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Abstract. The detection of the contour of a binary object is a common problem; however, the area of a region,
and its moments, can be a significant parameter. In several metrology applications, the area of planar objects
must be measured. The area is obtained by counting the pixels inside the contour or using a discrete version of
Green’s formula. Unfortunately, we obtain the area enclosed by the polygonal line passing through the centers of
the pixels along the contour. We present a modified version of Green’s theorem in the discrete plane, which
allows for the computation of the exact area of a two-dimensional region in the class of polyominoes.
Penalties are introduced and associated with each successive pair of Freeman displacements along the contour
in an eight-connectivity system. The proposed equation is shown to be true and properties of the equation related
to the topology of the regions are presented. The proposed approach is adapted for faster computation than
the combinatorial approach proposed in the literature. © The Authors. Published by SPIE under a Creative Commons
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1 Introduction
Let us consider Ω to be a binary four-connected region with
or without holes. We suppose that Ω is filled with white pix-
els and surrounded by black pixels. This class of regions is
the well-known polyominoes.1 For such a region Ω, we
propose an algorithm to identify its eight-connected, closed,
and positively oriented contour Γ (black pixels). Second,
we propose an exact equation to compute the area of Ω from
the coordinates of the pixels in Γ. A simple way to obtain
the area of such a region is to scan the region and to
count the interior pixels inside the contour Γ. Otherwise,
a corollary of Green’s theorem in the continuous plane2

states that if Ω is a closed and bounded region, surrounded
by a simple closed path Γ, which is positively oriented and
piecewise continuous, then the area AðΩÞ of Ω is given by
the following line integral:

EQ-TARGET;temp:intralink-;e001;63;262AðΩÞ ¼
ZZ

Ω
1 dxdy ¼ 1

2

I
Γ
ðx dy − y dxÞ: (1)

The area of a discrete region is often computed from a dis-
crete version of the last Eq. (1). This discrete equation is
the well-known Pick’s theorem.3 The contour Γ will be
an ordered set of pixels

EQ-TARGET;temp:intralink-;sec1;63;175Γ ¼ fP1; P2; : : : ; Pi; Piþ1; : : : ; PL; PLþ1 ¼ P1g;
where Pi ¼ ðxi; yiÞ are the coordinates associated with the
center of the pixel Pi; i ¼ 1; : : : ; Lþ 1. The integer L rep-
resents the number of pixels in Γ. The discrete version of
Eq. (1) is given by the equation

EQ-TARGET;temp:intralink-;e002;326;441

AðΩÞ ¼ 1

2

XL
i¼1

½xiðyiþ1 − yiÞ − yiðxiþ1 − xiÞ�

¼ 1

2

XL
i¼1

½xiyiþ1 − yixiþ1�: (2)

Unfortunately, the area obtained with this equation
corresponds to the one enclosed by the polygonal line
passing through the center of each pixel along the contour.
Consequently, the area is greater than the number of white
pixels. For example, the unitary region shown in Fig. 1 has
an area equal to two pixels when using Eq. (2). The area is
overestimated because of the contribution of the pixels on
the contour at the left of the straight line passing through
the center of each pixel in the contour. To correct Eq. (2) in
its discrete formulation, we introduce a penalty associated
with each Freeman displacement from one pixel to its
successor along the positively oriented outer contour Γ.
The sum of these penalties will correspond to the difference
between the real area and the estimate given by Eq. (2).
Before introducing the contour algorithm and penalties,
we will provide some definitions to specify the topology of
the domains covered by our approach. Many authors have
treated this topic in the context of digital images, in particular
the research works of Rosenfeld.4–8

Otherwise, a different version of the Green theorem9,10

based on the exterior edges of the contour’s pixels (boun-
dary) of a polyomino is used to calculate discrete geometric
parameters, such as the center of gravity and the moment of
inertia of the polyomino. In these studies, the contour is
the adjacent pixels of the polyomino that are four-connected,
and the boundary is encoded by a four-letter alphabet. Our
approach, adapted for pattern recognition aims, is different
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from this combinatorial approach. We will consider simply
four-connected regions in the discrete plane (white pixels).
Our approach is to extract simultaneously the contour
(eight-connected black pixels) and the ordered list of
Freman’s directions between each pair of successive pixels.
These two topics are related in the calculation of the area. In
Sec. 2, we describe the structures of a class of regions of
interest, in Sec. 3 we present the construction of the oriented
contour of such regions, and finally we present the equation
for the computation of the area in Sec. 4 before the
conclusion.

2 Definitions
Let Ω be a four-connected region in the discrete plane.
If the number of pixels inΩ is finite, then Ω is called a closed
and bounded region; otherwise it is open on the world.
The set Ωc is the complementary set in the discrete plane
or in the image.

Definition 1 Let Ω be a four-connected, closed, and
bounded set of pixels (white pixels) in the discrete plane;
therefore, the contour ∂Ω of Ω is the set of pixels (black
pixels) in Ωc such that each pixel of ∂Ω is adjacent (four-
connectedness) to at least one pixel of Ω.

We recall that four-connectedness means edge connectiv-
ity; therefore, two pixels are four-connected if and only if
they have a common edge. In this paper, we consider only
simply connected regions. Otherwise, if a region contains
holes, we can easily subtract the area of the holes from
the region containing these holes.

