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Abstract. The majority of human action recognition methods use multifeature fusion strategy to improve the
classification performance, where the contribution of different features for specific action has not been paid
enough attention. We present an extendible and universal weighted score-level feature fusion method using the
Dempster–Shafer (DS) evidence theory based on the pipeline of bag-of-visual-words. First, the partially distinc-
tive samples in the training set are selected to construct the validation set. Then, local spatiotemporal features
and pose features are extracted from these samples to obtain evidence information. The DS evidence theory and
the proposed rule of survival of the fittest are employed to achieve evidence combination and calculate optimal
weight vectors of every feature type belonging to each action class. Finally, the recognition results are deduced
via the weighted summation strategy. The performance of the established recognition framework is evaluated on
Penn Action dataset and a subset of the joint-annotated human metabolome database (sub-JHMDB). The
experiment results demonstrate that the proposed feature fusion method can adequately exploit the comple-
mentarity among multiple features and improve upon most of the state-of-the-art algorithms on Penn Action
and sub-JHMDB datasets. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported
License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including
its DOI. [DOI: 10.1117/1.JEI.27.1.013021]
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1 Introduction
Human action recognition for videos has been applied exten-
sively in man–machine interaction systems, video surveil-
lance, virtual reality, and patient monitoring, which are still
challenging problems in computer vision due to the complex
backgrounds, changeable movement speeds, and different
shooting scales with multiperspectives. To improve the
robustness and accuracy of the recognition algorithm, many
state-of-the-art methods have been proposed.

Recently, local spatiotemporal features1–4 applied to
describe human movements by treating the action volume as
a rigid three-dimensional (3-D)-object have achieved prom-
ising performance on many datasets.5 The low-level features
are extracted from local regions where the temporal and spa-
tial characteristics change observably or are obtained by
dense sampling strategy in videos to represent the patterns of
each 3-D volume. These spatiotemporal features usually
combine with the pipeline of bag-of-visual-words (BoVW)
and its improved variants6–9 to model human behaviors, which
do not require any human detection procedures and have
strong robustness to illumination and background. Then, the
global representation, which is constructed from a set of
local features, is fed into support vector machines (SVMs) to
achieve action classification.9,10 As the two critical steps
of this classic and effective process, ample research progress
has been made on the methods of local features extraction
and features encoding. Laptev and Lindeberg1 proposed
the detector of space-time interest points (STIPs), which
is extended from two-dimensional (2-D)-Harris corner detec-
tion, and employed histogram of oriented gradients (HOG)11

and histogram of oriented flow (HOF)12 to describe the
extracted regions. Because the STIPs are usually sparse and
more abundant information about human movement cannot
be mined, many improved algorithms were put forward.13,14

Wang et al.15 demonstrated that dense sampling for video
local blocks is more efficient than sparse corner detection.
The dense trajectories (DTs)16 and improved dense trajecto-
ries (IDTs),5 which obtained good performance in various
experiments, are presented based on the dense sampling
strategy. In the feature encoding stage, several methods can
be used to produce a suitable dictionary, such as voting-
based encoding,16–18 Fisher vectors (FV),3,8,19 and sparse
coding techniques.20,21 As a super vector encoding method,
FVs were applied to large-scale image classification by
Perronnin et al.22 A vector of locally aggregated descriptors
(VLAD)23 is an improved algorithm for FVs, where the near-
est cluster centers and the per-dimension values of feature
points are considered. Although the recognition accuracy of
VLAD is slightly lower than FVs, it is more efficient to
execute.

The above research for action recognition bypasses body
poses and achieves promising results using local spatiotem-
poral features. Despite their different goals, the two types of
features are not only highly coupled but complementary, and
it is desirable to study them in a common framework.24 The
prevailing methods for pose estimation24–26 from still images
adopt a pictorial structure model, which resembles the
human skeleton and allows for efficient inference based on
tree structures.27 Jhuang et al.28 used various types of
descriptors containing joint position, translation information,
and direction of the translational vector, all of which are
derived from joint annotations to represent human postural
characteristics by employing the pose estimation algorithm
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from Ref. 25. Pishchulin et al.29 revealed the potential com-
plementarity between holistic methods and pose-based meth-
ods by analyzing two kinds of fusion, namely feature- and
classifier-level fusions. Meanwhile, Yao et al.30 proposed a
method that requires the videos of training set are from multi-
ple angles and utilizes pose information to optimize the
manifold of each action category, then conducts the two
tasks iteratively. Nie et al.24 presented a spatial–temporal
and-or graph (AOG) model adopted latent structure-SVM for
learning to describe actions at three scales, where coarse-
level features are regarded as a priori knowledge of pose
estimation, and the two tasks benefit from each other in
experiments.

Action characteristics in videos ordinarily have many
attributes, which describe various categories in different
aspects, such as appearance, trajectory of motion, moving
boundary, and pose information. The reasonable fusion
algorithms31–33 can utilize the extracted features efficiently
and adequately and then boost the performance of con-
structed system. There are generally three typical methods
of combination in the field of action recognition:8 descrip-
tor-,2,34 kernel-,3,35 and score-level fusions.36,37 Wang et al.34

integrated multiple descriptors into a new descriptor for sub-
sequent processes of the BoVW framework using a simple
strategy for feature weighting. Jain et al.35 presented an inno-
vative motion descriptor named divergence–curl–shear (DCS),
where a linear combination of kernel matrices belonging to
each local descriptor is concatenated directly by the method
of kernel average and then fed into the linear SVM. For
score-level fusion, Myers et al.36 presented a method that
uses cross validation on a training set to obtain the weights
of each descriptor, which will combine the scores from
multiple classifiers to get the final recognition results.

The core purpose of feature fusion is to enhance the accu-
racy of recognition using the complementarity among multi-
ple features adequately. In general, each fusion method has
its own pros and cons under different circumstances when
the action features have fewer types.8 However, with research
going deep, description forms for actions are increasingly
numerous. To establish an extensible and universal fusion
framework, we focus on the score-level fusion, which does
not cause the curse of dimensionality that is prevalent in
descriptor- and kernel-level fusion methods. In many cases,
although there are some typical dimensionality reduction
algorithms, including principal component analysis (PCA),38

locally linear embedding,33 and linear discriminant analy-
sis,39 feature reduction will lose some motion information,
which leads to a decrease in recognition accuracy.

