its
dependency on image-processing parameters that generate local
energy and PC images. However, once these parameters are
tuned empirically for a specific cell type, they are constant
for any number of samples. This procedure will be automated
in the future. The proposed features can also be used in conjunc-
tion with other dynamic parameters, such as velocity and
displacement of the organelles in biologically relevant cases,
such as mitochondrial mobility, fission/fusion rate, etc. The
combined approach can then be used to provide a better
label-free quantification of subcellular dynamics.

In conclusion, we have developed a label-free approach to
detect and track subcellular morphological changes dynami-
cally. This technique does not use any exogenous marker and
hence can be used to avoid the adverse effects of label-based
assays and potentially provide a method for rapid drug-
screening. In the future, we hope to apply this technique to
different mammalian cell types, such as neurons, to quantify
subcellular dynamics upon chemically and mechanically
induced injuries.

Appendix
Implementation of Gabor filters on the conjugate Fourier plane
requires conversion of the related parameters from space to fre-
quency domain. This conversion is detailed in Table 1.
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