Definition 2 The oriented contour Γ of Ω, or the contour,
is an ordered rearrangement of the pixels in ∂Ω such that Γ is
a closed, eight-connected, and positively oriented (counter-
clockwise) path. We represent the contour by an ordered set
of pixels

EQ-TARGET;temp:intralink-;e003;63;244Γ ¼ fP1; P2; : : : ; Pi; Piþ1; : : : ; PL; PLþ1 ¼ P1g; (3)

where P1 is any pixel in Γ.

Because of the orientation of the contour, the region Ω is
at the left side of the oriented segment defined by any pair of
successive pixels ½Pi; Piþ1� along the contour. The choice of
the counterclockwise orientation is in accordance with the
Green’s theorem in vector calculus to ensure that the area is
positive.

Definition 3 The oriented contour is said to be simple if
Pi ≠ Pj, 1 ≤ i ≠ j ≤ L.

The length L of an eight-connected contour is minimal
when the contour is simple. Now, we consider topological

structures to deal with regions having nonsimple contours
as well and to extend the calculation of the area for
a class of regions as large as possible. For this purpose,
we introduce the definitions of a stem, branch, tree, and
leaf connected to a stem. Subsequently, we will consider
the juxtaposition of all these structures.

Definition 4 A stem in a contour Γ is a subset S ⊂ Γ such
that there exist two integers 1 ≤ i ≤ L and k > 0 such that
EQ-TARGET;temp:intralink-;e004;326;658

S ¼ fPi; Piþ1; Piþ2; : : : ; Piþk−1; Piþk; Piþkþ1; : : : ;

Piþ2k−1; Piþ2kg; (4)

where Piþ2k−j ¼ Piþj;1≤ j≤ k, Piþj ≠Piþm;1≤ j≠m≤ k,
and Pi ¼ Piþ2k. The pixel Pi is called the root of the stem,
and the pixel Piþk is called the extremity of the stem.

A stem is like a single filament growing inside the region
Ω [see Fig. 2(b)]. We now describe a branch in a contour as
the union of many stems. One of these stems is identified as
the principal stem on which all others stems are connected
[see Fig. 2(d)]. All of these stems are disjoint, but many of
these can have a common root on S0. A branch is well-
defined in graph theory as a simple connected graph without
any simple cycle. Here, the vertices in the graph are the
pixels, and the edges are represented by the displacements.

Definition 5 Let S0 be a fixed single stem in Γ with root
R0 ∈ Γ. Let Sj; j ¼ 1; : : : ; N, be N disjoint stems in Γ con-
nected to S0 by a root Rj ∈ S0. The union of the stems
fSjgnj¼0

is called a branch. The pixel R0 is called the root of
the branch, and S0 is called the principal stem of the branch.

The choice of the principal stem is arbitrary. For instance,
we can choose the longest as the principal stem. We define
the union of branches as a tree.

Definition 6 Let T0 be a fixed stem in Γwith root R0 ∈ Γ
and let Bj; j ¼ 1; : : : ; N, be N disjoint branches in Γ with
Rj ∈ T0 the root of the branch Bj, then the union of all
branches is called a tree. The stem T0 is called the trunk
of the tree. The root R0 is called the root of the tree.

In the last definition, branches can have a common root.
We add a last structure that can be included first at the end of
a stem.

Definition 7 A leaf F in Ω is a set of pixels connected to
the extremity of a stem in Γ. The set of the pixels of a leaf,
including its contour, is a simply four-connected region. The
contour Fc of a leaf is included in Γ.

A leaf is closed if its contour surrounds only black pixels;
otherwise, it is open [see Fig. 2(f)]. The class C regions con-
sidered in this paper are those with stems, branches, trees,
leaves, and all admissible combinations of these structures,
and they are simply connected.

Definition 8 The principal contour of a region Ω ∈ C is
the set of pixels in Γ that remains after the elimination of all
stems, branches, trees, and leaf contours.

Proposition 1 Let Ω be a nonempty, bounded, and four-
connected region; then Ω has a finite and closed four-
connected outer contour ∂Ω and a contour Γ.

Fig. 1 Region with unitary surface and its contour.
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Proof. The outer contour ∂Ω of Ω is the set of all pixels
in Ωc adjacent by the edges to the pixels in Ω. Since Ω is
bounded, Ω contains a finite number of pixels and conse-
quently ∂Ω is finite. If the contour ∂Ω is not closed, then
Ω is not bounded and we have a contradiction. We conclude
that Γ exists as a rearrangement of ∂Ω. ▯

The extraction of the closed, eight-connected, and
positively oriented contour Γ from the outer contour ∂Ω of
a four-connected region Ω and the associated sequence of
successive and admissible displacements are presented below.

3 Construction of the Oriented Contour
Now, we are ready to propose a new contour algorithm ena-
bling us to construct the contour Γ (eight-connected, closed,
and positively oriented) of a region Ω ∈ C. The algorithm
presented in this section was introduced in Ref. 11 for
the detection of the contour of “hydropsyche” nets in an
environmental application in connection with toxicological
studies. The algorithm contains three major steps: the iden-
tification of a starting pixel on the contour, the step-by-step
construction of successive eight-connected pixels on the con-
tour (see Fig. 3), and the ending of the process when con-
necting with the starting pixel. We first identify a set of
potential starting pixels along the contour of Ω. In practice,

we need one starting pixel for each connected component.
The Freeman directions will be used as identifiers of the
displacements along the contour. The Freeman codification
is the standard one in an eight-connected topology; the value
is 0 in the right direction and is increasing in a counterclock-
wise manner. A displacement is an oriented segment
(counterclockwise) between two successive pixels along
the contour. We will denote ½Pa; Pb� an oriented segment,
or vector, from the center of the pixel Pa to the center of
the pixel Pb.