In this paper, contrary to the aforementioned approaches,
many score-level fusion methods obtain the weights of dif-
ferent features by a learning step, in which the randomness
and incompleteness of training data are usually neglected.
The Dempster–Shafer (DS) evidence theory can narrow the
scope of assumptions continually by the accumulation of evi-
dence and resolve the problem of uncertainty of information.
The decision results, which conform to objective condition,
are then inferred without the prior probability. In view of the
above advantages, the evidence theory is employed to our
weighted score-level fusion method, which has not received
enough attention in the previous research of action recogni-
tion. Concretely, the local spatiotemporal features and the
optimized pose features will be extracted from the validation

samples, which are selected from the training set, to obtain
the credible evidence information. Second, the evidence
combination strategy is utilized to calculate weight vectors
of all feature types for each action class, which will be
optimized by the proposed rule of survival of the fittest.
Subsequently, the classification results are deduced by the
weighted summation strategy. The main contributions of this
paper are as follows:

• According to the characteristics of local features and
pose features, the corresponding encoding methods
and SVM classifiers are employed. Moreover, to
describe the human joints in videos more reasonably,
the translation matrix and the angle matrix are con-
structed to obtain the optimized pose features. The
effectiveness of the extendible and universal score-level
feature fusion method for action recognition is then
demonstrated on Penn Action40 and a subset of the
joint-annotated human metabolome database (sub-
JHMDB) datasets.28

• Considering the randomness and incompleteness of
training data, the weighted score-level feature fusion
method based on DS evidence theory (WSF-DS) is
proposed, in which the validation set of a dataset is
constructed, and weight vectors of multiple features
belonging to each action are achieved by evidence
combination.

• The rule of survival of the fittest and weighted summa-
tion strategy are, respectively, proposed to eliminate the
components of weight vectors, which are inefficient and
adverse for the recognition of particular action category,
and calculate the results of classification.

The rest of this paper is organized as follows: Sec. 2
presents the overview of the proposed action recognition
framework. Section 3 elaborates the local spatiotemporal
features extraction, optimized pose features extraction, the
pipeline of BoVW frameworks for different features, and
the proposed weighted score-level feature fusion method.
Section 4 evaluates the performance of the proposed action
recognition framework on the Penn Action and sub-JHMDB
datasets and provides the comparisons with other methods.
Finally, we conclude this paper in Sec. 5.

2 System Overview
The framework of the proposed action recognition method,
which consists of two stages, is shown in Fig. 1. In the first
stage, to obtain the optimized weight vectors of every feature
for each action, the original videos in training set are divided
into two parts called 3/4 training videos and validation vid-
eos (i.e., the remaining 1∕4 training videos). For the valida-
tion videos, the scenes and human bodies in video clips are
more distinctive than the other 3∕4 training videos to ensure
the validity of evidence. Then, the different BoVW frame-
works are adopted for modeling human behaviors based
on the local features and pose features.

In the local spatiotemporal features thread, we sample fea-
tures that include trajectory shape, HOG, HOF, and motion
boundary histogram (MBH)12 based on the IDT method
from each video clip in the 3/4 training set. Because the pri-
mary low-level local features are usually high dimensional
and strongly correlated, the PCAwith whitening38 is used to
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reduce the dimensionality and weaken the correlation of fea-
tures. Then, we randomly sample a subset of features from
the 3/4 training set to estimate the Gaussian mixture model
(GMM), which is learned through maximum likelihood esti-
mation and regarded as a codebook. Unlike the encoding of
vector quantization (VQ)8,16 used in the work of DT,16 we
employ FV3,22 to encode features and obtain video descrip-
tors. In the pose features thread, the full body joints of every
frame in video clips are estimated via the tree-based models
of part mixtures.25 The descriptors for the pose are extracted
from two hierarchies to represent different attributes, in
which the translation matrix and the angle matrix are con-
structed to optimize the descriptors of the time hierarchy.
All the data of each descriptor type in the 3/4 training set
are utilized to generate a codebook by k-means clustering41

independently and then concatenated as the pose features for
each video after the VQ16,17 encoding method. The implemen-
tation of the library for support vector machines (LIBSVM)42

is used to train multiclassifiers for the two threads.
The probability values of validation videos that belong to

each action category are obtained by feeding them to the
SVM classifiers. The average probability values of the cor-
rect classification for positive and negative samples are uti-
lized as two sources of evidence for DS evidence theory,
respectively. Then, the weight vectors are calculated by evi-
dence combination strategy and optimized via the proposed
rule of survival of the fittest.

In the second stage, the same BoVW frameworks
described above for different features are utilized. Unlike the
first stage, the input of the BoVW frameworks is replaced by
all the training videos. During the testing stage, when the
score matrices of each feature are obtained, the final score
matrix of testing videos is calculated by the weighted sum-
mation strategy, in which the optimized weight vectors are
regarded as a priori knowledge. Subsequently, the recogni-
tion results (labels) are efficiently inferred by calculating the
row maximum of the score matrix.

3 Action Recognition Framework Based on
Weighted Score-Level Feature Fusion

In this section, details of the local spatiotemporal features
extraction, optimized pose features extraction, the pipeline

of BoVW frameworks for different features, and the pro-
posed WSF-DS are presented.

3.1 Local Spatiotemporal Features Extraction
This section presents the dense sampling strategy15 and
multiple-features extraction principle. When the trajectory
shape, HOG, HOF, and MBH are extracted, a feature prepro-
cessing method is employed to make features have the same
variance, which is beneficial for training GMM.