Definition 9 A black pixel Ps ¼ ði; jÞ is called a poten-
tial starting pixel of a contour if the adjacent pixel with
coordinates Pr ¼ ði − 1; jþ 1Þ is black and if the pixel with
coordinates Pt ¼ ði; jþ 1Þ is white. The Freeman direction
associated with the displacement from Ps to Pr is α ¼ 5.
We denote SðΩÞ the set of all potential starting pixels.

Proposition 2 Let Ω ∈ C and its contour Γ. There exist
P1 and P2 in Γ such that the Freeman direction of the
oriented segment ½P1; P2� equals α ¼ 5 and such that P1 ∈
SðΩÞ has a unique pixel PL ∈ Γ as predecessor.

Proof. Let Ps ¼ ðk; jÞ be the pixel with coordinates

EQ-TARGET;temp:intralink-;st13;326;216j ¼ min
m

fP ¼ ði; mÞ ∈ Ωg k ¼ min
n
fP ¼ ðn; jÞ ∈ Ωg:

Since Ω is bounded, then Ps exists. By the definition of Ps,
we have P1 ¼ ðk − 1; jÞ and P2 ¼ ðk; j − 1Þ in Γ are the two
successive candidate pixels with the Freeman direction equal
to α ¼ 5. It is easy to show, or to illustrate, that the prede-
cessor PL of P1 belongs to the exclusive set of coordinates
fðk− 1; jþ 1Þ; ðk− 2; jÞ; ðk− 2; jþ 1Þ; ðk; jþ 1Þg; other-
wise, we have a contradiction because of the definition of
Ps. ▯

The last proposition confirms that we can start the detec-
tion of the contour with the specific starting pixel selected.

Fig. 2 (a) Starting pixel, (b) stem, (c) root of a stem, (d) branch, (e) tree, (f) opened leaf at the extremity of
a stem, and (g) branch with a closed leaf and two stems connected to the leaf.

Fig. 3 (a) Admissible pair of displacements, (b) nonadmissible pair of
displacements (an eight-connectedness fails), and (c) admissible pair
of displacements with backtracking successive displacements on
a stem.
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Many other starting pixels are admissible. In the case of
a region with many connected components, we switch off
any pixel in SðΩÞ encountered during the construction of
a contour with the intent of individually constructing the
contour of each component. When the set SðΩÞ becomes
empty, no component remains. Finally, when we reach the
predecessor PL, the construction of the contour is stopped.
Let P1 and P2 be the starting and second pixels identified
previously, respectively, and let k ¼ 1.

At each step k ≥ 1, we have to identify the pixel Pkþ2

such that the oriented segment dkþ1 ¼ ½Pkþ1; Pkþ2� satisfies
the two following conditions: (1) Pkþ2 is a black pixel
and (2) fP1; P2; : : : ; Pk; Pkþ1; Pkþ2g is the minimal eight-
connected and counterclockwise-oriented chain of pixels
on Γ, which minimizes the length (number of pixels) of
all chains of black pixels belonging to ∂Ω and linking P1

to Pkþ2. Let dk ¼ ½Pk; Pkþ1� the oriented segment on the
contour issued from the step k ≥ 1. Let αk be the Freeman
direction associated with this displacement. We will prove
that there exists one and only one pixel Pkþ2 such that
the preceding conditions are verified. The black pixel Pkþ2 ∈
Γ is chosen according to the knowledge of the direction αk
between the preceding pixels. The choice of the pixel Pkþ2

must respect the last two constraints. The enumeration of
the potential patterns of distribution of white and black pixels
in the neighborhood of Pk and Pkþ1 will allow us to identify
this unique pixel on an eight-connected contour. To select
the pixel Pkþ2, we covered all of the possible patterns
(see Table 1) in the neighborhood of the pixels Pk and
Pkþ1 that respect the attributes of the contour. In Table 1,
a value at the position (i; j) indicates that a displacement
in the Freeman direction αkþ1 ¼ j is admissible after
a displacement in the direction αk ¼ i along the contour.
The meaning of the value in position (i; j) will be specified
further on. For a given i ¼ αk, there exists only one j ¼ αkþ1

that corresponds to a displacement along the contour such
that the constraints are verified, then we can determine the
unique Pkþ2. In Fig. 4, we show in a minimal geometric
representation all successive and admissible displacements.
The other data associated with these representations will serve
to explain penalties associated with these displacements.

Given the pixels Pk and Pkþ1 and displacement αk, we see
from Table 1 that there are no more than seven directions to
visit before choosing the next pixel Pkþ2 and the direction
αkþ1, which is unique along the contour. Furthermore, we
note that some opposite Freeman directions are admissible to
take into account reverse displacements along the stems.
Finally, since the starting pixel has a unique predecessor as
shown in Proposition 2, the algorithm stops when we reach
the first pixel P1. The next theorem summarizes the situation
discussed above.

Theorem 1 Let Ω ∈ C be a nonempty region and let P1

and P2 be the two pixels found at the first step of the algo-
rithm. Then,

1. there exists a unique pixel P3 ∈ Γ such that the
sequence of pixels fP1; P2; P3g is positively oriented
and α2 is equal to 6 or 7,

2. for k > 1, if Pk and Pkþ1 are the two successive pixels
in Γ, then there exists a unique pixel Pkþ2 ∈ Γ such
that fPk; Pkþ1; Pkþ3g is a positively oriented path in Γ.

Proof. If α2 equals values other than 6 or 7, we have
a contradiction in regard to the position of the pixel Ps,
as defined in the proof of Proposition 2. The second part is
a consequence of the proposed construction for Γ. ▯

To prove the correctness of the proposed contour algo-
rithm, some intermediary results are necessary. First, we
show that the algorithm is finite. For this purpose, it is
sufficient to show that a pixel on the contour is revisited at
most a finite number of times. We will focus our argument on
the geometry of stems and branches in the discrete plane.

Lemma 1 The extremity of a stem is at most the root of
three other stems.

Proof. The proof is based on geometric arguments.
Figure 5 shows all geometric patterns combining a root of
a stem connected to its predecessor in Γ. For each one of
these patterns, we connected the maximum number of
independent stems to the extremity of the main stem.
Figure 6 shows all combinations (classes of equivalence
under orthogonal rotations) when connecting stems to an
extremity. We observe that only two or three stems can be
connected. ▯

Before moving on to the correctness of the algorithm,
we present the next lemma.

Lemma 2 If Pk ∈ Γ is revisited at a step j > k
(Pj ¼ Pk), then αj ≠ αk.

Proof. The only pixels revisited on Γ are pixels belong-
ing to a stem and consequently to a branch or a tree. Let Pk
be such a pixel. If Pk is not a root, then Pjþ1 ¼ Pk−1 ≠ Pkþ1

and then αk ≠ αj. If Pk is a root, then it is clearly visited at
most a finite number of times. ▯

We conclude that Pk is revisited at most a finite number of
times. In conclusion, we have proved that the algorithm can
be initialized and the contour is well-defined at each step.
Also, we have proved that each pixel is visited at most
a finite number of times along Γ and then the procedure is
finite in time. Furthermore, the procedure is closed since

Table 1 Penalty pði ; jÞ for each pair of successive and admissible
displacements ði ; jÞ.

i∕j 0 1 2 3 4 5 6 7

0 0.5 0.25 1.0 0.75 0.75 0.5

1 0.75 0.5 0.5 0.25 1.0 1.0 0.75

2 0.75 0.5 0.5 0.25 1.0 0.75

3 1.0 0.75 0.75 0.5 0.5 0.25 1.0

4 1.0 0.75 0.75 0.5 0.5 0.25

5 1.0 1.0 0.75 0.75 0.5 0.5 0.25

6 1.0 0.75 0.75 0.5 0.5 0.25

7 0.5 0.25 1.0 1.0 0.75 0.75 0.5

Journal of Electronic Imaging 063022-4 Nov∕Dec 2017 • Vol. 26(6)

Chalifour, Nouboud, and Voisin: Computation of the area in the discrete plane: Green’s theorem revisited



the starting pixel is reached again because it has a unique
predecessor. Finally, the proposed algorithm is correct.

4 Green’s Formula for the Computation of the Area
In this section, we develop a new expression of the discrete
Green’s identity for the computation of the area of a region
Ω ∈ C. Let Γα ¼ fα1; α2; : : : ; αk; : : : ; αLg be the ordered
chain of Freeman directions associated with the chain of

Fig. 4 Successive and admissible pairs of displacements.

Fig. 5 The set of patterns representing the extremity of a stem and its
predecessor on a contour Γ. A black circle represents the extremity of
a stem.
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oriented segments dk ¼ ½Pk; Pkþ1� ðk ≥ 1Þ along the con-
tour. Our objective is to remove systematically, for each
pair of successive displacements ½αk; αkþ1�ð1 ≤ k ≤ LÞ, the
additional surface area introduced when using Pick’s for-
mula. For this purpose, we define for each successive dis-
placement a penalty pk ¼ pðαk; αkþ1Þ, and this value is
subtracted from the corresponding term in the original
Eq. (2) as we will see later. The penalty pk is calculated
according to the next definition.

Definition 10 For k ≥ 1, let Pk, Pkþ1, and Pkþ2 be three
successive pixels in Γ and let αk and αkþ1 be the Freeman
directions associated with the oriented segments dk ¼
½Pk; Pkþ1� and dkþ1 ¼ ½Pkþ1; Pkþ2�. Let P�

kþ1 and P�
kþ2 be

the two orthogonal projections of Pkþ1 and Pkþ2 on the adja-
cent edges in the direction of Ω, respectively, such that the
angle between the oriented segments dk and ½Pkþ1; P�

kþ1�
(resp., ½Pkþ2; P�

kþ2�) is acute. The penalty pk is the surface
of the polygon with vertices fP�

kþ1; Pkþ1; Pkþ2; P�
kþ2g inside

Pkþ1

S
Pkþ2.

In Fig. 7, we illustrate the calculation of the penalty
pð0; 1Þ for the particular successive pair of displacements
αk ¼ 0 and αkþ1 ¼ 1. Table 1 shows the values of these pen-
alties calculated for all admissible and successive pairs of
displacements. In Fig. 4, we can see the penalized area
for each admissible pair of admissible displacement.

Before demonstrating the correctness of the modified
Green’s formula (see Proposition 4), we prove the invariance
under rotations of the penalty values.