3.1.1 Multiple-features extraction

The feature extraction method based on IDT,5 which con-
forms to the visual attention mechanism of human eye, is
insensitive to the background and motion speed and can
describe the apparent information of motion perfectly. The
multiple features, including HOG,11 HOF, and MBH,12 are
extracted around densely sampled points. These points are
tracked on each image scale individually. The optical flow
field formed by frame t and frame tþ 1 on a certain scale
is defined as ωt ¼ ðut; vtÞ, where ut and vt represent the
horizontal and vertical components of optical flow, respec-
tively. When a point Pt ¼ ðxt; ytÞ in frame t is given, the
Ptþ1 ¼ ðxtþ1; ytþ1Þ can be obtained via median filtering in
a dense optical flow field

EQ-TARGET;temp:intralink-;e001;326;256Ptþ1 ¼ ðxt; ytÞ þ ðMf � ωtÞjðxt;ytÞ; (1)

where Mf is a 3 × 3 median filter and ðxt; ytÞ represents the
rounded position of ðxt; ytÞ. To reduce the accumulated error
produced from trajectory tracking process, trajectory length
L is commonly set to 15 frames. The shape of a trajectory is
represented by a sequence Ts ¼ ðΔPt;ΔPtþ1; : : : ;ΔPtþL−1Þ
for displacement vectors ΔPt ¼ ðPtþ1 − PtÞ. The final tra-
jectory shape feature T traj is expressed as a normalized vector
sequence

EQ-TARGET;temp:intralink-;e002;326;135T traj ¼
ðΔPt;ΔPtþ1; : : : ;ΔPtþL−1ÞPtþL−1

j¼1 kΔPjk
: (2)

For the MBH feature, it is defined as the gradient values
for horizontal and vertical components of optical flow field,

Fig. 1 Framework of the proposed action recognition method.
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and therefore, two histograms (i.e., MBHx and MBHy) can
be calculated.16 To remove the influence of camera motion
on recognition accuracy and processing speed, the descriptor
for speeded up robust features (SURF)13 is used to imple-
ment frame matching in view of its strong robustness to
motion blur, and then the motion vectors are reserved.
The IDT method also extracts motion vectors from dense
optical flow by employing dense matching strategy among
frames. Finally, the DTs are corrected through the global
motion vector, which is estimated from the homography
matrix calculated by the random sample consensus43

algorithm.

3.1.2 Feature preprocessing

The low-level local features are usually high-dimensional,
and there is a strong correlation among different dimensions.
To enhance the clustering accuracy of GMM and k-means,41

PCA is used to eliminate the correlation of feature vectors
and reduce the dimensionality of features. Peng et al.8 proved
that combining whitening technology and PCA38 can effec-
tively boost the recognition accuracy in the BoVW frame-
work. After the above steps, each dimension of features will
have the same variance. The mathematical expression of
PCA-whiten is as follows:

EQ-TARGET;temp:intralink-;e003;63;483x ¼ ΛDTf; (3)

where f ∈ RH is the primary feature vector. Λ is a whitening
matrix with diagonal elements that can be formulated as
diagðΛÞ ¼ ½1∕ ffiffiffiffiffi

λ1
p

; : : : ; 1∕
ffiffiffiffi
λi

p
; : : : ; 1∕

ffiffiffiffiffi
λF

p �, where λi repre-
sents the i’th eigenvalue of feature covariance matrix. D ∈
RH×F is a transition matrix used by PCA dimension reduc-
tion. x ∈ RF is the processed feature vector.

3.1.3 Codebook generation

For high-dimensional local features, the voting-based encod-
ing method (e.g., VQ encoding method) only expresses the
subordinate relationship between feature vectors and visual
words (i.e., clustering centers), which will produce the quan-
tization errors. In comparison, the FVencodes both first- and
second-order statistics between the feature vectors and a
GMM. So, we randomly sample a subset of features from
the training data to estimate the GMM with K components,
which will be regarded as a codebook and employed to
calculate the FV. The parameters set of GMM is θ ¼
fωk;μk;

P
k; k ¼ 1; : : : ; Kg, where ωk is the mixed weight

of the k’th Gaussian, μk is the mean vector, and
P

k is
the covariance matrix. The probability distribution model
pðxjθÞ of GMM is defined as follows:

EQ-TARGET;temp:intralink-;e004;63;205pðxjθÞ ¼
XK
k¼1

ωkϕðxjμk;ΣkÞ; (4)

where ϕðxjμk;
P

kÞ is F-dimensional Gaussian distribution
and F is the dimension of feature x, which has been proc-
essed by PCA-whiten. When the features set is X ¼
fx1; x2; : : : ; xng, we learn the parameters of GMM via the
maximum likelihood estimation arg maxθ ln pðXjθÞ, which
is solved by the iterative EM algorithm.44

3.2 Optimized Pose Features Extraction
IDT features can extract appearance and motion information
from videos and achieve a global representation for the
action. However, high-level pose features focus on describ-
ing the distribution and coupling relationship of human
joints. The two types of features are strongly complemen-
tary.29 In this section, the procedure of the optimized pose
features extraction will be presented in detail.

3.2.1 Pose estimation

The popular methods based on the pictorial structure frame-
work for human pose estimation24–26 from 2-D video frames
imitate the human skeleton and enable systems to efficiently
infer the position of human joints in case of tree structures.27

We follow the framework of Ref. 25 to achieve pose estima-
tion, because it is clear and representative in the principle. It
is worth noting that our proposed score-level feature fusion
method for action recognition is a universal framework, and
completing the pose estimation task is not restricted to one
method.

For each image I, the pixel location of the human joint i ∈
f1; : : : ; Jg is represented as pi ¼ ðx; yÞ. ti is the type of joint
i, which is defined by the position relation between i and its
parent. The number of ti is equivalent to the number of
k-means cluster centers. A J-node tree-structured graph G ¼
ðV; EÞ is constructed, where V is the joint points set and E is
the edges set used to represent the parent–child relationships
among whole joints. Then, a generalized support function
can be defined as

EQ-TARGET;temp:intralink-;e005;326;428SðtÞ ¼
X
i∈V

btii þ
X
i;j∈E

b
ti;tj
ij ; (5)

where btii denotes the support of joint i belonging to a des-
ignated type and b

ti;tj
ij represents the support of particular co-

occurrences of joint types. Subsequently, the full score asso-
ciated with a set of fixed joint types and positions in image I
can be calculated by the following equation:
EQ-TARGET;temp:intralink-;e006;326;330

SðI; p; tÞ ¼ SðtÞ þ
X
i∈V

wti
i · φðI; piÞ

þ
X
i;j∈E

w
ti;tj
i;j · ψðpi − pjÞ; (6)

where φðI; piÞ is an HOG feature vector obtained from joint
position pi:ψðpi − pjÞ ¼ ½dx dx2 dy dy2� is employed to cal-
culate the relative position between joint i and its parent j.
Furthermore, wti

i is the filter template for joint i with type ti,
and w

ti;tj
i;j is the filter template for a pair of joints with the type

configuration of ti and tj.
Then, the latent SVM framework is used to train the

detection model by the coordinate-descent solver,27 where
the types of joints are treated as latent variables. In the detec-
tion stage, due to the relational graph being a tree structure,
human joints in all video frames can be estimated by
dynamic programming and nonmaximum suppression. The
details can be found in Ref. 25.

3.2.2 Human joints description

When the human pose in the video frame is estimated, the
joint data are mined to obtain various descriptors, which are
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then fed into the BoVW framework. Due to the action in a
video clip being decomposed into a series of poses that might
change over time, the descriptors for pose need to be carried
out from two hierarchies (i.e., space and time) and concat-
enated into an entire one as the final pose feature. Therefore,
we follow Ref. 28 to denote full body pose through 15 joints.
For the space hierarchy, joint coordinates are split into x and
y, which have proved to be more effective,28 so 30 descriptor
types can be obtained from one frame. For the time hier-
archy, the translation of joint coordinates on the time axis
(i.e., dx and dy) and the angle of the space-time displacement

vector [i.e., arc tanðdy∕dxÞ] are calculated according to a cer-
tain frame step s.

Note that the configuration of descriptors is different from
Ref. 28 here. We find that the translation of joint position in
the starting and ending frames of a video clip is usually not
salient, and the translation in the middle is more representa-
tive for movement tendency. Accordingly, to improve the
distinguishing ability of the pose feature, the weakening
factor is set as R, and then the translation matrix Ptr of
joint coordinates for a video with T frames can be written
as follows:

EQ-TARGET;temp:intralink-;e007;63;619Ptr ¼

2
66664

f1 − f1þs f2 − f2þs · · · fT−Rs − fT−ðR−1Þs
f1þs − f1þ2s f2þs − f2þ2s · · · fT−ðR−1Þs − fT−ðR−2Þs

..

. ..
. . .

. ..
.

f1þðR−1Þs − f1þRs f2þðR−1Þs − f2þRs · · · fT−s − fT

3
77775; (7)

EQ-TARGET;temp:intralink-;e008;63;534Pan ¼

2
66664

ðf1; f1þsÞ ðf2; f2þsÞ · · · ðfT−Rs; fT−ðR−1ÞsÞ
ðf1þs; f1þ2sÞ ðf2þs; f2þ2 sÞ · · · ðfT−ðR−1Þs; fT−ðR−2ÞsÞ

..

. ..
. . .

. ..
.

ðf1þðR−1Þs; f1þRsÞ ðf2þðR−1Þs; f2þRsÞ · · · ðfT−s; fTÞ

3
77775; (8)

where f is the data of joint coordinates in a frame, and the
indices represent video frame number. The format of the
angle matrix Pan is same as that of Ptr, where the element
ðf1; f1þsÞ represents the angles of space-time displacement vec-
tors of the joint points between frame 1 and frame 1þ s. Then,
all elements in Ptr and Pan are assembled as the holistic descrip-
tion for a video clip, individually.

Finally, these 75 descriptor types (30 for joints coordi-
nates, 30 for translations, and 15 for angle of space-time
displacement vector) are separately fed into the subsequent
clustering algorithm to generate codebooks and then encoded
by VQ.17

3.3 Bag-of-Visual-Words Frameworks for Different
Features

In this work, the BoVW pipeline is employed to build a
model for each video clip via the extracted low-level local
features and high-level pose features. However, algorithms
used in each subunit are different in view of the fact that
dimensionality of two categories of features has a clear dis-
tinction. In the local feature thread, the global feature vector
obtained from each training video is processed by PCA-
whiten and then encoded by the FV, where the parameters of
GMM are learned by the subset of features. In the pose
feature thread, all training data are utilized to construct a
codebook with a few vocabularies for each descriptor type
by k-means algorithm41 and there is not any preprocessing,
because every descriptor for pose is a one-dimensional vector.

In the classification stage, the two threads are both catego-
rized by SVM use, the implementation of LIBSVM.42 Due to
the encoding methods being different, the linear SVM is
chosen as the classifier for local features because it has been
proven to be more efficient in combination with FV,8 and the
SVM with radial basis function kernel (RBF-SVM) is

similarly selected for pose features, where the optimal
parameters are obtained by fivefold cross validation.

3.4 Weighted Score-Level Feature Fusion Method
Based on Dempster–Shafer Evidence Theory

Multiple features represent actions in different emphases. For
example, local spatiotemporal features are used to describe
the state of structural and motion around a sampling point,
and pose features focus on expressing the joint position and
tree structure of a moving human body. There is a strong
complementarity among these features.29 We find that the
accuracy of identification is discrepant for an action class
when different features are adopted, which means that the
strength among each feature is different for a specified
action. Therefore, we propose a weighted score-level feature
fusion framework, where weight vectors of all feature types
for each action are achieved by DS evidence theory45 through
the constructed validation set.

3.4.1 Evidence theory

The concept of lower and upper bounds of probability dis-
tribution proposed by Dempster46 is used to solve the prob-
lem of multivalued mapping, which is the original work for
evidence theory. Shafer47 proposed a mathematical technique
to deal with uncertainty reasoning via a series of rules of evi-
dence combination and introduced the belief function to con-
summate the evidence theory.

We set Θ as the frame of discernment. The basic belief
assignment function m (i.e., mass function) is a mapping
from set 2Θ to [0, 1]. A ⊆ Θ is an arbitrary subset ofΘ, which
satisfies the following equation set:

Journal of Electronic Imaging 013021-5 Jan∕Feb 2018 • Vol. 27(1)

Zhang et al.: Weighted score-level feature fusion based on Dempster–Shafer evidence theory. . .