Lemma 3 The penalty associated with a pair of admis-
sible displacements along Γ is invariant under rotations.

Proof. Let ði; jÞ be the indices of two successive and
admissible displacements (0 ≤ i; j ≤ 7), then the rotation of
ði; jÞ gives the pair ði 0; j 0Þ where i 0 ¼ ðiþ 2Þmod 8 and
j 0 ¼ ðjþ 2Þmod 8. From Table 1, we verify that pði; jÞ ¼
pði 0; j 0Þ for all pairs of displacements. We conclude that
penalties are invariant under rotations. ▯

At this time, we are able to propose a modified Green’s
formula. First, we prove that the proposed equation com-
putes the right area of a region with a simple contour without
the presence of stems, branches, trees, and leaves. We will
denote C0 such a region, and its contour will be called
a simple contour.

Theorem 2 Let Ω ∈ C0 be a region and Γ its contour
given by the sequence of pixels

EQ-TARGET;temp:intralink-;st23;326;638½P1; P2; : : : ; Pk−1; Pk; : : : ; PL; PLþ1 ¼ P1�;

where Pi ≠ Pj for 1 ≤ i ≠ j ≤ L. The area of Ω is given by
the following equation:

EQ-TARGET;temp:intralink-;e005;326;581AðΩÞ ¼ 1

2

XL
k¼1

½xkykþ1 − ykxkþ1� −
XL
k¼1

pðαk; αkþ1Þ; (5)

where pðαk; αkþ1Þ is the penalty associated with two succes-
sive and admissible displacements dk ¼ ½Pk; Pkþ1� and
dkþ1 ¼ ½Pkþ1; Pkþ2� with Freeman directions αk and αkþ1.

Proof. We proceed by induction on the size n ≥ 1 of
the area of Ω. The only region with an area equal to 1
was shown in Fig. 1. If we suppose that the white pixel
of this domain has coordinates ði; jÞ, then its contour is
given by the sequence of pixels fP1; P2; P3; P4; P5 ¼ P1g
where P1 ¼ ði − 1; jÞ; P2 ¼ ði; j − 1Þ; P3 ¼ ðiþ 1; jÞ, and
P4 ¼ ði; jþ 1Þ. The Freeman directions associated with
this contour are given by the sequence {5, 7, 1, 3}. If we
calculate the area using the discrete Eq. (5), then

EQ-TARGET;temp:intralink-;st24;326;383

A ¼ 1

2

X4
k¼1

½xkykþ1 − ykxkþ1� −
XL
k¼1

pðαk; αkþ1Þ;

¼ 1

2
½ði − 1Þðj − 1Þ − ijþ ij − ðj − iÞðiþ 1Þ

þ ðiþ 1Þðjþ 1Þ − ijþ ij − ðjþ 1Þði − 1Þ�
− ½pð5;7Þ þ pð7;1Þ þ pð1;3Þ þ pð3;5Þ�

¼ 1

2
½4� − 1 ¼ 1:

Let Ω� ∈ C0 be a region with an area equal to nþ 1 and Γ�
its contour. Let us suppose that Eq. (5) is exact for all regions
Ωwith an area equal to n ≥ 1 (mathematical induction on the
integer n). The basic idea of the proof consists of eliminating
Pe ∈ Ω�, a pixel adjacent to the contour, and then applying
the assumption to the resulting region Ω ¼ Ω� − fPeg. We
denote Γ the contour of Ω. If we remove such a pixel in Ω�,
the contour Γ� is modified to become Γ. The resulting defor-
mation of Γ� depends on the position of Pe along the contour.
As shown in Fig. 8, if we switch off Pe ¼ ði; jÞ from Ω�,
then we obtain a local reconstruction of the contour passing
through the pixel Pe

Unfortunately, to establish the proof we have to forecast
all possible deformations of Γ� when eliminating a pixel
Pe ∈ Ω� adjacent to Γ�. In Fig. 9, we illustrate all patterns

Fig. 6 Equivalent classes of patterns representing stems connected
to the extremity of a stem (black circle). The pixel (k ) is the predeces-
sor of the extremity.

Fig. 7 The surface penalty pð0;1Þ.
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of deformations of Γ� obtained when eliminating a pixel Pe
in Ω� with the constraint that the region must remain con-
nected. We assert that any region Ω� ∈ C0 respects at least
one of these patterns along its boundary following such an
elimination. These equivalence classes of deformations of
Γ� (patterns) are constructed taking into account orthogonal
rotations and vertical and horizontal flips and were estab-
lished by enumeration. The reorganization of the contour
Γ� is represented by a dotted line passing through the
pixel Pe. For each deformation, we first apply Eq. (5) to
the contour Γ of the region Ω with an area equal to n,
and subsequently we add the area eliminated following
the reorganization of the original contour Γ�.

By a reorganization of the resulting algebraic expression,
we obtain Eq. (5) for the region Ω� with an area equal
to nþ 1. We will show this result only for the pattern
shown in Fig. 8; the proof is similar for the other patterns
(Fig. 9).