EQ-TARGET;temp:intralink-;e009;63;752

(
mð∅Þ ¼ 0P

A⊆Θ
mðAÞ ¼ 1 : (9)

Let m1; m2; : : : ; mN be a set of mass functions on the
same frame of discernment Θ. When the focal elements are
defined as Aj, the combination rules of DS evidence theory
can be utilized to implement information fusion as follows:

EQ-TARGET;temp:intralink-;e010;63;666

mðAÞ ¼ ðm1 � : : : �mNÞ ¼
1

1 − K

X
∩Aj¼A

Y
1≤i≤N

miðAjÞ

A ≠ ∅: (10)

In the case of two evidence combination, the rules can be
formulated as

EQ-TARGET;temp:intralink-;e011;63;579

8><
>:

mðAÞ ¼ 1
1−K

P
Ai∩Bj¼A

m1ðAiÞm2ðBjÞ A ≠ ∅

K ¼ P
Ai∩Bj¼∅

m1ðAiÞm2ðBjÞ ; (11)

where K reflects the extent of conflict among evidences and
coefficient 1

1−K is the regularization factor. When K ≥ 1, the
orthogonal sum m1 �m2 does not exist, which means the
evidence provided by different features from actions cannot
be combined.

3.4.2 Weighted score-level feature fusion method

To obtain convincing evidence that can reflect the difference
in effectiveness between different features in the recognition
process of a particular action class, we create a validation set
for original dataset (i.e., Penn Action dataset and sub-
JHMDB dataset) based on its training samples. More specifi-
cally, when the training set is divided into several equal parts,
one part is treated as the validation set, in which the scenes
and human body in video clips are more distinctive than the
other parts to ensure the validity of evidence.

In stage 1, the samples of training sets except validation
videos are used to train multiclass classifier belonging to
each feature through the BoVW framework presented in
Sec. 3.3. For multiclassification, we adopt a one-versus-all
cross-validation5 training scheme and obtain the prediction
with probability scores of each sample in the validation set.
Then, the probability scores matrix S is defined as

EQ-TARGET;temp:intralink-;e012;63;255S ¼ ½s1ij; s2ij; : : : ; shij; : : : ; sCij�; (12)

where shij is the probability score of sample i belonging to
class j achieved by the multiclass classifier h (i.e., feature
h). C is the number of feature types, and the total number of
action categories is M.

In stage 2, the 3-D scores matrix S is split into M 2-D
score matrices defined as Sj, in which its elements sih denote
the probability score of sample i predicted by classifier
h. Assuming that the number of samples belonging to
class j is Tr and the number of samples not belonging to class
j is Fr, the effectiveness of feature h for a particular action
class can be reflected by ShTavg and ShFavg, which are as
follows:

EQ-TARGET;temp:intralink-;e013;326;752ShTavg ¼
1

Tr

XT r

i¼1

sih; (13)

EQ-TARGET;temp:intralink-;e014;326;700ShFavg ¼
1

Fr

XFr

i¼1

ð1 − sihÞ; (14)

where ShTavg and ShFavg represent the average probability
values of correct classification for the positive samples
and negative samples, respectively. We define two average
probability vectors of action class j for all feature types
as STavg ¼ ½S1Tavg; S2Tavg; : : : ; ShTavg; : : : ; SCTavg� and SFavg ¼
½S1Favg; S2Favg; : : : ; ShFavg; : : : ; SCFavg�, which will be normal-
ized via Eqs. (15) and (16) as two sources of evidence for
DS evidence theory

EQ-TARGET;temp:intralink-;e015;326;572Pj ¼ ½Pj1; Pj2; : : : ; PjC� ¼
STavgP
C
h¼1 S

h
Tavg

; (15)

EQ-TARGET;temp:intralink-;e016;326;526Qj ¼ ½Qj1; Qj2; : : : ; QjC� ¼
SFavgP
C
h¼1 S

h
Favg

: (16)

In stage 3, we define a set of focal elements as fH1;
H2; : : : ; Hh; : : : ; HCg for the two evidences, where Hh
means that the positive role of feature h in the recognition
process of action class j. The mass functions m1 and m2

for the evidence can be assigned as follows:
EQ-TARGET;temp:intralink-;e017;326;430½m1ðH1Þ;m1ðH2Þ;:::;m1ðHCÞ;m2ðH1Þ;m2ðH2Þ;:::;m2ðHCÞ�
¼½Pj1;Pj2;:::;PjC;Qj1;Qj2;:::;QjC�: (17)

The weight vector of sensitivity for different features
belonging to action j is calculated by the strategy of evidence
combination [i.e., Eq. (11)] and expressed as follows:

EQ-TARGET;temp:intralink-;e018;326;347Wj ¼ ½mðH1Þ; mðH2Þ; : : : ; mðHhÞ; : : : ; mðHCÞ�
¼ ½wj1; wj2; : : : ; wjh; : : : ; wjC�: (18)

In stage 4, inspired by the idea of survival of the fittest,
Wj is optimized during the experiment. Specifically speak-
ing, the features with low weight are not only inefficient for
the recognition of a specific action class but also adverse for
the final classification score, which should be penalized by
the penalty thresholds α and β. For the six action feature
types (i.e., trajectory shape, HOG, HOF, MBHx, MBHy, and
pose features) in this paper, the rule of elimination is formu-
lated as follows:

• Given the weight vector Wj, the values of its compo-
nents, which are greater than α, are defined as Ng.
When Ng ≥ 3, the weights less than α will be reset
to 0.

• Let Vmin be the minimum value of components in Wj.
When Ng ≤ 2 and Vmin ≤ β, the smallest value in Wj
will be reset to 0.

The corrected weight vectors of every feature type for
each action class are obtained and then utilized for the sub-
sequent classification of testing samples.
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In the final stage, the scores matrix Z for all samples in the
testing set is calculated by summing the weighted score
matrices of each feature, which can be written as

EQ-TARGET;temp:intralink-;e019;63;719Z ¼
�XC
h¼1

w1hshij;
XC
h¼1

w2hshij; : : : ;
XC
h¼1

wjhshij; : : : ;
XC
h¼1

wMhshij

�
;

(19)

where wjh is the h’th component in the weight vectorWj. We
retrieve the maximum values belonging to each row of every
scores matrix Zj (i.e., Zj ¼

PC
h¼1 wjhshij), which are consti-

tuted as a matrix F with M column vectors. Then, the deci-
sion function of action recognition can be defined as follows:

EQ-TARGET;temp:intralink-;e020;63;601li ¼ arg max
j¼1;2;: : : ;M

Fij; (20)

where li is the column index for the maximum score of sam-
ple i. Finally, the action label of testing sample i is inferred
efficiently by tracking back to the Zj, which corresponds to
li, and retrieving the action label belonging to the maximum
value of i’th row.

Note that the proposed pipeline of action recognition is a
universal and extendible framework, which has the following
characteristics:

• Our weighted score-level feature fusion method can be
embedded in different versions of the BoVW pipeline
combined with SVM classifier, which only needs to
establish a validation set for the corresponding dataset
to obtain the weight vectors in the process of method
transplantation.

• When an innovative feature needs to be applied in
our recognition framework, its effectiveness for differ-
ent action categories can be analyzed by the WSF-DS
method, and the weight vectors will be updated simul-
taneously. Furthermore, the extendibility of the frame-
work is also reflected in that the local spatiotemporal
features and pose features can be replaced by the par-
allel algorithms for feature extraction to improve overall
performance. For instance, the state-of-the-art works
for the pose estimation proposed in Refs. 24, 26, and
48 can be employed to replace the algorithm in Ref. 25.

• The strongly targeted weight vectors of each action,
which can not only effectively enhance the efficiency
of discriminative features but also restrain interference
from relatively ineffective features, are calculated by
evidence combination and then optimized via the pro-
posed rule of elimination, which combines the idea of
survival of the fittest. The feature with low weight for
specific action is eliminated in the experiments, which
has been found to be effective in improving the accu-
racy of action recognition.

4 Experiments
The performance of our method is evaluated on two publicly
available datasets: Penn Action dataset40 and sub-JHMDB.28

Both datasets are proposed for the purposes of action recog-
nition and pose estimation for the full body, and the anno-
tations of human joints and activity labels for each video
clip are provided. The experimental results are presented,

including the difference in the effectiveness of different
features for each action, the evaluation of our proposed
weighted score-level feature fusion, a comparison between
WSF-DS and multiple-feature fusion baselines, the perfor-
mance analysis for the proposed rule of survival of the fittest,
and a comparison with state-of-the-art action recognition
methods.

4.1 Datasets
The Penn Action dataset40 consists of 15 different actions, 13
human joints for each frame, and 2326 video clips collected
from the internet, which have the challenges of larger scale
and appearance variations, low-resolution images, and
obscured human body. The list of action categories is as fol-
lows: baseball pitch, baseball swing, bench press, bowling,
clean and jerk, golf swing, jump rope, jumping jacks, pull
up, push up, sit up, squats, strumming guitar, tennis fore-
hand, and tennis serve. We follow Ref. 24 to discard the
class “strumming guitar” and several video clips where most
of the human body is invisible and difficult to achieve pose
estimation for the full body.

The sub-JHMDB dataset28 is a subset of JHMDB that
contains 15 human joints inside a frame and 316 video
clips. The dataset comprises 12 action categories, including
catching, climbing stairs, golfing, jumping, kicking ball,
picking, pulling up, pushing, running, shooting ball, swing-
ing baseball, and walking. The threefold cross-validation
configure presented in Ref. 28 is adopted for testing on the
sub-JHMDB dataset. Each split contains on average 229
training samples and 87 testing samples, and the experimen-
tal results reported in this paper are the average accuracy of
three splits. For the Penn Action dataset, we follow the train/
test split released in Ref. 40 (which has been pruned and
includes 1206 samples for training and 1017 samples for
testing) and report the average accuracy. The sample frames
of Penn Action dataset and sub-JHMDB dataset are shown
in Fig. 2.

The numbers of validation samples in Penn Action and
sub-JHMDB are about 302 and 57, respectively, which are
1/3 of the numbers of 3/4 training samples.

4.2 Implementation Details
The proposed action recognition framework is performed on
an Intel Core i7-5930K processor with 64-GB RAM and
3.50-GHz frequency. The MATLAB® R2015a with 64-bit
is used as the software configuration of code execution.

For the local spatiotemporal features, we use the same set-
tings in Ref. 5, where the size of space-temporal grid is 2 ×
2 × 3 and the gradient direction is quantized in 8 directions
so that the dimension of HOG is 96. Since the HOF has a
stationary state, its dimension is 108. The gradients for hori-
zontal and vertical components of optical flow are defined as
MBHx and MBHy, respectively, and the dimension of both
features is 96. In addition, the dimension of trajectory shape
is 30 when the trajectory length L is set to 15 frames. In the
remaining experiments, PCA-whiten38 is employed to achieve
feature reduction and eliminate correlation. For each feature,
the dimensions of HOG, MBHx, and MBHy are reduced to
48. Trajectory shape is reduced to 15. HOF is reduced to
54. In the stage of codebook generation, the 256,000 fea-
tures randomly sampled from each features set are utilized to
train the GMM, respectively, which contains 256 Gaussian
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components. For the FV encoding, the VLFeat Toolbox49 is
employed, and the L2 and power normalization50 are utilized
to perform normalization for FV of each feature.

For the pose features, the model of 26 human joints with 6
types (which is learned by the pose estimation algorithm and
proved having good efficiency and performance)25 is trained
to detect human pose in each video frame. The human pose
can be described better with dense joints, but it will reduce
the distinguishing ability of joints. Because the translation
of joint coordinates for some points is less obvious (e.g.,
joints on the torso), which are meaningless and inefficient for
action recognition. Therefore, 15 key points generated from
26 joints are used as the data of pose, which is similar to the
work of Jhuang et al.28 For the descriptors of pose, the frame
step size s and the weakening factor R are both set to 3,
which have been proven to have good performance. It is
worth noting that the 3225 descriptor types proposed in
Ref. 28, including a set of relational features, perform better
than only using normalized joint coordinates. However, its

running time for an ordinary video clip with 42 frames
is about 6.17 s when the spatial resolution is 320 ×
240 pixels. In contrast, the running time of the 75 descriptor
types optimized in this work is about 0.0058 s under the
same conditions, and its recognition accuracy on the sub-
JHMDB dataset is basically equal to 52.9%, which is
achieved by the 3225 descriptor types. For each descriptor
type, all the training samples are utilized to generate an
exclusive codebook by k-means algorithm with 20 clustering
centers.

For multiclass classification, a one-against-rest approach
is adopted to select the prediction with the highest score.