Let us consider Pe ¼ ði; jÞ as the pixel removed from Ω�,
and let us denote

EQ-TARGET;temp:intralink-;sec4;63;391

Γ� ¼ ½P1; : : : ; PJ−1; PJ; PJþ1; PJþ2; PJþ3;

PJþ4; : : : ; PL; PLþ1 ¼ P1�:

If we remove Pe and if we apply the modified Green’s
formula to the regionΩ, then using the induction assumption
and rewriting the terms involved in the deformation of the
contour, we obtain the area of Ω

EQ-TARGET;temp:intralink-;sec4;63;298

AðΩÞ ¼ n ¼ 1

2

XJ−1
k¼1

½xkykþ1 − ykxkþ1�

þ 1

2
½ði − 1Þj − ðj − 1Þi� þ 1

2
½iðjþ 1Þ − jði − 1Þ�

þ 1

2

XL
k¼Jþ3

½xkykþ1 − ykxkþ1� −
XJ−2
k¼1

pðαk; αkþ1Þ

− pð6;7Þ − pð7;1Þ − pð1;1Þ −
XL
k¼Jþ4

pðαk; αkþ1Þ;

¼ 1

2

XJ−1
k¼1

½xkykþ1 − ykxkþ1� þ
1

2

XL
k¼Jþ4

½xkykþ1 − ykxkþ1�

−
XJ−2
k¼1

pðαk; αkþ1Þ −
XL
k¼Jþ4

pðαk; αkþ1Þ þ i − 1:

From the last equation, we have

EQ-TARGET;temp:intralink-;sec4;326;741

nþ 1 ¼ 1

2

XJ−1
k¼1

½xkykþ1 − ykxkþ1� þ
1

2

XL
k¼Jþ4

½xkykþ1 − ykxkþ1�

−
XJ−2
k¼1

pðαk; αkþ1Þ −
XL

k¼Jþ4

pðαk; αkþ1Þ þ i:

Otherwise, if we apply Eq. (5) to Γ� and if we apply
the last expression, we obtain the desired result

EQ-TARGET;temp:intralink-;sec4;326;630

AðΩ�Þ ¼ 1

2

XL
k¼1

½xkykþ1 − ykxkþ1� −
XL
k¼1

pðαk; αkþ1Þ;

¼ 1

2

XJ−1
k¼1

½xkykþ1 − ykxkþ1� þ
1

2

XL
k¼Jþ4

½xkykþ1 − ykxkþ1�

þ 1

2
½ði − 1Þðj − 1Þ − ðj − 1Þiþ ij − ðj − 1Þðiþ 1Þ

þ ðiþ 1Þðjþ 1Þ − jiþ iðjþ 1Þ − ðjþ 1Þði − 1Þ�

−
XJ−2
k¼1

pðαk;αkþ1Þ −
XL
k¼Jþ4

pðαk;αkþ1Þ

− pð6;6Þ − pð6;7Þ − pð7;1Þ − pð1;2Þ þ pð2;2Þ;

¼ 1

2

XJ−1
k¼1

½xkykþ1 − ykxkþ1� þ
1

2

XL
k¼Jþ4

½xkykþ1 − ykxkþ1�

−
XJ−2
k¼1

pðαk;αkþ1Þ −
XL
k¼Jþ4

pðαk;αkþ1Þ þ i ¼ nþ 1:

In the last theorem, we supposed that the contour was
simple. In this specific case, the enumeration of all classes
of rearrangement of the contour allows us to bypass the com-
binatorial and the geometric complexity. To complete the
demonstration, we will show the effect of a single stem in
the computation of the area before extending the last theorem
to a general region with multiple stems, branches, trees, and
leaves.

Lemma 4 Let S0 be a stem given by the sequence of pixels

EQ-TARGET;temp:intralink-;st25;326;274S0 ¼ fP0; P1; : : : ; Pt−1; Pt; Ptþ1; : : : ; P2 t−1; P2 tg
where P2t ¼ P0 is the root of the stem. If Pj ¼ ðxj; xjþ1Þ,
then the following identities are verified:

EQ-TARGET;temp:intralink-;e006;326;223

1

2

X2 t−1

j¼0

½xjyjþ1 − yjxjþ1� ¼ 0; (6)

EQ-TARGET;temp:intralink-;e007;326;180

X2t−1
j¼0

pðαj; αjþ1Þ ¼ t; (7)

EQ-TARGET;temp:intralink-;e008;326;143

1

2

X2t−1
j¼0

½xjyjþ1 − yjxjþ1� −
X2t−1
j¼0

pðαj; αjþ1Þ ¼ −t; (8)

where the constant t represents the number of pixels in
the stem.

Fig. 8 Rearrangement of the contour.
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Proof From the definition of a stem, we have

EQ-TARGET;temp:intralink-;e009;63;188P2t−j ¼ Pj; j ¼ 0; : : : ; t − 1: (9)

Since each pixel is visited twice in two opposite directions
along the stem, the ordered list of Freeman directions along
the stem can be rewritten as follows:

EQ-TARGET;temp:intralink-;e010;63;127fα0; α1; : : : ; αt−1; αt; αtþ1; : : : ; α2 t−1g; (10)

and these directions verify the next identity

EQ-TARGET;temp:intralink-;e011;63;85αtþj ¼ αTt−j−1; j ¼ 0; : : : ; ðt − 1Þ; (11)

where αTt−j−1 is the inverse direction of αt−j−1. With
this notation, we can rewrite the equation at the left of
Eq. (6)
EQ-TARGET;temp:intralink-;sec4;326;176

1

2

X2t−1
j¼0

½xjyjþ1 − yjxjþ1� ¼
1

2

Xt−1
j¼0

½xjyjþ1 − yjxjþ1�

þ 1

2

X2t−1
j¼t

½xjyjþ1 − yjxjþ1� ¼
1

2

Xt−1
j¼0

½xjyjþ1 − yjxjþ1�

−
1

2

Xt−1
j¼0

½x2t−jy2 t−ðjþ1Þ − y2 t−jx2 t−ðjþ1Þ�:

Fig. 9 Patterns of a local rearrangement along a contour.
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Using the relation Eq. (9), the last summation verifies
EQ-TARGET;temp:intralink-;sec4;63;741

1

2

X2t−1
j¼0

½xjyjþ1 − yjxjþ1� ¼
1

2

Xt−1
j¼0

½xjyjþ1 − yjxjþ1�

−
1

2

Xt−1
j¼0

½xjyjþ1 − yjxjþ1� ¼ 0:

In conclusion, the first Eq. (6) is proved. Again, let us
consider the Freeman directions along the stem

EQ-TARGET;temp:intralink-;sec4;63;637f½α0; α1�; ½α1; α2�; : : : ; ½αt−2; αt−1�; ½αt−1; αt�; ½αt; αtþ1�;
½αtþ1; αtþ2�; : : : ; ½α2 t−2; α2 t−1�g:

We observe from Table 1 that these penalties verify that

EQ-TARGET;temp:intralink-;sec4;63;575pðαt−1−j; αjÞ þ pðαt−1−j; αtþjÞ ¼ 1; j ¼ 1; : : : ; ðt − 1Þ:

For the two particular displacements at the end of the
stem, given by the segments at−1 ¼ ½Pt−1; Pt� and at ¼
½Pt; Ptþ1�, we have pðαt−1; αtÞ ¼ 1. From these two last
relations, we obtain the following identity:
EQ-TARGET;temp:intralink-;sec4;63;499 X2t−1
j¼0

pðαj; αjþ1Þ ¼
Xt−2
j¼0

pðαj; αjþ1Þ þ pðαt−1; αtÞ

þ
X2t−1
j¼t

pðαj; αjþ1Þ ¼
Xt−1
j¼1

fpðαt−1−i; αiÞ þ pðαt−1−i; αtþiÞg

þ pðαt−1; αtÞ ¼
Xt−1
j¼1

1þ pðαt−1; αtÞ ¼ ðt − 1Þ þ 1 ¼ t:

The relation Eq. (7) is then verified. Finally, if we com-
bine Eqs. (6) and (7), the last identity Eq. (8) is therefore
proved. ▯

From the last lemma, we conclude that the contribution of
the pixels of a stem in the algebraic expression of the modi-
fied Green’s formula equals the number of pixels on the stem
with a negative sign. Here is the following theorem.

Theorem 3 Let Ω be a region having a single stem, then
the modified Green’s formula [Eq. (5)] applied to the contour
gives the exact area of Ω.

Proof Let us suppose that Ω has an area equal to n ≥ 1

and let Γ be its contour. If Ω has only one stem, then the
contour is given by the sequence
EQ-TARGET;temp:intralink-;st28;63;221

Γ ¼ fP1; P2; : : : ; Pi ¼ Ps
0; P

s
1; : : : ; P

s
t ; Ps

tþ1; : : : ;

Ps
2 t−1; P

s
2 t ¼ Pi; Piþ2 tþ1; : : : ; PL; PLþ1 ¼ P1g;

where P1 is the starting pixel. In this sequence, the stem is
represented by the following subsequence of pixels:

EQ-TARGET;temp:intralink-;st28;63;149Γa ¼ fPi ¼ Ps
0; P

s
1 ¼ Piþ1; : : : ; Ps

t ¼ Piþt; Ps
tþ1

¼ Piþtþ1; : : : ; Ps
2 t−1 ¼ Piþ2 t−1; Ps

2 t ¼ Piþ2 t: ¼ Pig:

The pixel Pi ¼ Ps
0 ¼ Ps

2t is the root of the stem. Let Γp be
the principal contour of Ω, which is defined by the sub-
sequence of pixels

EQ-TARGET;temp:intralink-;sec4;326;752Γp ¼ fP1; P2; : : : ; Pi; Piþ2 t−1; : : : ; PL; PLþ1 ¼ P1g:

Let Ω� be the region surrounded by the principal contour Γp.
If we apply the modified Green’s formula [Eq. (5)] to the
region Ω, then we have the following algebraic decomposi-
tion based on the coordinates of the pixels in the contour Γ:
EQ-TARGET;temp:intralink-;sec4;326;686

AðΩÞ ¼ 1

2

XL
k¼1

½xkykþ1 − ykxkþ1� −
XL
k¼1

pðαk; αkþ1Þ

¼ 1

2

Xi−1
k¼1

½xkykþ1 − ykxkþ1� −
Xi−1
k¼1

pðαk; αkþ1Þ

þ 1

2

Xiþ2t

k¼i

½xkykþ1 − ykxkþ1� −
Xiþ2 t

k¼i

pðαk; αkþ1Þ

þ 1

2

XL
k¼iþ2t

½xkykþ1 − ykxkþ1� −
XL
k¼i

pðαk; αkþ1Þ:

In the last summation, we identify three terms
EQ-TARGET;temp:intralink-;sec4;326;524

S1 ¼
1

2

Xi−1
k¼1

½xkykþ1 − ykxkþ1� −
Xi−1
k¼1

pðαk; αkþ1Þ;

S2 ¼
1

2

Xiþ2t

k¼i

½xkykþ1 − ykxkþ1� −
Xiþ2t

k¼i

pðαk; αkþ1Þ;

S3 ¼
1

2

XL
k¼iþ2t

½xkykþ1 − ykxkþ1� −
XL
k¼i

pðαk; αkþ1Þ:

The sum S ¼ S1 þ S3 corresponds to the area of the
region Ω� surrounded by Γp; then we have S ¼ nþ t.
Here, t is the number of distinct pixels on the stem. In
addition, by Lemma 4, we see that S2 ¼ −t. In conclusion,
AðΩÞ ¼ S1 þ S2 þ S3 ¼ Sþ S2 ¼ nþ t − t ¼ n. ▯

It is possible to generalize the last proposition to regions
with a branch in Ω.