4.3 Experimental Results
4.3.1 Evaluation of effectiveness on different features

for each action

The performance of the six features, including five local
spatiotemporal features extracted by IDT method and pose

Fig. 2 Sample frames from Penn Action dataset and sub-JHMDB dataset. The frames in the first and
second rows are from Penn Action, the third and last rows are from sub-JHMDB.

Fig. 3 Classification accuracy comparison of every feature for each action on Penn Action dataset.
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features, is evaluated separately on the two public datasets
based on the BoVW frameworks presented in Sec. 3.3.
The classification accuracies of different features for each
action are shown in Figs. 3 and 4. For notational conven-
ience, we only provide the classification accuracy compari-
son on split-3 of the sub-JHMDB dataset.

The results indicate that there is a great difference
between the recognition accuracies of specific features for
various actions. For instance, HOG and pose features
demonstrate the highest accuracies (90.33% and 95.2%)
for individual actions, whereas the lowest accuracies for
some actions are only 58.64% and 45.1% as shown in
Fig. 3, where the phenomenon is more pronounced in Fig. 4.
Furthermore, a specific action category is shown to be more
sensitive to several feature types, which is the basis for
designing the weighted score-level feature fusion approach.
From Fig. 3, the recognition accuracy of action “squats”
achieved by HOF or MBHy feature is 89.02%, which out-
performs the other four features by 13.29% on average. From
Fig. 4, the best classification accuracy for the action “swing-
ing baseball” achieved by pose features is 85.71%. However,
HOF demonstrates the highest accuracy among the other five
features, which is only just up to 42.86%. From Figs. 3 and
4, due to low resolution and large intracategory discrimina-
tions, the overall recognition efficiency of six features on
sub-JHMDB is much lower than it on Penn Action.

Based on the above results, we find that the weight vec-
tors of every feature for each action are necessary for improv-
ing the overall classification accuracy in the decision-making
stage. It is worth noting that the sensitivities of a particular
action category to the same set of features between different
datasets have a great disparity because of the influences of
image resolution, human scale, and various viewpoints, so
the corresponding weight vectors for different datasets are
required to calculate.

4.3.2 Evaluation of weighted score-level feature
fusion based on Dempster–Shafer evidence
theory

The effectiveness of our proposed WSF-DS method is
demonstrated by testing it on two public datasets for
human action recognition. To obtain the weight vectors of all
feature types for a specific action category, the samples
extracted from the training set are assembled as a validation

set, and then the evidence used for DS evidence theory is
computed by the approach presented in Sec. 3.4. Specifi-
cally, to obtain the robust sensitivity information of an action
category about every feature type, about 1/4 of training sam-
ples that are significantly different from the other 3/4 sam-
ples in motion scenes and body appearance are chosen as the
validation set.

The influence of different parameters α and β on classi-
fication results will be elaborated in Sec. 4.3.3. Here, we
report the best performance of our recognition framework.
Note that although the average accuracy is reported both
for the evaluation of two datasets, we follow Ref. 28 to cal-
culate the per-video accuracy for the sub-JHMDB, which
does differ much from the per-class accuracy adopted in
Penn Action.40 The confusion matrices computed by the pro-
posed WSF-DS method for Penn Action and the sub-
JHMDB have three splits that are shown in Fig. 5, respec-
tively. Table 1 presents the comparison of average accuracies
on the two datasets achieved by different feature types and
our WSF-DS method, where the five local spatiotemporal
features are extracted by IDT.

From Table 1, when a single feature is employed, the clas-
sification accuracies achieved by MBHy are 60.6% and
90.1% on sub-JHMDB and Penn Action individually, which
are close to the results achieved by HOF (i.e., 58.1% and
90.8%) but significantly outperform other feature types.
This suggests that the optic flow field and motion boundary
of the image are more effective than image appearance,
motion trajectory, and human pose in the process of action
recognition on the two datasets. It should be noted that the
estimated joint positions are not precise compared to the
ground truth. We leave such pose estimation problem as sig-
nificant future work, which has been confirmed to be effec-
tive in raising the accuracy of action recognition in Ref. 28.
Moreover, we observe that the proposed WSF-DS method
improves the performance of each single feature type follow-
ing the order in Table 1 by 7.9%, 17.0%, 3.7%, 5.0%,
4.4%, and 23.1% on Penn Action and 27.3%, 24.1%,
12.9%, 21.0%, 10.4%, and 18.2% on sub-JHMDB. These
results also demonstrate that the proposed score-level feature
fusion approach can adequately exploit the complementarity
among multiple features and be applied on different datasets
robustly.

As shown in Fig. 5, our WSF-DS performs well on
the actions such as “golfing,” “pulling up,” “pushing,” and

Fig. 4 Classification accuracy comparison of every feature for each action on sub-JHMDB dataset.

Journal of Electronic Imaging 013021-9 Jan∕Feb 2018 • Vol. 27(1)

Zhang et al.: Weighted score-level feature fusion based on Dempster–Shafer evidence theory. . .



“shooting ball” belonging to sub-JHMDB. However, we
achieve low accuracies on several actions, for instance, “swing-
ing baseball” is easy to confuse with “golfing,” because the
motion patterns between the two actions are similar. For the
Penn Action, only the accuracy about “sit up” is significantly
lower than other actions because of large intracategory dis-
criminations and varied shooting angles. The proposed
method could accurately classify the vast majority of action
categories, which demonstrates the effectiveness of our pro-
posed method.

4.3.3 Comparison with multiple-feature fusion
baselines

This section demonstrates the advantage of the proposed
WSF-DS method by comparing our results with two baseline
methods of combination in the field of action recognition
(i.e., kernel- and score-level fusions). For the descriptor-level
fusion mentioned in Sec. 1, we concatenate multiple features
extracted from a local cuboid of video into an integrated
whole as the input of the BoVW framework, and pose is a
holistic feature that describes the distribution of human joints

Fig. 5 Confusion matrices for two datasets: (a) the confusion matrix for Penn Action dataset and (b), (c),
and (d) the confusion matrices for three splits of sub-JHMDB dataset, respectively.

Table 1 Comparison of the performance for WSF-DS and different
feature types on datasets.