Proposition 3 Let Ω be a region with a branch connected
to the principal contour Γp. Let Γ be the contour of Ω
EQ-TARGET;temp:intralink-;st29;326;302

Γ ¼ fP1; : : : ; Pi; Piþ1; : : : ; Pb
0; P

b
1; : : : ; P

b
j ; : : : ;

Pb
2N ¼ Pb

0 ; : : : ; PM ¼ P1g:

Let B1 be the branch defined by the subsequence of pixels
B1 ¼ fPb

0 ; P
b
1 ; : : : ; P

b
j ; : : : ; P

b
2 Ng. The pixel Pb

0 ¼ Pb
2N is the

root of the main stem on the branch, which is connected to
Γp. Let us denote Pb

j ¼ ðxbj ; ybj Þ the coordinates of the j’th
pixel in B1 and αbj be the Freeman direction associated with
the oriented segment ½Pb

j ; P
b
jþ1� for j ¼ 0; : : : ; 2 N − 1.

Thus, we have

EQ-TARGET;temp:intralink-;e012;326;166

1

2

X2N−1

j¼0

½xbj ybjþ1 − ybj x
b
jþ1� þ

X2N−1

1

pðαbj ; αbjþ1Þ ¼ −N: (12)

Proof. We can split the expression [Eq. (12)] in such a
way that we obtain a summation restricted to the pixels of
the main stem and other individual summation for each sec-
ondary stem. Then, applying Lemma 4 at each summation
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we obtain the total number of pixels in B1 with a negative
sign. The root Pa

0 is not counted. ▯

The proof of the Proposition 3 can be easily extended to
regions with multiple branches and trees. To conclude this
section, we extend the previous results to regions with
leaves.

Proposition 4 Let a region Ω ∈ C and Γ its contour;
suppose that Γ has only one leaf connected to the end of
a stem S0 in Ω, then the area of Ω is given by the modified
Green’s formula [Eq. (5)].

Proof. The leaf can be closed or open. If the leaf is open,
the interior of its leaf contour does not contain a subset of Ω.
Let us consider the partition of the pixels in Γ

• Γp: the set of all pixels in the principal contour of Ω,
• Γa: the set of internal pixels in S0, and
• Γb: the set of pixels in the leaf contour.

Since Γp is a simple contour, then by Theorem 2, the
contribution of these pixels to Eq. (5) gives the area of
the domain inside Γp. Otherwise, by Lemma 4, the
contribution of the pixels in Γa gives, with a minus sign,
the number of pixels in Γa. However, we can show that the
contribution of the pixels in Γb is equal to the number of
pixels in the leaf.

Let us denote fPb
1 ; P

b
2 ; : : : ; P

b
J; P

b
Jþ1 ¼ Pb

1g the sub-
sequence of pixels defining the leaf contour, where Pb

j ¼
ðxbj ; ybj Þ; j ¼ 1; : : : ; J are the coordinates of such a pixel
and αbj is the Freeman direction of the segment ½Pb

j ; P
b
jþ1�.

Let us consider the two sums

EQ-TARGET;temp:intralink-;e013;63;144Sb1 ¼
1

2

XJ
j¼1

½xbj ybjþ1 − ybj x
b
jþ1�; Sb2 ¼ −

XJ
j¼1

pðαbj ; αbjþ1Þ:

(13)

The first sum Sb1 gives the area inside the polygonal line pass-
ing through the center of each pixel on the leaf contour with a

negative sign since the path is clockwise. For instance,
the sum Sb2 gives the black area outside the leaf contour,
but within the leaf, with a negative sign. If we combine
these two results, the modified Green’s formula will give
the area inside the principal contour minus the length of
the stem and the area occupied by the leaf. ▯

The same result is valid for a region with a stem, branch,
tree, or leaf. If we combine all of the arguments used in these
proofs, then we conclude that the proposed equation is valid
for all regions with any combination of these attributes. If we
apply the original Eq. (2) and the modified or penalized
Green’s formula to the region shown in Fig. 10, we obtain
an area of 798 and 415 pixels (exact area). This numerical
result confirms the importance of having a precise evaluation
of the area.

5 Conclusion
We proposed and demonstrated a new algebraic expression
of a fundamental corollary derived from Green’s formula
applied to the computation of the area of a four-connected
binary region. For this purpose, we introduced penalties
associated with pairs of successive displacements along an
eight-connected positively oriented contour. The correctness
of the equation was formally proved for a general class of
binary connected regions in the discrete plane. The modified
Green’s formula was derived from geometric observations,
but further research work will eventually establish the pro-
posed approach as a consequence of a discrete vector calcu-
lus theory. We are extending these results (unpublished as of
yet) to triangular and hexagonal mesh.
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