Methods

Sub-JHMDB

Split 1 Split 2 Split 3 Average Penn Action

Trajectory
shape

40.5 45.0 45.7 43.7 86.6

HOG 38.2 51.3 51.1 46.9 77.5

HOF 53.9 57.5 63.0 58.1 90.8

MBHx 48.3 55.0 46.7 50.0 89.5

MBHy 58.4 62.5 60.9 60.6 90.1

Pose 49.4 52.5 56.5 52.8 71.4

WSF-DS 70.8 73.8 68.5 71.0 94.5
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in the entire image. The local sampling is meaningless for it,
which causes the fusion method to be unavailable in this
work. For kernel-level fusion, each feature is fed into the
BoVW individually to obtain different descriptions of action
video, which represent various aspects of the motion char-
acteristic, and then fused as a single one to implement action
classification by SVM.8 For score-level fusion, the process is
similar to kernel-level fusion. However, the feature fusion
operation is executed in the stage of processing scores, where
every multiclass classifier, which is trained by different
features independently, achieves the scores. We compare
our WSF-DS with two typical score-level fusion methods.
Specifically, the geometrical mean is employed to combine
the scores, which is presented in Ref. 8. A single set of fixed
weights for different features is learned by cross validation
on the training set and then utilized to obtain the final rec-
ognition score, which is presented in Ref. 36. The experi-
mental results on the two datasets are shown in Table 2.

From Table 2, we observe that the WSF-DS method dem-
onstrates higher accuracies than other fusion methods on
both Penn Action and sub-JHMDB datasets, which outper-
forms the best results by 1.1% and 4.7%, respectively. For
the fusion strategies of local spatiotemporal features and
pose features, the score-level fusion is proved to be more
effective. The best accuracies of our weighted score-level
fusion increased by almost 1.8% and 5.4% compared to
kernel-level fusion. Furthermore, the differences of accuracy
rates between two typical score-level fusion methods are
<1%, but the method in Ref. 36 has a surplus learning step.

We also compare our WSF-DS with the WSF-DS without
using the rule of survival of the fittest. The former is 0.4%
and 1.8% higher than the latter in the two datasets, which
demonstrated the effectiveness of the proposed survival of
the fittest. The effect of varying α and β on the accuracy
of action recognition on the two datasets is considered in
Fig. 6, where β ¼ 0.05, 0.10, and 0.15 are compared. The
idea is that the penalty threshold β should not be larger than
the average weight of six feature types (i.e., β ¼ 0.167).

Figure 6 shows that increasing the value of β will decrease
performance, due to the fact that some valuable features are
removed in the decision-making stage. It also shows that the
values of α corresponding to the optimal accuracies for two
datasets are both <0.24 and larger values can cause failure of
the proposed survival of the fittest. We report the perfor-
mance of α ¼ 0.18 and β ¼ 0.05 for Penn Action and α ¼
0.22 and β ¼ 0.05 for sub-JHMDB in this work.

Table 2 Comparison with multiple-feature fusion baselines.

Methods Penn Action Sub-JHMDB

Kernel-level fusion8 92.7 65.6

Score-level fusion8 93.2 66.3

Score-level fusion36 93.4 65.8

WSF-DS (no survival of the fittest) 94.1 69.2

WSF-DS 94.5 71.0

Fig. 6 Performance of WSF-DS as a function of the penalty thresholds α and β on (a) Penn Action and
(b) sub-JHMDB datasets.

Table 3 Comparison of our WSF-DS with the state-of-the-art
methods.

Methods Year Penn Action Sub-JHMDB

Dense28 2013 — 46.0

IDT-FV5 2013 92.0 60.9

Pose28 2013 — 54.1

Pose26 2017 79.0 61.5

Pose51 2017 — 55.4

Dense + pose28 2013 — 52.9

IDT-FV + pose26 2017 92.9 74.6

MST52 2014 74.0 45.3

AOG24 2015 85.5 61.2

P-CNN53 2015 — 66.8

WSF-DS (ours) — 94.5 71.0
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4.3.4 Comparison with the state-of-the-art

The recognition accuracies obtained by our WSF-DS are
compared with state-of-the-art methods on Penn Action and
sub-JHMDB datasets, and the results are shown in Table 3.

For Penn Action, our WSF-DS has improved the state-of-
the-art methods in recent years. For the sub-JHMDB dataset,
only the recent work in Ref. 26, which combines improved
pose and IDT with FV encoding (IDT-FV),5 achieves better
result than our method, because the more advanced pose esti-
mation algorithm is employed. Moreover, the accuracy
achieved by a single local spatiotemporal feature or pose
feature is lower than their combination in general. In our
experiments, the proposed WSF-DS method achieves better
recognition accuracy than most of the recently proposed
methods based on the ideas of feature fusion using dendro-
gram and convolutional neural network features, such as
MST,52 AOG,24 and P-CNN.53

5 Conclusion
In this paper, we proposed an extendible and universal
weighted score-level feature fusion method for human action
recognition using DS evidence theory. Concretely, the
BoVW pipeline is employed to build a model for each video
clip via the extracted local spatiotemporal features and pose
features. The DS evidence theory and the proposed rule of
survival of the fittest are utilized to complete evidence com-
bination and calculate optimal weight vectors of every fea-
ture type belonging to each action class. The recognition
accuracies of WSF-DS on Penn Action and sub-JHMDB
datasets are obtained by the weighted summation strategy,
and the experimental results revealed that WSF-DS can
achieve promising performance, which outperforms other
state-of-the-art methods on Penn Action and sub-JHMDB
datasets.

The proposed WSF-DS can enhance the accuracy of clas-
sification by utilizing the complementarity among multiple
features adequately and perform the task of action recogni-
tion efficiently. However, to a certain extent, the overall rec-
ognition accuracy of multifeature fusion framework depends
to the performances of various features. For example, the
more advanced pose estimation algorithm can effectively
improve the action recognition performance of pose fea-
tures28 and then improve the efficiency of feature fusion.26

In the future, the method of obtaining the distribution of
human joints and the structure information for the incom-
plete body will be researched to expand the applied range
of the pose estimation. Furthermore, the two types of features
will be optimized to excavate more abundant information of
appearance and structure for human action and further
improve the recognition accuracy and the efficiency of the
proposed WSF-DS method.
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